Skip to main content

Reducing Training Environments in Evolutionary Robotics Through Ecological Modularity

  • Conference paper
  • First Online:
Book cover Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

  • 3905 Accesses

Abstract

Due to the large number of evaluations required, evolutionary robotics experiments are generally conducted in simulated environments. One way to increase the generality of a robot’s behavior is to evolve it in multiple environments. These environment spaces can be defined by the number of free parameters (f) and the number of variations each free parameter can take (n). Each environment space then has \(n^f\) individual environments. For a robot to be fit in the environment space it must perform well in each of the \(n^f\) environments. Thus the number of environments grows exponentially as n and f are increased. To mitigate the problem of having to evolve a robot in each environment in the space we introduce the concept of ecological modularity. Ecological modularity is here defined as the robot’s modularity with respect to free parameters in its environment space. We show that if a robot is modular along m of the free parameters in its environment space, it only needs to be evolved in \(n^{f-m+1}\) environments to be fit in all of the \(n^f\) environments. This work thus presents a heretofore unknown relationship between the modularity of an agent and its ability to generalize evolved behaviors in new environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bongard, J., Bernatskiy, A., Livingston, K., Livingston, N., Long, J., Smith, M.: Evolving robot morphology facilitates the evolution of neural modularity and evolvability. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference, p. 129136. ACM, Madrid (2015)

    Google Scholar 

  2. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)

    Article  Google Scholar 

  3. Bongard, J.C.: Spontaneous evolution of structural modularity in robot neural network controllers. In: Proceedings of the 2011 Genetic and Evolutionary Computation Conference, pp. 251–258. ACM, Dublin (2011)

    Google Scholar 

  4. Cappelle, C.K., Bernatskiy, A., Livingston, K., Livingston, N., Bongard, J.: Morphological modularity can enable the evolution of robot behavior to scale linearly with the number of environmental features. Front. Rob. AI 3, 59 (2016)

    Google Scholar 

  5. Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)

    Article  Google Scholar 

  6. Ellefsen, K.O., Mouret, J.B., Clune, J.: Neural modularity helps organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11(4), e1004128 (2015)

    Article  Google Scholar 

  7. Espinosa-Soto, C., Wagner, A.: Specialization can drive the evolution of modularity. PLoS Comput. Biol. 6(3), e1000719 (2010)

    Article  MathSciNet  Google Scholar 

  8. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  9. Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3, 151–183 (1994)

    Article  Google Scholar 

  10. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). doi:10.1007/3-540-59496-5_337

    Chapter  Google Scholar 

  11. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. PNAS 102(39), 13773 (2005)

    Article  Google Scholar 

  12. Lehman, J., Risi, S., D’Ambrosio, D., Stanley, K.O.: Encouraging reactivity to create robust machines. Adapt. Behav. 21, 484–500 (2013)

    Article  Google Scholar 

  13. Lipson, H., Pollack, J.B., Suh, N.P., Wainwright, P.: On the origin of modular variation. Evolution 56(8), 1549–1556 (2002)

    Article  Google Scholar 

  14. Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots. Rob. Auton. Syst. 19(1), 67–83 (1996)

    Article  Google Scholar 

  15. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  16. Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 129–146. Springer, New York (2011). doi:10.1007/978-1-4419-7747-2_8

    Chapter  Google Scholar 

  17. Wagner, G., Pavlicev, M., Cheverud, J.: The road to modularity. Nat. Rev. Genetics 8(12), 921–931 (2007)

    Article  Google Scholar 

  18. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11), e1000220 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We like to acknowledge financial support from NSF awards PECASE-0953837 and INSPIRE-1344227 as well as the Army Research Office contract W911NF-16-1-0304. We also acknowledge computation provided by the Vermont Advanced Computing Core.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collin Cappelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cappelle, C., Bernatskiy, A., Bongard, J. (2017). Reducing Training Environments in Evolutionary Robotics Through Ecological Modularity. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics