Logical Foundations of Cyber-Physical Systems

André Platzer

Logical Foundations of Cyber-Physical Systems

André Platzer Computer Science Department Carnegie Mellon University Pittsburgh, Pennsylvania, USA

The content of the book and the image used on the book cover are based upon work performed at Carnegie Mellon University and supported by the National Science Foundation under NSF CAREER Award CNS-1054246.

ISBN 978-3-319-63587-3 ISBN 978-3-319-63588-0 (eBook) https://doi.org/10.1007/978-3-319-63588-0

Library of Congress Control Number: 2018946565

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Endorsements

This excellent textbook marries design and analysis of cyber-physical systems with a logical and computational way of thinking. The presentation is exemplary for finding the right balance between rigorous mathematical formalization and illustrative case studies rooted in practical problems in system design.

Rajeev Alur, University of Pennsylvania

This book provides a wonderful introduction to cyber-physical systems, covering fundamental concepts from computer science and control theory from the perspective of formal logic. The theory is brought to life through many didactic examples, illustrations, and exercises. A wealth of background material is provided in the text and in an appendix for each chapter, which makes the book self-contained and accessible to university students of all levels.

Goran Frehse, Université Grenoble Alpes

[The author] has developed major important tools for the design and control of those cyber-physical systems that increasingly shape our lives. This book is a 'must' for computer scientists, engineers, and mathematicians designing cyber-physical systems.

Anil Nerode, Cornell University

As computing interfaces increasingly with our physical world, resulting in socalled cyber-physical systems, our foundations of computing need to be enriched with suitable physical models. This book strikes a wonderful balance between rigorous foundations for this next era of computing with illustrative examples and applications that drive the developed methods and tools. A must read book for anyone interested in the development of a modern and computational system science for cyber-physical systems.

George J. Pappas, University of Pennsylvania

This definitive textbook on cyber-physical systems lays the formal foundations of their behavior in terms of a single logical framework. Platzer's logic stands out among all other approaches because it provides a uniform treatment of both the discrete and continuous nature of cyber-physical systems, and does not shy away from their complex behavior due to stochasticity, uncertainty, and adversarial agents in the environment. His computational thinking approach makes this work accessible to practicing engineers who need to specify and verify that cyber-physical systems are safe.

Jeannette M. Wing, Columbia University

Foreword

I first met André when he was just finishing his PhD and gave a job talk at CMU (he got the job). I was a visiting researcher and got to take the young faculty candidate out for lunch. André talked about verifying cyber-physical systems (CPS) using "differential dynamic logic" and theorem proving. I was skeptical, for one because related approaches had only seen modest success, and also because my money was on a different horse. A few years before, I had developed a model checker (PHAVer), and was working on a second one, called SpaceEx. At the time, these were the only verification tools that, on the push of a button, could verify certain benchmarks from CPS and other domains involving continuous variables that change with time. I was quite proud of them and, for me, algorithmic verification was the way to go. But André was determined to make theorem proving work in practice, and indeed, he advanced the field to an extent that I did not think possible. André and his team first developed the logical framework, then built a very capable theorem prover for CPS (KeYmaera), successfully applied it to industrial case studies like airplane collision avoidance, and, finally, addressed important application issues such as validating the model at runtime.

The book in front of you provides a comprehensive introduction on how to reason about cyber-physical systems using the language of logic and deduction. Along the way, you will become familiar with many fundamental concepts from computer science, applied mathematics, and control theory, all of which are essential for CPS. The book can be read without much prior knowledge, since all necessary background material is provided in the text and in appendices for many chapters. The book is structured in the following four parts. In the first part, you will learn how to model CPS with continuous variables and programming constructs, how to specify requirements and how to check whether the model satisfies the requirements using proof rules. The second part adds differential equations for modeling the physical world. The third part introduces the concept of an adversary, who can take actions that the system can not influence directly. In a control system, the adversary can be the environment, which influences the system behavior through noise and other disturbances. Making decisions in the presence of an adversary means trying to be prepared for the worst case. The fourth part adds further elements for reasoning soundly and efficiently about systems in applications, such as using real arithmetic and – my favorite – monitor conditions. Monitor conditions are checked while the system is in operation. As long as they hold, one can be sure that not only the model but also the actual CPS implementation satisfy the safety requirements.

By now André and his group have handled an impressive number of case studies that are beyond the capabilities of any model checker I know. Fortunately for me and my horse, the converse is also still true, since some problems can in practice only be solved numerically using algorithmic approaches. If your goal is to obtain a rock-solid foundation for CPS from the beautiful and elegant perspective of logics, then this is the book for you.

Goran Frehse, Associate Professor, Université Grenoble Alpes, Grenoble, 2017

Acknowledgements

This textbook is based on the lecture notes for the *Foundations of Cyber-Physical Systems* undergraduate course I taught in the Computer Science Department at Carnegie Mellon University. The textbook would have been impossible without the feedback from the students and helpful discussions with the teaching assistants João Martins, Annika Peterson, Nathan Fulton, Anastassia Kornilova, Brandon Bohrer, and especially Sarah Loos who TAed for the first instance in Fall 2013 and co-instructed for the intensive courses at ENS Lyon, France, in Spring 2014 and at MAP-i, Braga, Portugal in Summer 2014. Based on the experience with earlier Ph.D.-level courses, this course was originally designed as an undergraduate course but then extended to master's students and eventually Ph.D. students.

