Skip to main content

An Information-Theoretic Predictive Model for the Accuracy of AI Agents Adapted from Psychometrics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10414))

Abstract

We propose a new model to quantitatively estimate the accuracy of artificial agents over cognitive tasks of approximable complexities. The model is derived by introducing notions from algorithmic information theory into a well-known (psychometric) measurement paradigm called Item Response Theory (IRT). A lower bound on accuracy can be guaranteed with respect to task complexity and the breadth of its solution space using our model. This in turn permits formulating the relationship between agent selection cost, task difficulty and accuracy as optimisation problems. Further results indicate some of the settings over which a group of cooperative agents can be more or less accurate than individual agents or other groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For simplicity and without loss of generality, 1 / m is used in Eq. 1 to replace the probability \(p_{rand}\) of an agent randomly guessing (one of) the correct solutions to the problem.

  2. 2.

    More sophisticated voting rules such as Borda count, harmonic rule, maximin and Copeland require the subject to output a concrete ranking over all possible alternatives of the test/task, which inhibits our ability of making exact predictions. Yet, one can still analytically place \( \min \) and \(\max \) bounds on team accuracy using different sampling techniques.

References

  1. Bien, Z., Bang, W.C., Kim, D.Y., Han, J.S.: Machine intelligence quotient: its measurements and applications. Fuzzy Sets Syst. 127(1), 3–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birnbaum, A.: Some latent trait models and their use in inferring an examinee’s ability. In: Statistical Theories of Mental Test Scores, pp. 395–479 (1968)

    Google Scholar 

  3. Chmait, N.: Understanding and measuring collective intelligence across different cognitive systems: an information-theoretic approach (extended abstract). In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI-17 Doctoral Consortium, Melbourne, Australia (2017, to appear)

    Google Scholar 

  4. Chmait, N., Dowe, D.L., Li, Y.F., Green, D.G., Insa-Cabrera, J.: Factors of collective intelligence: how smart are agent collectives? In: Proceedings of 22nd European Conference on Artificial Intelligence ECAI, Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 542–550. IOS Press (2016)

    Google Scholar 

  5. De Ayala, R.J.: The Theory and Practice of Item Response Theory. Guilford Publications, New York (2013)

    Google Scholar 

  6. Dowe, D.L., Hajek, A.R.: A computational extension to the turing test. In: Proceedings 4th Conference of the Australasian Cognitive Science Society, University of Newcastle, NSW, Australia (1997)

    Google Scholar 

  7. Dowe, D.L., Hernández-Orallo, J.: IQ tests are not for machines, yet. Intelligence 40(2), 77–81 (2012)

    Article  Google Scholar 

  8. Dowe, D.L., Hernández-Orallo, J., Das, P.K.: Compression and intelligence: social environments and communication. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 204–211. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22887-2_21

    Chapter  Google Scholar 

  9. Gottfredson, L.S.: Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography. Intelligence 24(1), 13–23 (1997)

    Article  Google Scholar 

  10. Hernández-Orallo, J.: Beyond the Turing test. J. Log. Lang. Inf. 9(4), 447–466 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernández-Orallo, J.: The Measure of All Minds: Evaluating Natural and Artificial Intelligence. Cambridge University Press, New York (2016)

    Google Scholar 

  12. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: towards an anytime intelligence test. Artif. Intell. 174(18), 1508–1539 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hernández-Orallo, J., Insa-Cabrera, J., Dowe, D.L., Hibbard, B.: Turing machines and recursive turing tests. In: AISB/IACAP 2012 Symposium Revisiting Turing and his Test, pp. 28–33 (2012)

    Google Scholar 

  14. Insa-Cabrera, J., Dowe, D.L., España-Cubillo, S., Hernández-Lloreda, M.V., Hernández-Orallo, J.: Comparing humans and AI agents. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 122–132. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22887-2_13

    Chapter  Google Scholar 

  15. Klein, G.A., King, J.A.: A test for the performance of knowledge-based systems: AIQ. In: Proceedings of AAAI Workshop on Validation and Verification of Expert System, Menlo Park, CA (1988)

    Google Scholar 

  16. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1(1), 1–7 (1965)

    MathSciNet  MATH  Google Scholar 

  17. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  18. Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence. Mind. Mach. 17(4), 391–444 (2007)

    Article  Google Scholar 

  19. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levin, L.A.: Universal sequential search problems. Probl. Inf. Transm. 9(3), 265–266 (1973)

    Google Scholar 

  21. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  22. Lord, F.M., Novick, M.R.: Statistical Theories of Mental Test Scores. Addison-Wesley, Menlo Park (1968)

    MATH  Google Scholar 

  23. Martínez-Plumed, F., Prudêncio, R.B., Martínez-Usó, A., Hernández-Orallo, J.: Making sense of item response theory in machine learning. In: Proceedings of 22nd European Conference on Artificial Intelligence (ECAI), Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1140–1148 (2016)

    Google Scholar 

  24. Raven, J.C., Court, J.H.: Raven’s Progressive Matrices and Vocabulary Scales. Oxford Psychologists Press, Oxford (1998)

    Google Scholar 

  25. Roid, G.H.: Stanford-Binet Intelligence Scales. Riverside Publishing, Itasca (2003)

    Google Scholar 

  26. Sanghi, P., Dowe, D.L.: A computer program capable of passing I.Q. tests. In: Slezak, P. (ed.) Proceedings of 4th International Conference on Cognitive Science (ICCS/ASCS-2003), pp. 570–575, Australia, July 2003

    Google Scholar 

  27. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shapley, L., Grofman, B.: Optimizing group judgmental accuracy in the presence of interdependencies. Public Choice 43(3), 329–343 (1984)

    Article  Google Scholar 

  29. Solomonoff, R.J.: A preliminary report on a general theory of inductive inference. Report ZTB-138. Zator Co 131, Cambridge, MA (1960)

    Google Scholar 

  30. Spearman, C.: General intelligence, objectively determined and measured. Am. J. Psychol. 15(2), 201–292 (1904)

    Article  Google Scholar 

  31. Thurstone, L.L.: Primary Mental Abilities. Chicago Press, Chicago (1938)

    Google Scholar 

  32. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  33. Wechsler, D.: Wechsler Adult Intelligence Scale-Fourth. Pearson, San Antonio (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Chmait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chmait, N., Dowe, D.L., Li, YF., Green, D.G. (2017). An Information-Theoretic Predictive Model for the Accuracy of AI Agents Adapted from Psychometrics. In: Everitt, T., Goertzel, B., Potapov, A. (eds) Artificial General Intelligence. AGI 2017. Lecture Notes in Computer Science(), vol 10414. Springer, Cham. https://doi.org/10.1007/978-3-319-63703-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63703-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63702-0

  • Online ISBN: 978-3-319-63703-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics