
26 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Languages for Big Data analysis

Publisher:

Published version:

DOI:10.1007/978-3-319-63962-8_142-1

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1668051 since 2019-03-23T09:43:44Z



Languages and Frameworks for Big Data

Analysis

Marco Aldinucci, Maurizio Drocco, Claudia Misale, and Guy Tremblay

Overview

Boosted by Big Data popularity, new languages and frameworks for data analytics
are appearing at an increasing pace. Each of them introduces its own concepts and
terminology and advocates a (real or alleged) superiority in terms of performances
or expressiveness against predecessors. In this hype, for a user approaching Big Data
analytics (even an educated computer scientist), it might be difficult to have a clear
picture of the programming model underneath these tools and the expressiveness
they provide to solve some user defined problem.

To provide some order in the world of Big Data processing, a toolkit of models to
identify their common features is introduced, starting from data layout.

Data-processing applications are divided into batch vs. stream processing. Batch
programs process one or more finite datasets to produce a resulting finite output
dataset, whereas stream programs process possibly unbounded sequences of data,
called streams, doing so in an incremental manner. Operations over streams may
also have to respect a total data ordering—for instance, to represent time ordering.

Marco Aldinucci
Computer Science Department, University of Torino, Italy e-mail: aldinuc@di.unito.it

Maurizio Drocco
Computer Science Department, University of Torino, Italy e-mail: drocco@di.unito.it

Claudia Misale
Cognitive and Cloud, Data-Centric Solutions, IBM T.J. Watson Research Center. Yorktown
Heights, New York, USA e-mail: c.misale@ibm.com

Guy Tremblay
Département d’Informatique, Université du Québec à Montréal, Montréal (QC), Canada e-mail:
tremblay.guy@uqam.ca

1

Pre-print of “M. Aldinucci, M. Drocco, M. Claudia, and G. Tremblay, “Encyclopedia of Big Data Technologies,,” , S. 
Sakr and A. Zomaya, Eds., Springer, 2019. ISBN 978-3-319-77524-1 



2 M. Aldinucci et al.

In order to compare the expressiveness of programming models for Big Data anal-
tyics are mapped onto an unifying (and lower-level) computation model, i.e. the
Dataflow model (Lee and Parks 1995). As shown in Misale et al (2017a), it is able
to capture the distinctive features of all frameworks at all levels of abstraction, from
the user-level API to the execution model. In the Dataflow model, applications as a
directed graph of actors. In its “modern” macro-data flow version (Aldinucci et al
2012), it naturally models independent (thus parallelizable) kernels starting from
a graph of true data dependencies, where a kernel’s execution is triggered by data
availability.

The Dataflow model is expressive enough to describe batch, micro-batch and
streaming models that are implemented in most tools for Big Data processing. Also,
the Dataflow model helps in maturing the awareness that many Big Data analytics
tools share almost the same base concepts, differing mostly in their implementation
choices.

In the next section the key finding of this chapher is intrduced, i.e. the the Layered
Dataflow Model. On this ground, in Sect. the mainstream languages and frame-
works for Big Data analitycs are introduced; they are Spark, Storm, Flink and Beam.
accroding to the layered Dataflow model, they will be discussed at two successive
levels of abstractions, i.e. 1) API and Semantics, and 2) Parallel Execution and Run-

time Support of them will be discussed. Section draws future direction for research.

Key Research Finding: The Layered Dataflow Model

In order to compare different Big Data frameworks, a revised version of the layered
Dataflow model is adopted (Misale et al 2017a). This model, sketched in Fig. 1,
presents four layers. The top layer capture the framework API. The two intermediate
layers are Dataflow models with different semantics, as described in the paragraphs
below. The bottom layer is the Process Network & Platform, which embodies the
network of processes used to implement a given framework together with their pro-
gramming language run-time support (e.g., Java and Scala in Spark), a level which
is beyond the scope of this work.

The stacked Dataflow layers are as follows.