I appreciate the feedback of all my students on this textbook, but also by my post-docs Stefan Mitsch, Jean-Baptiste Jeannin, Khalil Ghorbal, and Jan-David Quesel. I am especially thankful to Sarah Loos's formative comments on the earliest draft and Yong Kiam Tan's careful extensive feedback for the final version. I am also grateful to Jessica Packer's exhaustive consistency checking on the textbook structuring and to Julia Platzer for crucial advice on illustrations. I am most indebted to the developers Stefan Mitsch and Nathan Fulton of the KeYmaera X prover for verifying cyber-physical systems, and very much appreciate also the KeYmaera X contributions by Brandon Bohrer, Yong Kiam Tan, Jan-David Quesel, and Marcus Völp. For help with the book process, I am grateful to the copyeditor and Ronan Nugent from Springer. Especially, however, I thank my family, without whose patience and support this book would not exist.

This textbook captures findings from the NSF CAREER Award on *Logical Foundations of Cyber-Physical Systems*, which I am very grateful to have received. I also benefitted from Helen Gill's advice as a program manager when this project started.

Funding

This material is based upon work supported by the National Science Foundation under NSF CAREER Award CNS-1054246.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Pittsburgh, December 2017

André Platzer

Disclaimer

This book is presented solely for educational purposes. While best efforts have been used in preparing this book, the author and publisher make no representations or warranties of any kind and assume no liabilities of any kind with respect to the accuracy or completeness of the contents and specifically disclaim any implied warranties of merchantability or fitness of use for a particular purpose. Neither the author nor the publisher shall be held liable or responsible to any person or entity with respect to any loss or incidental or consequential damages caused, or alleged to have been caused, directly or indirectly, by the information contained herein. No warranty may be created or extended by sales representatives or written sales materials.

Contents

1	Cyb	er-Physical Systems: Overview	1
	1.1	Introduction	1
		1.1.1 Cyber-Physical Systems Analysis by Example	2
		1.1.2 Application Domains	3
		1.1.3 Significance	4
		1.1.4 The Importance of Safety	4
	1.2	Hybrid Systems Versus Cyber-Physical Systems	6
	1.3	Multi-dynamical Systems	7
	1.4	How to Learn About Cyber-Physical Systems	10
	1.5	Computational Thinking for Cyber-Physical Systems	12
	1.6	Learning Objectives	12
	1.7	Structure of This Textbook	15
	1.8	Summary	18
	Refe	erences	19
.	4 T		
P			2.5
_	art I	Elementary Cyber-Physical Systems	25
2			25 27
2		Elementary Cyber-Physical Systems erential Equations & Domains Introduction	
2	Diff	erential Equations & Domains Introduction	27
2	Diff 2.1	erential Equations & Domains	27 27
2	Diff 2.1 2.2	Introduction	27 27 28
2	Diff 2.1 2.2 2.3	Introduction	27 27 28 31
2	Diff 2.1 2.2 2.3 2.4	erential Equations & Domains Introduction Differential Equations as Models of Continuous Physical Processes The Meaning of Differential Equations A Tiny Compendium of Differential Equation Examples Domains of Differential Equations	27 27 28 31 33
2	Diff 2.1 2.2 2.3 2.4 2.5	Introduction	27 27 28 31 33 39
2	Diff 2.1 2.2 2.3 2.4 2.5	Introduction	27 27 28 31 33 39 41
2	Diff 2.1 2.2 2.3 2.4 2.5	Introduction	27 28 31 33 39 41 41 42
2	Diff 2.1 2.2 2.3 2.4 2.5	Introduction	277 278 311 333 39 411 412 43

x Contents

		2.7.2	First-Order Formulas	47
		2.7.3	Continuous Programs	51
	2.8	Sumr	nary	52
	2.9		ndix	53
		2.9.1	Existence Theorems	53
		2.9.2	Uniqueness Theorems	54
		2.9.3	Linear Differential Equations with Constant Coefficients	55
		2.9.4	Continuation and Continuous Dependency	57
	Exe			58
				61
•	CI.	• 0 0	Non-Arril	(2
3		ice & C		63
	3.1		duction	63
	3.2		adual Introduction to Hybrid Programs	65
		3.2.1	Discrete Change in Hybrid Programs	66
		3.2.2	Compositions of Hybrid Programs	66
		3.2.3	Decisions in Hybrid Programs	68
		3.2.4	Choices in Hybrid Programs	69
		3.2.5	Tests in Hybrid Programs	71
		3.2.6	Repetitions in Hybrid Programs	73
	3.3		id Programs	75
		3.3.1	Syntax	75
		3.3.2	Semantics	77
	3.4	Hybr	id Program Design	82
		3.4.1	To Brake, or Not to Brake, That Is the Question	82
		3.4.2	A Matter of Choice	83
	3.5	Sumr	nary	84
	3.6	Appe	endix: Modeling the Motion of a Robot Around a Bend	85
	Exe	cises .		87
	Refe	erences .		92
	C 6			0.5
4		•	ontracts	95
	4.1		duction	95
	4.2		adual Introduction to CPS Contracts	97
		4.2.1	The Adventures of Quantum the Bouncing Ball	98
		4.2.2	How Quantum Discovered a Crack in the Fabric of Time	101
		4.2.3	How Quantum Learned to Deflate	
		4.2.4	Postcondition Contracts for CPS	
		4.2.5	Precondition Contracts for CPS	
	4.3	_	cal Formulas for Hybrid Programs	
	4.4		rential Dynamic Logic	
		4.4.1	Syntax	110
		4.4.2	Semantics	
	4.5		Contracts in Logic	
	4.6	Ident	if ving Requirements of a CPS	118

