Skip to main content

Computational Neuroscience Offers Hints for More General Machine Learning

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10414))

Included in the following conference series:

  • 1919 Accesses

Abstract

Machine Learning has traditionally focused on narrow artificial intelligence - solutions for specific problems. Despite this, we observe two trends in the state-of-the-art: One, increasing architectural homogeneity in algorithms and models. Two, algorithms having more general application: New techniques often beat many benchmarks simultaneously. We review the changes responsible for these trends and look to computational neuroscience literature to anticipate future progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  3. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 91–99 (2016)

    Google Scholar 

  4. Luo, H., Fu, J., Glass, J.: Bidirectional backpropagation: towards biologically plausible error signal transmission in neural networks. arXiv preprint arXiv:1702.07097 (2017)

  5. Petro, L.S., Vizioli, L., Muckli, L.: Contributions of cortical feedback to sensory processing in primary visual cortex. Front. Psychol. 5, 1–8 (2014)

    Google Scholar 

  6. Markov, N.T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., Misery, P., Giroud, P., Ullman, S., Barone, P., Dehay, C., Knoblauch, K., Kennedy, H.: Anatomy of hierarchy: feedforward and feedback pathways in Macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014)

    Article  Google Scholar 

  7. Balduzzi, D., Vanchinathan, H., Buhmann, J.: Kickback cuts Backprops red-tape: biologically plausible credit assignment in neural networks. In: 9th AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  8. Bengio, Y., Lee, D.H., Bornschein, J., Mesnard, T., Lin, Z.: Towards biologically plausible deep learning. arXiv preprint arXiv:1502.04156v3 (2016)

  9. Balduzzi, D., Frean, M., Leary, L., Lewis, J.P., Ma, K.W.D., McWilliams, B.: The shattered gradients problem: if resnets are the answer, then what is the question? arXiv preprint arXiv:1702.08591 (2017)

  10. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In: 29th Annual Conference on Learning Theory, PMLR, vol. 49, pp. 907–940 (2016)

    Google Scholar 

  11. Jaderberg, M., Czarnecki, W.M., Osindero, S., Vinyals, O., Graves, A., Kavukcuoglu, K.: Decoupled neural interfaces using synthetic gradients. arXiv preprint arXiv:1608.05343 (2016)

  12. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  13. Monner, D.D., Reggia, J.A.: Systematically grounding language through vision in a neural network. In: Artificial General Intelligence: 4th International Conference (2011)

    Google Scholar 

  14. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Kaelbling, L.P., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  16. McClure, S.M., Laibson, D.I., Loewenstein, G., Cohen, J.D.: Separate neural systems value immediate and delayed monetary rewards. Science 306(5695), 503–507 (2004)

    Article  Google Scholar 

  17. Kim, S., Hwang, J., Seo, H., Lee, D.: Valuation of uncertain and delayed rewards in primate prefrontal cortex. Neural Netw. 22(3), 294–304 (2009)

    Article  Google Scholar 

  18. Hwang, J., Kim, S., Lee, D.: Temporal discounting and inter-temporal choice in rhesus monkeys. Front. Behav. Neurosci. 3(9), 1–13 (2009)

    Google Scholar 

  19. Namboodiria, V.M.K., Levyc, J.M., Mihalasd, S., Simse, D.W., Shulerc, M.G.H.: Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework. In: Proceedings of the National Academy of Sciences, vol. 113, no. 31, pp. 8747–8752 (2016)

    Google Scholar 

  20. Ponsen, M., Taylor, M.E., Tuyls, K.: Abstraction and generalization in reinforcement learning: a summary and framework. In: Taylor, M.E., Tuyls, K. (eds.) ALA 2009. LNCS, vol. 5924, pp. 1–32. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11814-2_1

    Chapter  Google Scholar 

  21. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  22. Baddeley, A., Eysenck, M., Anderson, M.: Memory, chap. 3. Psychology Press, New York (2009)

    Google Scholar 

  23. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401v2 (2014)

  24. Zaremba, W., Sutskever, I.: Reinforcement learning neural turing machines. In: Proceedings of ICLR 2016 (2016)

    Google Scholar 

  25. Marblestone, A., Wayne, G., Kording, K.: Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 7, 137 (2016)

    Google Scholar 

  26. Kheradpisheh, S.R., Ghodrati, M., Ganjtabesh, M., Masquelier, T.: Deep networks can resemble human feed-forward vision in invariant object recognition. Nat. Sci. R 6 (2016). Article 32672

    Google Scholar 

  27. Kheradpisheh, S.R., Ghodrati, M., Ganjtabesh, M., Masquelier, T.: Humans and deep networks largely agree on which kinds of variation make object recognition harder. Front. Comput. Neurosci. 10, 92 (2016)

    Google Scholar 

  28. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)

    Google Scholar 

  29. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015)

    Google Scholar 

  30. Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., Wu, Y.: STDP as presynaptic activity times rate of change of postsynaptic activity. arXiv preprint arXiv:1509.05936 (2015)