Framework API

At the top of the stack, the API is the concrete primitives provided by each frame-
work, in which data processing applications are written. Within the Big Data analyt-



Big Data Frameworks 3

Framework API User-level API

Program Semantics Dataflow Semantics of the application in terms of dataflow
graphs

Parallel Execution Dataflow Instantiation of semantic dataflow that explicitly ex-
presses parallelism

Process Network & Platform Runtime language or platform
(e.g., JVM)

Fig. 1 Layered model representing the levels of abstractions provided by the frameworks that were
analyzed.

ics domain, APIs can be regarded as Domain-Specific Languages (DSLs), expressed
in some host language (e.g., Python, Scala, Java).

Program Semantics Dataflow

The API exposed by all major Big Data frameworks can be explained in terms of
a Dataflow graph, that is, a pair G = hV, E i where actors V represent operators,
channels E represent data dependencies among operators and tokens represent data
to be processed. For instance, consider to process a collection A by a function f

followed by a function g. This is represented by the graph in Fig. 2, which represents
the semantic dataflow of a program computing the functional composition f �g.

f gA f(A) B

Fig. 2 Semantic dataflow graph for f �g, expressing data dependencies.

Moreover, although not extensively discussed here, it is remarkable that also non-
functional aspects (e.g., window-based stream processing, stateful operators, iter-
ations) can be conveniently represented by means of the proposed Dataflow set-
ting (Misale et al 2017a).

Parallel Execution Dataflow

This level represents an instantiation of the semantic dataflows in terms of pro-
cessing elements (i.e., actors) connected by data channels (i.e., edges). The most



4 M. Aldinucci et al.

straightforward source of parallelism comes directly from the Dataflow model,
namely, independent actors can run in parallel. Furthermore, some actors can be
replicated to increase parallelism by making replicas work over a partition of the
input data—that is, by exploiting full data parallelism. Both the above schemas
are referred as embarrassingly parallel processing, since there are no dependen-
cies among actors. Finally, in case of dependent actors that are activated multiple
times (e.g. by further splitting a partition into multiple tokens), parallelism can still
be exploited by letting tokens “flow” as soon as each activation is completed. This
well-known schema is referred as stream/pipeline parallelism.

Process Network Dataflow & Platform

This level describes how the program is effectively deployed and executed onto the
underlying platform. Actors are concrete computing entities (e.g., processes) and
edges are communication channels. The most common approach is for the actual
network to be a Master-Workers task executor.

Examples of Application

In this section, some mainstream frameworks for Big Data processing are discussed,
within the layered Dataflow setting. Google MapReduce (Sect. ) is commonly con-
sidered as the first widespread tool in this domain. Apache Spark (Sect. ) provides a
richer API (e.g., also targeting streams) and an implementation optimized for itera-
tive processing. Apache Flink (Sect. ) is similar to Spark, but it exploits more par-
allelism by means of a stream-based runtime. Apache Storm (Sect. ) is focused on
stream processing and, differently from the previous frameworks, Storm programs
are defined as interconnected processing units, rather than functional compositions.
Finally, Apache Beam (Sect. ) provides an alternative API for unifying batch and
stream processing under a single programming model.

Google MapReduce

Google can be considered the pioneer of Big Data processing, as the publication
of the MapReduce framework paper (Dean and Ghemawat 2004) made this model
mainstream. Based on the map and reduce functions, commonly used in parallel
and functional programming (Cole 1989) MapReduce provides a native key-value



Big Data Frameworks 5

model and built-in sorting, that made it successful for several Big Data analytics
scenarios.

API

A MapReduce program is built on the following user-defined functions: 1. a map
function, that is independently applied to each item from an input key-value dataset
to produce an intermediate key-value dataset; 2. a reduce function, that combines
all the intermediate values associated with each key (together with the key itself)
into lists of reduced values (one per key); 3. a partitioner function, that is used
while sorting the intermediate dataset (i.e., before being reduced), so that the order
over the key space is respected within each partition identified by the partitioner.

Figure 3 shows a source code extract from a MapReduce implementation of the
Word Count application, that counts the occurrences of each word in an input
text and is generally considered as the “Hello World!” for Big Data analytics. In
the code extract, only map and reduce functions are specified, thus a default
implementation-dependent sorting is used.