Contents xi

	4.7		nary
	4.8		ndix
		4.8.1	Intermediate Conditions for a Proof of Sequential Composi-
			tions
		4.8.2	A Proof of Choice
		4.8.3	
	Refe	erences .	
5	Dyn		Systems & Dynamic Axioms 137
	5.1		luction
	5.2		nediate Conditions for CPS
	5.3	Dyna	mic Axioms for Dynamical Systems
		5.3.1	Nondeterministic Choices
		5.3.2	Soundness of Axioms
		5.3.3	Assignments
		5.3.4	Differential Equations
		5.3.5	Tests
		5.3.6	Sequential Compositions
		5.3.7	Loops
		5.3.8	Diamonds
	5.4	A Pro	oof of a Short Bouncing Ball
	5.5		nary
	5.6		ndix
		5.6.1	Modal Modus Ponens Has Implications on Boxes 160
		5.6.2	Vacuous State Change if Nothing Relevant Ever Changes 162
		5.6.3	Gödel Generalizes Validities into Boxes 162
		5.6.4	Monotonicity of Postconditions
		5.6.5	Of Free and Bound Variables
		5.6.6	Free and Bound Variable Analysis
	Ever		
	KCIC	ichees .	
6		th & Pr	
	6.1		luction
	6.2	Truth	and Proof
		6.2.1	Sequents
		6.2.2	Proofs
		6.2.3	Propositional Proof Rules
		6.2.4	Soundness of Proof Rules
		6.2.5	Proofs with Dynamics
		6.2.6	Quantifier Proof Rules
	6.3		ed Proof Rules
	6.4		quent Proof for the Single-Hop Bouncing Ball 193
	6.5		Arithmetic

xii Contents

		6.5.1	Real Quantifier Elimination	196
		6.5.2	Instantiating Real-Arithmetic Quantifiers	
		6.5.3	Weakening Real Arithmetic by Removing Assumptions	
		6.5.4	Structural Proof Rules in Sequent Calculus	
		6.5.5	Substituting Equations into Formulas	
		6.5.6	Abbreviating Terms to Reduce Complexity	
		6.5.7	Creatively Cutting Real Arithmetic to Transform Questions	
	6.6		nary	
	Exe		· · · · · · · · · · · · · · · · · · ·	
	Refe			
7	Con	trol Loc	ops & Invariants	211
′	7.1		duction	
	7.2		ol Loops	
	7.3		tion for Loops	
	1.5	7.3.1	Induction Axiom for Loops	
		7.3.2	Induction Rule for Loops	
		7.3.3	Loop Invariants	
		7.3.4	Contextual Soundness Requirements	
	7.4		oof of a Happily Repetitive Bouncing Ball	
	7.5		ing Postconditions into Separate Cases	
	7.6		nary	
	7.7		ndix	
	, . ,	7.7.1	Loops of Proofs	
		7.7.2	Breaking Loops of Proofs	
		7.7.3	Invariant Proofs of Loops	
		7.7.4	Alternative Forms of the Induction Axiom	
	Exe			
	Refe			
8	Eve	nts & R	esponses	245
	8.1		duction	245
	8.2		Need for Control	
		8.2.1	Events in Control	
		8.2.2	Event Detection	
		8.2.3	Dividing Up the World	
		8.2.4	Event Firing	
		8.2.5	Event-Triggered Verification	
		8.2.6	Event-Triggered Control Paradigm	
		8.2.7	Physics Versus Control Distinctions	
	8.3		nary	
	Exe		· · · · · · · · · · · · · · · · · · ·	
	Dofe			266

Contents xiii

9	Read	ctions & Delays	267
	9.1	Introduction	. 267
	9.2	Delays in Control	. 269
		9.2.1 The Impact of Delays on Event Detection	. 272
		9.2.2 Model-Predictive Control Basics	. 273
		9.2.3 Design-by-Invariant	
		9.2.4 Sequencing and Prioritizing Reactions	. 276
		9.2.5 Time-Triggered Verification	
	9.3	Summary	. 281
	Exer	cises	. 282
	Refe	rences	. 284
Pa	rt II	Differential Equations Analysis	285
10		erential Equations & Differential Invariants	287
	10.1	Introduction	
	10.2	A Gradual Introduction to Differential Invariants	
		10.2.1 Global Descriptive Power of Local Differential Equations	
		10.2.2 Intuition for Differential Invariants	
		10.2.3 Deriving Differential Invariants	
	10.3	Differentials	
		10.3.1 Syntax	
		10.3.2 Semantics of Differential Symbols	
		10.3.3 Semantics of Differential Terms	
		10.3.4 Derivation Lemma with Equations of Differentials	
		10.3.5 Differential Lemma	
		10.3.6 Differential Invariant Term Axiom	
		10.3.7 Differential Substitution Lemmas	
		Differential Invariant Terms	
	10.5		
	10.6	r r	
	10.7	Summary	
	10.8	Appendix	
		10.8.1 Differential Equations Versus Loops	
		10.8.2 Differential Invariant Terms and Invariant Functions	
		cises	
	Refe	rences	. 321
11		erential Equations & Proofs	323
	11.1	Introduction	
	11.2	Recap: Ingredients for Differential Equation Proofs	
	11.3	Differential Weakening	
	11.4	1	
		11.4.1 Equational Differential Invariants	. 329