  31. Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rumelhart, D. E., McClelland, J. L., The PDP research group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1 and 2. MIT Press, Cambridge (1986)

    Google Scholar 

  33. Makhzani, A., Frey, B.: Winner-take-all autoencoders. In: Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS), pp. 2791–2799 (2015)

    Google Scholar 

  34. Butza, M.: Brain Research Reviews 60(2), 287–305 (2009)

    Google Scholar 

  35. Guergiuev, J., Lillicrap, T.P., Richards, B.A.: Towards deep learning with segregated dendrites. arXiv preprint arXiv:1610.00161 (2016)

  36. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  37. Sjstrm, P.J., Rancz, E.A., Roth, A., Husser, M.: Excitability, dendritic, plasticity, synaptic. Physiol. Rev. 88, 769–840 (2008)

    Google Scholar 

  38. Diehl, P., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9 (2015). Article 99

    Google Scholar 

  39. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of training deep architectures and the effect of unsupervised pre-training. In: International Conference on Artificial Intelligence and Statistics, vol. 5, pp. 153–160 (2009)

    Google Scholar 

  41. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS) (2012)

    Google Scholar 

  42. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, vol. 1, no. 4 (2015)

    Google Scholar 

  43. Shah, A., Kadam, E., Shah, H., Shinde, S., Shingade, S.: Deep residual networks with exponential linear unit. arXiv preprint arXiv:1604.04112 (2016)

  44. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

    Google Scholar 

  45. Schaul, T., Zhang, S., LeCun, Y.: No more Pesky learning rates. In: Proceedings of 30th International Conference on Machine Learning (ICML) (2013)

    Google Scholar 

  46. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumarana, D., Hadsella, R.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  47. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn, p. 733. Prentice Hall, Englewood Cliffs (2003). ISBN 0-13-080302-2

    Google Scholar 

  48. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), vol. 28, no. 4, pp. 594–611 (2006)

    Google Scholar 

  49. Miller, E.G., Matsakis, N.E., Viola, P.A.: Learning from one example through shared densities on transforms. In: Proceedings of Computer Vision and Pattern Recognition (CVPR) (2000)

    Google Scholar 

  50. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: One-shot learning with memory-augmented neural networks. arXiv preprint arXiv:1605.06065v1 (2016)

  51. Lee, S.W., ODoherty, J.P., Shimojo, S.: Neural computations mediating one-shot learning in the human brain. PLoS Biol 13(4), e1002137 (2015)

    Google Scholar 

  52. Silver, D., Yang, Q., Li, L.: Lifelong machine learning systems: beyond learning algorithms. In: Papers from the 2013 AAAI Spring Symposium (2013)

    Google Scholar 

  53. Krahe, R., Gabbiani, F.: Burst firing in sensory systems. Nat. Rev. Neurosci. 5, 13–23 (2004)

    Article  Google Scholar 

  54. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by VI? Vis. Res. 37(23), 3311–3326 (1997)

    Article  Google Scholar 

  55. Le, Q.V., Ranzato, M.A., Monga, R., Devin, M., Chen, K., Corrado, G.S., Dean, J., Ng, A.Y.: Building high-level features using large scale unsupervised learning. In: Proceedings of the 29th International Conference on Machine Learning (2012)

    Google Scholar 

  56. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse coding and vector quantization. In: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA (2011)

    Google Scholar 

  57. Hawkins, J., Ahmad, S.: Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Front. Neural Circ. 10(23), 1–13 (2016)

    Google Scholar 

  58. Kok, P., de Lange, F.P.: Predictive coding in sensory cortex. In: Forstmann, B.U., Wagenmakers, E.-J. (eds.) An Introduction to Model-Based Cognitive Neuroscience. LLC, chap. 11, vol. 221, pp. 221–244. Springer, New York (2015)

    Google Scholar 

  59. Kogo, N., Trengrove, C.: Is predictive coding theory articulated enough to be testable? Front. Comput. Neurosci. 9(111), 357–381 (2015)

    Google Scholar 

  60. Srivastava, N., Greff, K., Schmidhuber, J.: Highway networks. In: Deep Learning Workshop (ICML 2015) (2015)

    Google Scholar 

  61. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  62. Veit, A., Wilber, M., Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. arXiv preprint arXiv:1605.06431 (2016)

  63. Liao, Q., Poggio, T.: Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex. arXiv preprint arXiv:1604.03640 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rawlinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rawlinson, D., Kowadlo, G. (2017). Computational Neuroscience Offers Hints for More General Machine Learning. In: Everitt, T., Goertzel, B., Potapov, A. (eds) Artificial General Intelligence. AGI 2017. Lecture Notes in Computer Science(), vol 10414. Springer, Cham. https://doi.org/10.1007/978-3-319-63703-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63703-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63702-0

  • Online ISBN: 978-3-319-63703-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics