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Abstract. Recently, social network websites start to provide third-parity
sign-in options via the OAuth 2.0 protocol. For example, users can lo-
gin Netflix website using their Facebook accounts. By using this service,
accounts of the same user are linked together, and so does their infor-
mation. This fact provides an opportunity of creating more complete
profiles of users, leading to improved recommender systems. However,
user opinions distributed over different platforms are in different prefer-
ence structures, such as ratings, rankings, pairwise comparisons, voting,
etc. As existing collaborative filtering techniques assume the homogene-
ity of preference structure, it remains a challenge task of how to learn
from different preference structures simultaneously. In this paper, we
propose a fuzzy preference relation-based approach to enable collabo-
rative filtering via different preference structures. Experiment results on
public datasets demonstrate that our approach can effectively learn from
different preference structures, and show strong resistance to noises and
biases introduced by cross-structure preference learning.
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1 Introduction

Personalized recommendation is an important component of today’s business. By
observing user behaviors, recommender systems can identify potential users of a
product, or products that could be interested by a targeted user. An important
technique to make recommendations is collaborative filtering (CF). CF is based
on the intuition that there exist shared patterns to transfer preferences across
like-minded users. For example, whether a targeted user will like a movie can be
inferred by other users who have similar taste to the targeted user. The taste
of a user can be extracted from user preferences in different structures, such as
ratings [7], rankings [8], pairwise comparisons [5], voting [11], text reviews, etc.
A common assumption made by CF is the homogeneity of preference structures,
where only one type of preference structure is accepted at a time.



The last decade has seen a growing trend towards creating and managing
more profiles in social network, such as Facebook, LinkedIn, Netflix, etc. Further-
more, the popularization of third-party sign-in via the OAuth 2.0 protocol has
made it possible to link multiple profiles of the same user together. In light of this
trend, it becomes possible to alleviate the cold-start problem by learning user
preferences from multiple profiles, e.g., a new user of Netflix may have been used
Facebook for a while. Nevertheless, user preferences collected from different plat-
forms are often expressed in different preference structures. For example, 5-star
rating is used by Netflix, but voting (thumbs up) is used by Facebook. Despite of
explicit preferences, additional complexity is added if implicit preferences such
as page views and mouse clicks are also taken into consideration.

Moreover, user preferences collected from different platforms may contain
different noises and biases, as the user preferences not only reflect inherent qual-
ity of the product but also quality of the product providers. For example, a user
may rate a movie 3 star on one platform, but 5 star for the same movie on an-
other platform due to 3D support, which is called misattribution of memory [13]
in psychology. Nevertheless, different preference structures need to be placed
on the same scale for accurate discovering of shared patterns to achieve quality
recommendations.

In this work, we propose a fuzzy preference relations-based approach to learn
from different preference structures. Rather than trying to learn an independent
model for each type of preference structure, we propose to simultaneously learn
user preferences in all structures in one model. With the assistance of PR, user
preferences in different forms can be fused seamlessly. For example, user pref-
erences expressed as 5-star ratings, binary ratings, and page views can not be
directly fused in general. However, all those user preferences can be deduced
into the PR format by performing pairwise comparison on items. Once the user
preferences are represented in PR, a direct merge can be performed. In fact,
converting user preferences into PR not only provides a method to merge het-
erogeneous data but also reduces the biases that come with heterogeneity, i.e.,
the relative ordering of items is resistant to biases. The main contribution of this
work is proposing an approach to learn from multiple data sources with different
preference structures such as ratings, page views, mouse clicks, reviews, etc.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts of CF and preference structures. Section 3 is devoted to describe the
proposed method. In Section 4, the proposed method is applied to public datasets
for top-N recommendation. Finally, conclusions are drawn in Section 5.

2 Preliminaries and Related Work

This section briefly summarizes necessary background related to the heteroge-
neous sources problem and the preference relations that form the basis of our
solution.



2.1 Heterogeneous Sources

User preferences are usually assumed to come from a single homogeneous source.
This assumption is becoming invalid given the rapid development of online social
networks in which users maintain multiple profiles and the form of preferences
diverges. We define two sources as heterogeneous if their preferences are 1) in
different forms, e.g., ratings and clicks; 2) in different scales, e.g., 5-star scale
and 6-star scale; 3) or biased differently due to factors irrelevant to the items’
quality, e.g., quality of the service providers. Based on this definition, not only the
physically separated sources are heterogeneous but a source changed significantly
is also considered heterogeneous to itself.

In general, user preferences from heterogeneous sources cannot be merged
directly as they may be in different forms. Even if their forms are the same,
the scales could be different, where a force casting may change the meaning of
preferences. In case that the scales are the same, biases are still introduced by
the sources which make the recommendations inaccurate.

2.2 Preference Relation

Preference relation (PR) encodes user preferences in the form of relative ordering
between items, which is a useful alternative representation to absolute ratings
as suggested in recent works [3,5,9]. In fact, existing preferences such as ratings
or other types of preferences can be easily represented as PR and then merged
into a single dataset as shown in Fig. 1. . This property is particularly useful for
the cold-start problem but has been overlooked in literature.
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Fig. 1: Flow from user preferences to PR

We formally define the PR as follows. Let U = {u}n and I = {i}m denote the
set of n users and m items, respectively. The PR of a user u ∈ U between items
i and j is encoded as πuij , which indicates the strength of user u’s preference
relation for the ordered item pair (i, j). A higher value of πuij indicates a stronger
preference to the first item over the second item.

The preference relation is defined as

πuij =


( 2
3 , 1] if i � j (u prefers i over j)

[ 13 ,
2
3 ] if i ' j (i and j are equally preferable)

[0, 13 ) if i ≺ j (u prefers j over i)

(1)

where πuij ∈ [0, 1] and πuij = 1− πuji.



An interval is allocated for each preference category, i.e., preferred, equally
preferred, and less preferred. Indeed, each preference category can be further
break down into more intervals, though here in this paper we consider the min-
imal case of 3 intervals.

Similar to [3], the PR can be converted into user-wise preferences over items
which encode the ranking of items evaluated by a particular user. The user-wise
preference is defined as

pui =

∑
j∈Iu\i[[πuij >

2
3 ]]−

∑
j∈Iu\i[[πuij <

1
3 ]]

|Πui|
(2)

where [[·]] gives 1 for true and 0 for false, and Πui is the set of user u’s PR
related to item i. The user-wise preference pui falls in the interval [−1, 1], where
1 and −1 indicate that item i is the most and the least preferred item for u,
respectively.

3 Preference Relation-based Conditional Random Fields

In this section, we propose the Preference Relation-based Conditional Random
Fields (PrefCRF) to model both the heterogeneous preferences and the side
information. The rest of this section defines the PR-based RecSys problem, and
introduces the concept of the PrefNMF [5] that forms our underlying model,
followed by a detailed description of the PrefCRF and discussion on issues such
as feature design, parameter estimation, and predictions.

3.1 Problem Statement

Generally, the task of PR-based RecSys is to take PR as input and output Top-N
recommendations. Specifically, let πuij ∈ Π encode the PR of each user u ∈ U ,
and each πuij is defined over an ordered item pair (i, j), denoting i ≺ j, i ' j, or
i � j. The main task towards Top-N recommendations is to estimate the value
of each unknown πuij ∈ Πunknown, such that π̂uij approximates πuij . This can
be considered as an optimization task that performs directly on the PR

π̂uij = arg min
π̂uij∈[0,1]

(πuij − π̂uij)2 (3)

However, it can be easier to estimate the π̂uij by the difference between
two user-wise preferences pui and puj , i.e., π̂uij = φ(p̂ui − p̂uj), where φ(·) is a
function that bounds the value into [0, 1] and ensures φ(0) = 0.5. For example,
the inverse-logit function φ(x) = ex

1+ex can be used when user-wise preferences
involve large values. The objective of this paper is then to solve the following
optimization problem

(p̂ui, p̂uj) = arg min
p̂ui,p̂uj

(πuij − φ(p̂ui − p̂uj))2 (4)

which optimizes the user-wise preferences directly, and Top-N recommendations
can be obtained by simply sorting the estimated user-wise preferences.