xiv Contents

		11.4.2 Differential Invariant Proof Rule	331
		11.4.3 Differential Invariant Inequalities	332
		11.4.4 Disequational Differential Invariants	335
		11.4.5 Conjunctive Differential Invariants	336
		11.4.6 Disjunctive Differential Invariants	338
	11.5	Differential Invariants	339
	11.6	Example Proofs	341
	11.7	Assuming Invariants	343
	11.8	Differential Cuts	346
	11.9	Differential Weakening Again	350
		Differential Invariants for Solvable Differential Equations	
	11.11	Summary	352
	11.12	Appendix: Proving Aerodynamic Bouncing Balls	353
	Exerc	ises	358
	Refer	ences	360
12		ts & Differential Ghosts	363
	12.1		
		Recap	
		A Gradual Introduction to Ghost Variables	
		12.3.1 Discrete Ghosts	
		12.3.2 Proving Bouncing Balls with Sneaky Solutions	
		12.3.3 Differential Ghosts of Time	
		12.3.4 Constructing Differential Ghosts	
		Differential Ghosts	
	12.5	Substitute Ghosts	
	12.6	Limit Velocity of an Aerodynamic Ball	
	12.7	Axiomatic Ghosts	
	12.8	Summary	
	12.9	Appendix	
		12.9.1 Arithmetic Ghosts	
		12.9.2 Nondeterministic Assignments & Ghosts of Choice	
		12.9.3 Differential-Algebraic Ghosts	
		ises	
	Refer	ences	393
13	Diffe	rential Invariants & Proof Theory	397
	13.1	·	
	13.2	Recap	400
	13.3	Comparative Deductive Study: Relativity Theory for Proofs	
	13.4	Equivalences of Differential Invariants	
	13.5	Differential Invariants & Arithmetic	
	13.6	Differential Invariant Equations	
	13.7	Equational Incompleteness	
	13.7	Strict Differential Invariant Inequalities	410

Contents xv

	13.9 Differential Invariant Equations as Differential Invariant Inequalitie	s 412
	13.10 Differential Invariant Atoms	413
	13.11 Summary	414
	13.12 Appendix: Curves Playing with Norms and Degrees	414
	Exercises	
	References	416
Pa	rt III Adversarial Cyber-Physical Systems	419
14	Hybrid Systems & Games	421
	14.1 Introduction	421
	14.2 A Gradual Introduction to Hybrid Games	
	14.2.1 Choices & Nondeterminism	424
	14.2.2 Control & Dual Control	426
	14.2.3 Demon's Derived Controls	427
	14.3 Syntax of Differential Game Logic	428
	14.3.1 Hybrid Games	429
	14.3.2 Differential Game Logic Formulas	432
	14.3.3 Examples	433
	14.4 An Informal Operational Game Tree Semantics	439
	14.5 Summary	443
	Exercises	
	References	447
15	Winning Strategies & Regions	449
	15.1 Introduction	449
	15.2 Semantics of Differential Game Logic	
	15.2.1 Limits of Reachability Relations	451
	15.2.2 Set-Valued Semantics of Differential Game Logic Formulas	452
	15.2.3 Winning-Region Semantics of Hybrid Games	453
	15.3 Semantics of Repetition in Hybrid Games	
	15.3.1 Repetitions with Advance Notice	
	15.3.2 Repetitions as Infinite Iterations	
	15.3.3 Inflationary Semantics of Repetition	
	15.3.4 Characterizing Winning Repetitions Implicitly	
	15.4 Semantics of Hybrid Games	
	15.5 Summary	
	Exercises	
	References	478
16	Winning & Proving Hybrid Games	479
	16.1 Introduction	
	16.2 Semantical Considerations	
	16.2.1 Monotonicity	481
	16.2.2 Determinacy	482

xvi Contents

	16.3	Dynamic Axioms for Hybrid Games	484
		16.3.1 Determinacy	484
		16.3.2 Monotonicity	485
		16.3.3 Assignments	
		16.3.4 Differential Equations	
		16.3.5 Challenge Games	
		16.3.6 Choice Games	
		16.3.7 Sequential Games	
		16.3.8 Dual Games	
		16.3.9 Repetition Games	
		16.3.10 Proof Rules for Repetition Games	
	16.4	Example Proofs	
	16.5	Axiomatization	
	10.5	16.5.1 Soundness	
		16.5.2 Completeness	
	16.6	There and Back Again Game	
	16.7	Summary	
		cises	
		rences	
	KCIC	tenees	307
17	Gam	ne Proofs & Separations	509
	17.1	Introduction	509
	17.2	Recap: Hybrid Games	510
	17.3	Separating Axioms	
	17.4	Repetitive Diamonds – Convergence Versus Iteration	
	17.5	Summary	
	17.6	Appendix: Relating Differential Game Logic and Differential Dy-	
		namic Logic	520
	Exer	cises	
		rences	
_		v a v v and a	
Pa	rt I	Comprehensive CPS Correctness	523
18	Axio	ms & Uniform Substitutions	525
	18.1	Introduction	525
	18.2	Axioms Versus Axiom Schemata	
	18.3	What Axioms Want	
	18.4	Differential Dynamic Logic with Interpretations	
	10	18.4.1 Syntax	
		18.4.2 Semantics	
	18.5		
	10.5	18.5.1 Uniform Substitution Rule	
		18.5.2 Examples	
		18.5.3 Uniform Substitution Application	542