1 public class WordCount {
2

3 public static class TokenizerMapper
4 extends Mapper<Object,Text,Text,IntWritable> {
5 private final static IntWritable one = new IntWritable(1);
6 private Text word = new Text();
7

8 public void map(Object key, Text value, Context context)
9 throws IOException,InterruptedException {

10 StringTokenizer itr = new StringTokenizer(value.toString());
11 while (itr.hasMoreTokens()) {
12 word.set(itr.nextToken());
13 context.write(word, one);
14 }
15 }
16 }
17

18 public static class IntSumReducer
19 extends Reducer<Text,IntWritable,Text,IntWritable> {
20 private IntWritable result = new IntWritable();
21

22 public void reduce(Text key, Iterable<IntWritable> values, Context
23 context)
24 throws IOException, InterruptedException {
25 int sum = 0;
26 for (IntWritable val : values) {
27 sum += val.get();
28 }
29 result.set(sum);
30 context.write(key, result);
31 }
32 }
33 }

Fig. 3 The map and reduce functions for a Java Word Count class example in MapReduce.



6 M. Aldinucci et al.

Semantics

The semantics of MapReduce is defined by the following chain of higher-order op-
erators, where f , h, and � correspond to the map, partitioner, and reduce
API functions, respectively:

map-reduce f h R �= (flat-map f )� (sort h R)� (reduce �)

When applied to an input multi-set (i.e., a finite unordered collection, possibly con-
taining duplicated items) of key-value pairs, flat-map applies the kernel to each item
and collapses all the results into a single intermediate multi-set. Formally, where
f : K ⇥V ! P(K0 ⇥V

0) is the kernel and m is a collection with (K ⇥V )-typed
items:

flat-map f m =
[

{ f (k,v) : (k,v) 2 m}

The intermediate multi-set is processed by the sort operator to produce a multi-set
of partially-ordered multi-sets (called intermediate partitions in MapReduce termi-
nology). This partial sorting is parametric with respect to the number of partitions
and the partitioning function, the latter mapping key-value input pairs to a partition.
Formally, where I is the partition identifiers space, R is the number of partitions, and
h : K

0 ⇥N! P is the partitioning function (e.g., hash-based), the partition identified
by i 2 I from the intermediate multi-set m

0 is defined as:

sh

i
�
R,m0�=

��
k
0,v0

�
: h
�
k
0,R

�
= i ,

�
k
0,v0

�
2 m

0 

Moreover, each partition p is partially ordered according to the keys, such that:

8(k0
a
,v0

a
),(k0

b
,v0

b
) 2 p,k0

a
< k

0
b
=) (k0

a
,v0

a
) precedes (k0

b
,v0

b
) in p

However, no ordering is guaranteed “internally” to each given key. Then, the se-
mantics of sort follows:

sort h R m
0 =

n
sh

i
�
R,m0� : sh

i
�
R,m0� 6= /0

o

Finally, the reduce operator synthesizes the partitions on a per-key basis, according
to a reduction kernel, respecting the ordering within each partition.

First,the reduce-by-key operator is defined. given a collection of key-value pairs, it
produces a collection of synthesized collections, one for each key. Formally, given
� : K

0 ⇥P(V 0)! P(V 00) denoting the reduction kernel:

reduce-by-key � p =
��

k
0,�

�
k
0,
�

v
0 :
�
k
0,v0

�
2 p

 ��
: 9

�
k
0,v0

�
2 p

 

Moreover, when applied to partitions (i.e., multi-sets partially ordered based on a
per-key base), reduce-by-key produces a totally-ordered set, where all the values



Big Data Frameworks 7

with a given key are combined into a single key-value(s) pair and the ordering is
kept among keys. Then, the reduce operator is defined as follows, where m

0
s

is a
multi-set of partitions and the big union operator respects the ordering:

reduce � m
0
s
=
[�

reduce-by-key� p : p 2 m
0
s

 

Parallel Execution

A simple form of data parallelism can be exploited on the flat-map side, by parti-
tioning the input collection into n chunks and having n executors process a chunk. In
Dataflow terms, this corresponds to a graph with n actors, each processing a token
that represents a chunk. Each flat-map executor emits R (i.e., the number of interme-
diate partitions) chunks, each containing the intermediate key-value pairs mapped
to a given partition.