3.2 Preference Relation-based Matrix Factorization

Matrix Factorization (MF) [7] is a popular RecSys approach that has mainly
been applied to absolute ratings. Recently, the PrefNMF [5] model was pro-
posed to accommodate PR input for MF models. Like traditional MF models,
the PrefNMF model discovers the latent factor space shared between users and
items, where the latent factors describe both the taste of users and the charac-
teristics of items. The attractiveness of an item to a user is then measured by
the inner product of their latent feature vectors.

Formally, each user u is associated with a latent feature vector uu ∈ Rk, and
each item i is associated with a latent feature vector vi ∈ Rk, where k is the
dimension of the latent factor space. The attractiveness of items i and j to user
u are u>u vi and u>u vj , respectively. When u>u vi > u>u vj , the item i is said to
be more preferable to the user u than item j, i.e., i � j. The strength of this
preference relation πuij can be estimated by u>u (vi − vj), and the inverse-logit

function is applied to ensure π̂uij ∈ [0, 1]: π̂uij = eu
>
u (vi−vj)

1+eu
>
u (vi−vj)

.

The latent feature vectors uu and vi are learned by minimizing regularized
squared error with respect to the set of all known preference relations Π:

min
uu,vi∈Rk

∑
πuij∈Π∧(i<j)

(πuij − π̂uij)2 + λ(‖uu‖2 + ‖vi‖2) (5)

where λ is the regularization coefficient.

3.3 Conditional Random Fields

Conditional Random Fields (CRF) [14] model a set of random variables hav-
ing Markov property with respect to an undirected graph G, and each random
variable can be conditioned on a set of global observations o. The undirected
graph G consists of a set of vertexes V connected by a set of edges E without
orientation, where two vertexes are neighboring to each other when connected.
Each vertex in V encodes a random variable, and the Markov property implies
that a variable is conditionally independent of others given its neighbors.

In this work, we use CRF to model interactions among user-wise prefer-
ences conditioned on side information with respect to a set of undirected graphs.
Specifically for each user u, there is a graph Gu with a set of vertexes Vu and a
set of edges Eu. Each vertex in Vu represents a user-wise preference pui of user
u on the item i. Each edge in Eu captures a relation between two preferences by
the same user.

Each vertex is conditioned on a set of global observations o, which is the side
information in our context. Specifically, each user u is associated with a set of
L attributes {ou}L such as age, gender and occupation. Similarly, each item i is
associated with a set of M attributes {oi}M such as genres for movie. Those side
information is encoded as the set of global observations o = {{ou}L, {oi}M}.

Formally, let pu = {pui | i ∈ Iu} be the joint set of preferences expressed by
user u, then we are interested in modeling the conditional distribution P (pu | o)
over the graph Gu.



P (pu | o) =
1

Zu
Ψu(pu,o) (6)

Ψu(pu,o) =
∏

(ui)∈Vu

ψui(pui,o)
∏

(ui,uj)∈Eu

ψij(pui, puj) (7)

where Zu(o) does normalization to ensure
∑

pu
P (pu | o) = 1, and ψ(·) is a

positive function known as potential. The potential ψui(·) captures the global
observations associated to the user u and the item i, and the potential ψij(·)
captures the correlations between two preferences pui and puj

ψui(pui,o) = exp{w>u fu(pui,oi) + w>i fi(pui,ou))} (8)

ψij(pui, puj) = exp{wijfij(pui, puj)} (9)

where fu, fi, and fij are the features to be designed shortly in Section 3.4, and
wu, wi, and wij are the corresponding weights realizing the importance of each
feature. With the weights estimated from data, the unknown preference pui can
be predicted as

p̂ui = arg max
pui∈[−1,1]

P (pui | pu,o) (10)

where P (pui | pu,o) measures the prediction confidence.