Contents xvii

	18.5.4 Uniform Substitution Lemmas	
	18.5.5 Soundness	546
	18.6 Axiomatic Proof Calculus for dL	
	18.7 Differential Axioms	549
	18.8 Summary	551
	18.9 Appendix: Uniform Substitution of Rules and Proofs	551
	Exercises	552
	References	555
19	Verified Models & Verified Runtime Validation	557
	19.1 Introduction	557
	19.2 Fundamental Challenges with Inevitable Models	559
	19.3 Runtime Monitors	562
	19.4 Model Compliance	565
	19.5 Provably Correct Monitor Synthesis	568
	19.5.1 Logical State Relations	569
	19.5.2 Model Monitors	571
	19.5.3 Correct-by-Construction Synthesis	571
	19.6 Summary	573
	Exercises	574
	References	575
20	Virtual Substitution & Real Equations	577
	20.1 Introduction	577
	20.2 Framing the Miracle	580
	20.3 Quantifier Elimination	583
	20.3.1 Homomorphic Normalization for Quantifier Elimination	585
	20.3.2 Substitution Base	587
	20.3.3 Term Substitutions for Linear Equations	588
	20.4 Square Root $\sqrt{\cdot}$ Virtual Substitutions for Quadratics	590
	20.4.1 Square Root Algebra	592
	20.4.2 Virtual Substitutions of Square Roots	595
	20.5 Optimizations	599
	20.6 Summary	599
	20.7 Appendix: Real Algebraic Geometry	
	Exercises	
	References	603
21	Virtual Substitution & Real Arithmetic	607
	21.1 Introduction	607
	21.2 Recap: Square Root $\sqrt{\cdot}$ Virtual Substitutions for Quadratics	609
	21.3 Infinity ∞ Virtual Substitution	609
	21.4 Infinitesimal ε Virtual Substitution	612
	21.5 Quantifier Elimination by Virtual Substitution for Quadratics	618
	· · · · · · · · · · · · · · · · · · ·	623

xviii	Contents
AVIII	Contents

	629
6	 627
	 625
endix: Semialgebraic Geometry	 625
•	 . (

List of Figures

1.1	Airplane example: Which control decisions are safe for aircraft collision avoidance?	2
1.2	Multi-dynamical systems aspects of CPS	8
1.3	Dependencies and suggested reading sequences of the chapters	17
2.1	Vector field with one solution of a differential equation	29
2.2 2.3	Vector field with one solution of accelerated straight-line motion . Discretizations of differential equations with a discretization time	30
	step	31
2.4	Differential equation solution condition	32
2.5	Constant differential equation	33
2.6	Linear differential equation	33
2.7	A solution of the rotational differential equations	36
2.8	Another solution of the rotational differential equations with initial	
	values 1	37
2.9	A faster solution of the rotational differential equations with initial	
	values 1	37
2.10	A solution of the time square oscillator and the damped oscillator .	38
2.11	System $x' = f(x) & Q$ follows the differential equation $x' = f(x)$ for	
	any duration but cannot leave evolution domain $Q cdot cd$	41
2.12	Illustration of the dynamics of continuous programs	51
3.1	An illustration of the behavior of an instantaneous discrete change .	66
3.2	Fixed acceleration, velocity, and position change over time	67
3.3	Acceleration, velocity, and position change over time	68
3.4	Transition semantics and example dynamics of hybrid programs	78
3.5	Nested transition semantics pattern for $(\alpha; \beta)^*$	81
3.6	Nested transition semantics pattern for $(\alpha \cup \beta)^*$	81
3.7	Transition structure of the acceleration/braking example	83
3.8	Illustration of a Dubins path consisting of a sequence of lines and	
	maximally curved circle segments	86

xx List of Figures

3.9	Illustration of the Dubins dynamics of a point (x,y) moving in direction (v,w) along a dashed curve with angular velocity ω	86
3.10	Hybrid automaton for a car that can accelerate or brake	91
4.1	Sample trajectory of a bouncing ball	98
4.2	Sample trajectory of a bouncing ball with a crack in the floor	101
4.3	Sample trajectory of a bouncing ball over its hybrid time domain .	102
4.4	Hybrid time domain for the sample trajectory of a bouncing ball	103
4.5	Sample trajectory of a bouncing ball that ultimately lies down flat .	104
4.6	Transition semantics of modalities in dL formulas	115
4.7	Sample trajectory of a bouncing ball in an anti-gravity field	118
4.8	Sample trajectory of a bouncing ball with anti-damping	120
4.9	Sample trajectory of a bouncing ball with upwards initial velocity.	120
4.10	Sample trajectory of a bouncing ball dribbling with fast initial ve-	
	locity	121
5.1	Sample trajectory of a single-hop bouncing ball	140
5.2	Intermediate conditions for sequential compositions	142
5.3	Illustration of dynamic axiom for sequential composition	154
5.4	Summary of sound differential dynamic logic axioms from this	
	chapter	160
5.5	Additional axioms and proof rules for hybrid systems	171
6.1	Propositional proof rules of sequent calculus	
6.2	A simple propositional example proof in sequent calculus	
6.3	A simple example proof with dynamics in sequent calculus	
6.4	Quantifier sequent calculus proof rules	
6.5	Sequent calculus proof for gravity above ground	
6.6	Proof rules of the dL sequent calculus considered in this chapter	206
7.1	Successively using induction axiom I at each state reached after	
	running iterations of α^*	
7.2	Sequent calculus proof shape for bouncing ball	
7.3	Sequent calculus proof for bouncing ball with split	231
7.4	Summary of proof rules for loops, generalization, monotonicity, and splitting boxes	232
7.5	Loops of proofs: iterating and splitting the box	
7.6	Loops of proofs: iterating and generalizing the box	
7.7	Loops of proofs: intermediate generalizations	
7.8	Derivation of backwards unwinding axiom from alternative induc-	230
7.0	tion axiom	240
8.1	Sample trajectory of a bouncing ball bouncing freely	248
8.2	Sample trajectory of a ping-pong ball	
8.3	Sample trajectory of a ping-pong ball which misses one event	