The Ordinal Logistic Regression [10] is then used to convert the user-wise
preferences pui into ordinal values, which assumes that the preference pui is
chosen based on the interval to which the latent utility belongs:

pui = l if xui ∈ (θl−1, θl] and pui = L if xui > θL−1 (11)

where L is the number of ordinal levels and θl are the threshold values of interest.
The probability of receiving a preference l is therefore:

Q(pui = l | u, i) =

∫ θl

θl−1

P (xui | θ) dθ = F (θl)− F (θl−1) (12)

where F (θl) is the cumulative logistic distribution evaluated at θl.

3.4 PrefCRF: Unifying PrefNMF and CRF

The CRF provides a principled way of capturing both the side information and
interactions among preferences. However, it employs the log-linear modeling as
shown in Eq. 7, and therefore does not enable a simple treatment of PR. The
PrefNMF, on the other hand, accepts PR but is weak in utilizing side infor-
mation. The complementary between these two techniques calls for an unified
PrefCRF model to take all the advantages.



Unification Essentially, the proposed PrefCRF model captures the side in-
formation and promotes the agreement between the PrefNMF and the CRF.
Specifically, the PrefCRF model combines the item-item correlations (Eq. 9)
and the ordinal distributions Q(pui | u, i) over user-wise preferences obtained
from Eq. 12.

P (pu | o) ∝ Ψu(pu,o)
∏

pui∈pu

Q(pui | u, i) (13)

where Ψu is the potential function capturing the side information and interaction
among preferences related to user u. Though there is a separated graph for each
user, the weights are optimized across all graphs.

Feature Design A feature is essentially a function f of n > 1 arguments that
maps the n-dimensional input into the unit interval f : Rn → [0, 1]. We design
the following kinds of features:

Correlation Features The item-item correlation is captured by the feature

fij(pui, puj) = g(|(pui − p̄i)− (puj − p̄j)|) (14)

where g(α) normalizes feature values and α plays the role of deviation, and
p̄i and p̄j are the average user-wise preference for items i and j, respectively.

Attribute Features Each user u and item i has a set of attributes ou and oi,
respectively. These attributes are mapped to preferences by the following
features

fi(pui) = oug(|(pui − p̄i)|)
fu(pui) = oig(|(pui − p̄u)|)

(15)

where fi models which users like the item i and fu models which classes of
items the user u likes.

Since one correlation feature exists for each pair of co-rated items, the number
of correlation features can be large, and makes the estimation slow to converge
and less robust. Therefore, we only keep strong correlation features fstrong ex-
tracted based on the Pearson correlation between items using a user-specified
minimum correlation threshold.

Parameter Estimation In general, CRF models cannot be determined by
standard maximum likelihood estimations, instead, approximation techniques
are used in practice. This study employs the pseudo-likelihood [1] to estimate
parameters by maximizing the regularized sum of log local likelihoods:

logL(w) =
∑
pui∈Π

logP (pui | pu,o)− 1

2σ2
w>w (16)

where w are the weights and 1/2σ2 controls the regularization. To optimize the
parameters, we use the stochastic gradient ascent procedure.



Item Recommendation The PrefCRF produces distributions over the user-
wise preferences, which can be converted into point estimates by computing the
expectation

p̂ui =

lmax∑
pui=lmin

puiP (pui | pu,o) (17)

where l refers to the intervals of user-wise preferences: from the least to the most
preferred. Given the predicted user-wise preferences, the items can be sorted and
ranked accordingly.

4 Experiment and Analysis

To study the performance of the proposed PrefCRF model, comparisons were
done with the following representative algorithms: KNN [12], NMF [7], Pre-
fKNN [3], and PrefNMF [5]. We employ two evaluation metrics Normalized
Cumulative Discounted Gain@T (NDCG@T) [6] that is popular in academia,
and Mean Average Precision@T (MAP@T) [4] that is common in contests.

4.1 Experimental Settings

Datasets and Experiment Design Experiments are conducted on four public
datasets: MovieLens-1M 4, Amazon Movie Reviews 5, EachMovie 6, and Movie-
Lens-20M 4. These datasets or their subsets are transformed to simulate four
scenarios of heterogeneous data:

Side Information The impact of side information is studied on the MovieLens-
1M dataset which provides gender, age, and occupation information about
users and genres of movies. The dataset contains more than 1 million ratings
by 6, 040 users on 3, 900 movies. For a reliable comparison, the dataset is split
into training and test sets with different sparsities.

Different Forms Amazon Movie Reviews dataset contains two forms of pref-
erences: textual reviews and 5-star ratings. We extracted a dense subset by
randomly selecting 5141 items with at least 60 reviews for each, and 2000
users with at least 60 movies reviews for each, and this results in 271K rat-
ings. For each user, 50 random reviews are selected for training, and the rest
are put aside for testing. The training set is further split into half ratings and
half textual reviews. Rating-based models are trained on the ratings only,
where PR-based models utilize textual reviews as well.

Different Scales EachMovie dataset contains ratings in 6-star scale that can
be easily converted into binary scale, i.e., ratings 1−3 and 4−6 are mapped
to 0 and 1 respectively. We extract a subset by randomly selecting 3000 users
who have rated at least 70 items as a dense dataset is required for splitting.

4 http://grouplens.org/datasets/movielens
5 http://snap.stanford.edu/data/web-Movies.html
6 http://grouplens.org/datasets/eachmovie

http://grouplens.org/datasets/movielens
http://snap.stanford.edu/data/web-Movies.html
http://grouplens.org/datasets/eachmovie


The resultant dataset contains 120K ratings on 1495 items. For each user we
randomly select 60 ratings for training and leave the rest for testing, and half
of the ratings in the training set are mapped into binary scale. Rating-based
models are trained on the 6-star ratings while PR-based models will exploit
the binary ratings as well.

Different Biases We study the impact of biases by adding biases into a stable
dataset with minimal existing biases. To prepare such dataset we extract a
stable subset from the latest MovieLens-20M released on April-2015. Specif-
ically, 258K ratings by 2020 users on 4408 movies released between 2010
and 2015 are extracted, where each user has rated at least 60 ratings. Bi-
ases are then introduced by adding a different Laplace noise sampled from
Laplace(0, b) to each user and item.

For PR-based methods, the same conversion method as in [5] is used to con-
verted ratings into PR. For example, 1, 0 and 0.5 are assigned to the preference
relation πuij when pui > puj , pui < puj , and pui = puj , respectively.

Parameter Setting For a fair comparison, we fix the number of latent factors
to 50 for all algorithms. The number of neighbors for KNN algorithms is set to
50. We vary the minimum correlation threshold for the PrefCRF to examine the
performance with different number of features. Different values of regularization
coefficient are also tested.

4.2 Results and Analysis

Algorithms are compared on four heterogeneous scenarios: side information, dif-
ferent forms, different scales and different biases. The impact of sparsity levels
and parameters is studied on the MovieLens-1M dataset, while these settings
for other experiments are fixed. Each experiment is repeated ten times with dif-
ferent random seeds and we report the mean results with standard deviations.
For each experiment, we also performed a paired t-test (two-tailed) with a sig-
nificance level of 95% on the best and the second best results, and all p-values
are less than 1× 10−5.

Fusing Side Information Table 1 shows the NDCG and MAP metrics on
Top-N recommendation tasks by compared algorithms. It can be observed that
the proposed PrefCRF, which captures the side information, consistently out-
performs others. To confirm the improvement, we plot the results in Fig. 2b by
varying the position T . The figure shows that PrefCRF not only outperforms
others but has a strong emphasize on top items, i.e., T < 5.

The impact of sparsity is investigated by plotting the results against sparsity
levels as in Fig. 2a. We can observe that the performance of PrefCRF increases
linearly given more training data, while its underlying PrefNMF model is less
extensible to denser dataset.



Table 1: Mean results and standard deviation over ten runs on MovieLens-1M
dataset.

Given 30 Given 40

Algorithm NDCG@1 NDCG@10 MAP@1 MAP@10 NDCG@1 NDCG@10 MAP@1 MAP@10

UserKNN 0.4306 ± 0.0011 0.4081 ± 0.0029 0.3539 ± 0.0071 0.2744 ± 0.0025 0.3695 ± 0.0048 0.4252 ± 0.0036 0.3663 ± 0.0047 0.2877 ± 0.0034
NMF 0.5274 ± 0.0084 0.5195 ± 0.0040 0.5225 ± 0.0081 0.3549 ± 0.0037 0.5424 ± 0.0067 0.5291 ± 0.0034 0.5377 ± 0.0066 0.3631 ± 0.0035
PrefKNN 0.3462 ± 0.0073 0.4048 ± 0.0038 0.3430 ± 0.0072 0.2720 ± 0.0037 0.3651 ± 0.0065 0.4283 ± 0.0024 0.3620 ± 0.0063 0.2904 ± 0.0023
PrefNMF 0.5778 ± 0.0112 0.5680 ± 0.0041 0.5724 ± 0.0109 0.3992 ± 0.0033 0.5883 ± 0.0073 0.5732 ± 0.0028 0.5832 ± 0.0073 0.4019 ± 0.0032
PrefCRF 0.6206± 0.0076 0.5856± 0.0028 0.6150± 0.0073 0.4195± 0.0028 0.6395± 0.0064 0.5990± 0.0023 0.6340± 0.0062 0.4294± 0.0021

Given 50 Given 60

Algorithm NDCG@1 NDCG@10 MAP@1 MAP@10 NDCG@1 NDCG@10 MAP@1 MAP@10

UserKNN 0.3831 ± 0.0063 0.4424 ± 0.0027 0.3803 ± 0.0060 0.3015 ± 0.0026 0.4035 ± 0.0090 0.4622 ± 0.0035 0.4002 ± 0.0085 0.3163 ± 0.0027
NMF 0.5430 ± 0.0083 0.5326 ± 0.0036 0.5390 ± 0.0082 0.3669 ± 0.0025 0.5547 ± 0.0109 0.5409 ± 0.0063 0.5504 ± 0.0113 0.3734 ± 0.0055
PrefKNN 0.3831 ± 0.0092 0.4483 ± 0.0030 0.3803 ± 0.0089 0.3070 ± 0.0022 0.3979 ± 0.0075 0.4689 ± 0.0039 0.3948 ± 0.0069 0.3223 ± 0.0033
PrefNMF 0.5873 ± 0.0096 0.5745 ± 0.0035 0.5830 ± 0.0098 0.4019 ± 0.0033 0.5854 ± 0.0145 0.5733 ± 0.0048 0.5808 ± 0.0142 0.4007 ± 0.0037
PrefCRF 0.6548± 0.0055 0.6068± 0.0018 0.6499± 0.0059 0.4372± 0.0024 0.6677± 0.0074 0.6139± 0.0018 0.6625± 0.0072 0.4436± 0.0016

Fusing Preferences in Different Forms In this experiment, we first con-
verted textual reviews into negative (−1), neutral (0), and positive (1) values
using the NLTK library [2], and then converted them into PR. We study how
these additional information can assist PR-based methods, and results over ten
runs are shown in Table 2. Surprisingly, the performance of all PR-based methods
except PrefCRF have decreased by incorporating textual reviews. We suspect
that this is due to the misclassification errors introduced by sentiment classi-
fication on text. However, in the next subsection we will see that an accurate
conversion can actually improve the performance.

(a) Sparsity (b) Given 60 (c) NDCG@T

(d) MAP@T (e) Regularization (f) Parameters

Fig. 2: Plots of experimental results

Fusing Preferences in Different Scales In this experiment preferences in
different scales are fused into PR to boost the performance of PR-based methods.
The binary scale ratings are similar to the positive/negative textual reviews,
however without incorrect values introduced by text classification.



Table 2: Results over ten runs on Amazon dataset.
Ratings Ratings + Textual Reviews

Algorithm NDCG@10 MAP@10 NDCG@10 MAP@10

UserKNN 0.6244 ± 0.0040 0.4599 ± 0.0035 0.6244 ± 0.0037 0.4599 ± 0.0025
NMF 0.8073± 0.0040 0.6689± 0.0038 0.8073± 0.0041 0.6689± 0.0000
PrefKNN 0.6410 ± 0.0038 0.4690 ± 0.0029 0.5765 ± 0.0039 0.4083 ± 0.0029
PrefNMF 0.7495 ± 0.0040 0.5924 ± 0.0031 0.7377 ± 0.0030 0.5806 ± 0.0031
PrefCRF 0.8223± 0.0033 0.6813± 0.0027 0.8259± 0.0035 0.6890± 0.0026

Table 3: Results over ten runs on EachMovie dataset.
6-star Ratings 6-star Ratings + Binary Ratings

Algorithm NDCG@10 MAP@10 NDCG@10 MAP@10

UserKNN 0.4374 ± 0.0047 0.3418 ± 0.0029 0.4374 ± 0.0047 0.3418 ± 0.0029
NMF 0.5211 ± 0.0078 0.3710 ± 0.0034 0.5211 ± 0.0078 0.3710 ± 0.0034
PrefKNN 0.4908 ± 0.0070 0.3793 ± 0.0031 0.5074 ± 0.0061 0.3938 ± 0.0044
PrefNMF 0.5233 ± 0.0061 0.3820 ± 0.0033 0.5454 ± 0.0060 0.3881 ± 0.0032
PrefCRF 0.5439± 0.0056 0.4006± 0.0045 0.5506± 0.0053 0.4038± 0.0043

From Table 3, we can observe that the performance of all PR-based methods
has increased by incorporating additional binary ratings, while the performance
of rating-based methods remains the same.

Fusing Preferences with Different Biases In this experiment we investigate
the impact of different biases, particularly the user-wise and item-wise biases,
which are sampled from Laplace(0, b). From Table 4 we can see that the per-
formance of rating-based methods has decreased while PR-based methods are
unaffected by such biases.

Table 4: NDCG@10 on MovieLens-20M dataset.
Algorithm Bias = None User-bias = Laplace(0, 2) Item-bias = Laplace(0, 2)

UserKNN 0.4465 ± 0.0033 0.3729 ± 0.0033 0.2914 ± 0.0017
NMF 0.4982 ± 0.0034 0.4566 ± 0.0032 0.3074 ± 0.0019
PrefKNN 0.4683± 0.0027 0.4683± 0.0027 0.3157 ± 0.0021
PrefNMF 0.4950± 0.0035 0.4950± 0.0035 0.3137 ± 0.0017
PrefCRF 0.5288± 0.0037 0.5288± 0.0037 0.3729 ± 0.0023

Impact of Regularization and Correlation Threshold The proposed Pre-
fCRF method has two user specified parameters: the regularization coefficient
and a minimum correlation threshold that controls the number of correlation fea-
tures. For the regularization, we can see from Fig. 2e that the performance gets
better when a small regularization penalty applies. In other words, PrefCRF can
generalize reasonable well without too much regularization. For the correlation
threshold, Fig. 2f shows that a smaller threshold results better performance by
including more correlation features, however, at the cost of more training time
and more training data.

5 Conclusions and Future Works

In this paper we talcked the learning from different preference structures prob-
lem by the PrefCRF model, which takes advantages of both the representational



power of the CRF and the ease of modeling PR by the PrefNMF. Experiment
results on four public datasets demonstrate that different preference structures
have been properly handled by PrefCRF, and significantly improved Top-N rec-
ommendation performance has been achieved. For future work, the computation
efficiency of PR-based methods can be further improved given that the number
of PR is usually much larger than ratings. Parallelization is feasible as as each
user has a separated set of PR that can be processed simultaneously.
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