List of Figures xxi

8.4	Sample trajectory of a ping-pong ball, sometimes actuating early, sometimes late	252
8.5	Sample trajectory of a ping-pong ball with the controller firing mul-	
	tiple times for the same event	258
8.6	Sample trajectory of a ping-pong ball with the controller firing multiple times for the same event on the event boundary	258
9.1	Sample trajectory of a ping-pong ball, sometimes actuating early, sometimes late	270
9.2	Sample trajectory of a time-triggered ping-pong ball missing the first event	272
9.3	Sample trajectory of a time-triggered ping-pong ball missing different events with different sampling periods	
9.4	Sample trajectory of a time-triggered ping-pong ball failing to con-	214
,,,	trol on the ground	276
9.5	Sample trajectory of a time-triggered ping-pong ball stuck on the ground	
10.1	Vector field and one solution of a differential equation that does not enter the unsafe regions	292
10.2	One scenario for the rotational dynamics and relationship of a di-	292
10.2	rection vector to the radius and angle	293
10.3	Differential invariant remains true in the direction of the dynamics.	
10.4	Semantics of differential symbol x' along differential equation	299
10.5	Differential form semantics of differentials: their value depends on	
	the point as well as on the direction of the vector field at that point .	
10.6	Differential invariant of the indicated dynamics	
10.7	Two differential invariants of the indicated self-crossing dynamics $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$	312
10.8	Two differential invariants of the indicated dynamics for the Motzkin	
	polynomial	313
10.9	Axioms for differential invariant terms of differential equations	24
	without solutions	314
11.1	Differential weakening axiom DW	328
11.2	Equal rate of change from equal initial value	
11.3	Differential invariant for safety	
11.4	Lesser or equal rate of change from lesser or equal initial value	
11.5	Cubic dynamics proof	
11.6	Cubic dynamics	
11.7	Lesser or equal rate of change from lesser initial value	
11.8	Unsound attempt to use disequalities	
11.9	Linear evolution of $x' = 1$	
	Different rates of change from different initial values do not prove	
	anything	336
11.11	Soundness proof for conjunctive differential invariant axiom	

xxii List of Figures

11.12	Differential invariant proof for bouncing ball in gravity	338
11.13	Soundness proof for disjunctive differential invariant axiom	339
11.14	Damped-oscillator time trajectory and invariant in phase space	342
	Illustration of the Dubins dynamics of a point (x, y) moving in di-	
	rection (v, w) along a dashed curve with angular velocity ω	343
11.16	If the solution of the differential equation can never leave region C	
	and enter the red region $\neg C$, then this unreachable region $\neg C$ can	
	be cut out of the state space without changing the dynamics of the	
	system	347
11.17	Trajectory with vector field and evolution of an increasingly damped	
	oscillator	
11.18	Differential cut proof for the increasingly damped oscillator	348
11.19	If the solution of the differential equation can never leave region D	
	and enter the region $\neg D$, then this unreachable region $\neg D$ can also	
	be cut out of the state space without changing the dynamics of the	
	system	349
11.20	Axioms and proof rules for differential invariants and differential	
	cuts of differential equations	353
12.1	Exponential decay along $x' = -x$ always makes matters worse for	
12.1	x > 0	376
12.2	Differential ghost y as counterweight for exponential decay along	570
12,2	x' = -x	378
12.3	Explosive differential ghosts that do not exist long enough would	570
12.3	unsoundly limit the duration of solutions	379
12.4	Differential ghost y to balance exponential growth along $x' = x$	381
12.5	Differential ghost y as counterweight for square resistance along	501
12.5	$x' = -x^2$	383
12.6	Velocity of aerodynamic ball approaches limit velocity	
12.7	Dubins aircraft dynamics	
12.7	Reparametrize for differential axiomatization	
12.9	Axioms and proof rules for ghosts and differential ghosts where y	500
12.9	is new	380
12 10	Axioms for nondeterministic assignments	
12.10	Axioms for nondeterministic assignments	391
13.1	Equivalent solutions with quite different differential structure	405
13.2	Differential invariance chart	414
13.3	<i>p</i> -norm inclusions	416
14.1	Turning hybrid game α into the dual hybrid game α^d corresponds	
	to turning a chessboard around by 180° so that the players control	
	the choices in α^d that the opponent has in α	427
14.2	Angel and Demon accelerating or braking by a and d , respectively,	.21
11,2	the cart at position x , which is moving with velocity x	431

List of Figures xxiii

14.3	velocities and accelerations of two robots on a one-dimensional planet	435
14.4	Goalie in robot soccer moves and, if within radius 1, can capture	
	the ball	438
14.5		440
14.6	The filibuster game formula looks as though it might be non-	
	determined and not have a truth-value	442
15.1	Denotational semantics of hybrid games as Angel's winning region	456
15.2	Denotational semantics of hybrid games as Demon's winning region	457
15.3	Monotonicity: it is easier to win into larger sets of winning states $Y \supset X$	457
15.4	Game trees for $x = 1 \land a = 1 \rightarrow \langle ((x := a; a := 0) \cap x := 0)^* \rangle x \neq 1$.	459
15.5	Iteration $\varsigma_{\alpha}^{n}(X)$ of $\varsigma_{\alpha}(\cdot)$ from winning condition X	461
15.6	Winning regions $\varsigma_{\alpha}(Z)$ of sets $Z \subseteq \varsigma_{\alpha^*}(X)$ are already included in	.01
	$\varsigma_{\alpha^*}(X)$ since $\varsigma_{\alpha}(Z)$ is just one more round away from Z	463
15.7	Iteration $\varsigma_{\alpha}^{\omega+1}(X)$ of $\varsigma_{\alpha}(\cdot)$ from winning condition $X=[0,1)$ stops	
	when applying $\zeta_{\alpha}(\cdot)$ to the ω th infinite iteration $\zeta_{\alpha}^{\omega}(X)$	464
15.8	Illustration of infinitely many ordinals up to ω^{ω}	465
15.9	Transfinite iteration $\zeta_{\alpha}^{\infty}(X)$ of $\zeta_{\alpha}(\cdot)$ from winning condition X re-	
	sults in winning region $\varsigma_{\alpha^*}(X)$ of repetition	466
15.10	Illustration of denotational semantics of winning region of hybrid	
	game repetitions	471
16.1	Proof of the two-robot dance	497
16.2	Differential game logic axiomatization	498
16.3	"There and back again game"	
16.4	Differential game logic derived axioms for box modalities	505
16.5	Differential game logic derived axioms for Demon's controls	505
16.6	More hybrid systems axioms, some of which are sound for hybrid	
	games	506
17.1	Differential game logic axiomatization (repeated)	511
17.2	Separating axioms sound for hybrid systems but not hybrid games.	
17.3	dGL Angel proof for non-game system Example 17.1	
	$x \ge 0 \rightarrow \langle (x := x - 1)^* \rangle 0 \le x < 1 \dots$	518
17.4	dGL Angel proof for demonic choice game Example 17.2	
	$x = 1 \land a = 1 \to ((x := a; a := 0 \cap x := 0)^*) x \neq 1$	518
17.5	dGL Angel proof for 2-Nim-type game Example 17.3	
	$x \ge 0 \rightarrow \langle (x := x - 1 \cap x := x - 2)^* \rangle 0 \le x < 2 \dots \dots \dots$	518
17.6	dGL Angel proof for hybrid game Example 17.4	
	$\langle (x := 1; x' = 1^{d} \cup x := x - 1)^{*} \rangle 0 \le x < 1 \dots \dots \dots$	519
18.1	Recursive application of uniform substitution σ	542
18.2	Differential dynamic logic axioms and proof rules	548
18.3	Differential equation axioms and differential axioms	

xxiv List of Figures

19.1	ModelPlex monitors sit between controller and actuator to check	
	the controller's decisions for compliance with the model based on	
	sensor data with veto leading to a safe fallback action 56	63
19.2	Use of ModelPlex monitors along a system run	64
19.3	Sample run of a bouncing ball that ultimately lies down flat 50	56
20.1	The geometric counterpart of quantifier elimination for $\exists y$ is pro-	
	jection onto the x axis	85
20.2	Roots of different quadratic functions $p \dots $	91
20.3	Polynomial equations describe (real) affine (algebraic) varieties 60)1
21.1	Illustration of the value of different quadratic functions p where	
	$p_{\overline{\mathbf{x}}}^{-\infty} \equiv true \dots \dots$	12
21.2	Illustration of the sign after the second root for quadratic functions 6.	17
21.3	Illustration of roots e and infinitesimal offsets $e + \varepsilon$ checked by	
	virtual substitution	20
21.4		

List of Tables

2.1	Operators and meaning in first-order logic of real arithmetic (FOL) $$. 52
3.1 3.2	Statements and effects of hybrid programs (HPs)
3.2	systems
4.1	Operators and (informal) meaning in differential dynamic logic (dL) 123
10.1	Correspondence map between loops and differential equations 316
	Operators and (informal) meaning in differential game logic (dGL) . 443 Statements and effects of hybrid games (HGs) 444
	Overview of decidability notions (e.g., for the validity problem) 581 The miracle of reals: overview of FOL validity problems 582

List of Expeditions

2.1	Naming conventions
2.2	Semantic brackets $\llbracket \cdot \rrbracket : \operatorname{Trm} \to (\mathscr{S} \to \mathbb{R}) \dots 47$
3.1	Operator precedence for hybrid programs
3.2	HP semantics $[\cdot]: HP \to \wp(\mathscr{S} \times \mathscr{S}) \dots 81$
4.1	Three Laws of Robotics
4.2	Invariant contracts for CPS
4.3	Operator precedence for differential dynamic logic
4.4	Set-valued dL semantics $\llbracket \cdot \rrbracket : \operatorname{Fml} \to \wp(\mathscr{S}) \dots \dots$
4.5	Principle of Cartesian Doubt
5.1	Admissibility caveats for the $p(x)$ notation in axioms
6.1	Quantifier elimination
9.1	Zeno paradox
10.1	Denotational semantics
10.2	Differential algebra
10.3	Semantics of differential algebra
10.4	Lie characterization of invariant functions
13.1	Proving differences in set theory and linear algebra 409
13.2	Topology in real analysis
15.1	Ordinal numbers
15.2	Ordinal arithmetic
21.1	Infinite challenges with infinities in extended reals 613
21.2	Nonstandard analysis: infinite challenges with infinitesimal £ 618

List of Theorems

T 2.1	Peano's existence theorem
T 2.2	Picard-Lindelöf uniqueness theorem
P 2.1	Linear differential equations with constant coefficients
P 2.2	Continuation of solutions
P 2.3	Lipschitz estimation
L 5.1	$[\cup]$ axiom of nondeterministic choice
L 5.2	[:=] assignment axiom
L 5.3	['] solution axiom
L 5.4	['] solution with domain axiom
L 5.5	[?] test axiom
L 5.6	[;] composition axiom
L 5.7	[*] iteration axiom
L 5.8	$\langle \cdot \rangle$ duality axiom
T 5.1	Soundness
L 5.9	K modal modus ponens axiom
L 5.10	[] \(\text{boxes distribute over conjunctions } \(
L 5.11	V vacuous axiom
L 5.12	G Gödel generalization rule
L 5.13	$M[\cdot]$ monotonicity rule
L 6.1	∧R conjunction rule
T 6.1	Soundness
L 6.2	Contextual equivalence
L 6.3	\mathbb{R} real arithmetic
T 6.2	Tarski's quantifier elimination
L 6.4	$i\forall$ reintroducing universal quantifiers
L 6.5	$[:=]_{=}$ equational assignment rule
L 7.1	I induction axiom
L 7.2	ind induction rule
L 7.3	Loop invariant rule
P 7.1	Quantum is safe
L 7.4	MR monotonicity right rule

xxx List of Theorems

L 7.5	* backwards iteration axiom	
L 7.6	[**] double iteration axiom	240
P 8.1	Event-triggered ping-pong is safe	263
P 9.1	Time-triggered ping-pong is safe	280
L 10.1	Derivation lemma	302
L 10.2	Differential lemma	
L 10.3	Differential invariant term axiom	
L 10.4	Mean-value theorem	305
L 10.5	Differential assignment	307
L 10.6	DE differential effect axiom	307
L 10.7	Differential invariant term rule	
T 10.1	Lie's characterization of invariant terms	319
L 11.1	DW differential weakening axiom	327
L 11.2	dW differential weakening proof rule	328
L 11.3	dI differential invariant proof rule	
L 11.4	DI differential invariant axiom	
L 11.5	dC differential cut proof rule	
P 11.1	Increasingly damped oscillation	
L 11.6	DC differential cut axiom	
P 11.2	Aerodynamic Quantum is safe	
L 12.1	iG discrete ghost rule	
L 12.2	DG differential ghost axiom	
L 12.3	dG differential ghost rule	
L 12.4	dA differential auxiliaries rule	
P 12.1	Aerodynamic velocity limits	
L 13.1	Differential invariants and propositional logic	
L 13.2	Differential invariants and arithmetic	
P 13.1	Equational deductive power	
P 13.2	Equational incompleteness	
P 13.3	Strict barrier incompleteness	
P 13.4	Equational definability	
T 13.1	Atomic incompleteness	
L 15.1	Monotonicity	
L 15.2	Intersection closure	
L 15.3	Transfinite inflation leads to a least fixpoint	
T 16.1	Consistency & determinacy	
L 16.1	[·] determinacy axiom	
L 16.2	M monotonicity rule	
L 16.3	() &	486
L 16.4	(/	487
L 16.5	()	487
L 16.6	()	488
L 16.7	\ /	489
L 16.8	17	490 401
L 16.9	$\langle d \rangle$ duality axiom	491

xxxi

L 16.10	$\langle * \rangle$ iteration axiom
L 16.11	FP fixpoint rule
P 16.1	Push-around carts are safe
P 16.2	Robot dance is safe
T 16.2	Soundness of dGL
T 16.3	Relative completeness of dGL
L 16.12	Evolution domain reduction
L 18.1	V vacuous axiom
L 18.2	[:=] assignment axiom
T 18.1	Uniform substitution
L 18.3	Uniform substitution for formulas
T 18.2	Axiomatization of dL
T 18.3	Uniform substitution of rules
P 19.1	Correct bouncing-ball model monitor
T 20.1	Virtual substitution of linear equations
L 20.1	Uniform substitution of linear equations 590
T 20.2	Virtual substitution of quadratic equations
L 20.2	Virtual substitution lemma for square roots 595
L 21.1	Virtual substitution lemma for infinities 612
L 21.2	Virtual substitution lemma for infinitesimals 617
T 21.1	Virtual substitution of quadratic constraints 618
T 21.2	Tarski-Seidenberg