The intermediate chunks are processed by R reduce executors. Each executor: 1. re-
ceives n chunks (one from each flat-map executor); 2. merges the chunks into an in-
termediate partition and partially sorts it based on keys, as discussed above; 3. per-
forms the reduction on a per-key basis. Finally, a downstream collector gathers R

tokens from the reduce executors and merge them into the final result.

A key aspect in the depicted parallelization is the shuffle phase, in which data is dis-
tributed between flat-map and reduce operators, according to an all-to-all commu-
nication schema. This poses severe challenges from the implementation standpoint.

Run-time Support

The most widespread implementation (i.e., Hadoop), is based in a Master-Workers

approach, in which the master retains the control over the global state of the com-
putation and informs the workers about the tasks to be executed.

A cornerstone of Hadoop is its distributed file system (HDFS), which is used to ex-
change data among workers, in particular upon shuffling. As a key feature, HDFS
exposes the locality for stored data, thus enabling the principle of moving the com-
putation towards the data, to minimize the communication. However, disk-based
communication leads to performance problems when dealing with iterative compu-
tations, such as machine learning algorithms (Chu et al 2006).



8 M. Aldinucci et al.

Apache Spark

Apache Spark (Zaharia et al 2012) was proposed to overcome some limitations in
Google MapReduce. Instead of a fixed processing schema, Spark allows datasets
to be processes by means of arbitrarily composed primitives, referred as the appli-
cation Directed Acyclic Graph (DAG). Moreover, instead of relying exclusively on
disks for communicating data among the processing units, in-memory caching is
exploited to boost the performance, in particular for iterative processing.

API and Semantics

Apache Spark uses a declarative processing style expressed as methods on ob-
jects representing collections, More precisely, Apache Spark implements batch pro-
gramming with a set of operators, called transformations, that are uniformly ap-
plied to whole datasets called Resilient Distributed Datasets (RDD) (Zaharia et al
2012), which are immutable multisets. A Spark program can be characterized by the
two kinds of operations applicable to RDDs: transformations and actions. Trans-
formations are lazy functions (i.e., they do not compute their results right away)
over collections—such as map, reduce, flatmap—that are uniformly applied to
whole RDDs. Actions effectively trigger the DAG execution and they return a value
to the user.

Listing 4 shows the source code for a simple Word Count application in the Java
Spark API.

1 JavaRDD<String> textFile=sc.textFile("hdfs://...");
2

3 JavaRDD<String> words =
4 textFile.flatMap(new FlatMapFunction<String, String>() {
5 public Iterable<String> call(String s) {
6 return Arrays.asList(s.split(" "));
7 }
8 });
9

10 JavaPairRDD<String, Integer> pairs =
11 words.mapToPair(new PairFunction<String, String, Integer>() {
12 public Tuple2<String, Integer> call(String s) {
13 return new Tuple2<String, Integer>(s, 1);
14 }
15 });
16

17 JavaPairRDD<String, Integer> counts =
18 pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
19 public Integer call(Integer a, Integer b) {
20 return a + b;
21 }
22 });
23

24 counts.saveAsTextFile("hdfs://...");

Fig. 4 A Java Word Count example in Spark from its examples suite.



Big Data Frameworks 9

For stream processing, Spark implements an extension through the Spark Stream-
ing module, providing a high-level abstraction called discretized stream or DStream.
Such streams represent results in continuous sequences of RDDs of the same type,
called micro-batches. Operations over DStreams are “forwarded” to each RDD in
the DStream, thus the semantics of operations over streams is defined in terms of
batch processing according to the simple translation op(a) = [op(a1),op(a2), . . .],
where [·] refers to a possibly unbounded ordered sequence, a = [a1,a2, . . .] is a
DStream, and each item ai is a micro-batch of type RDD.

When mapping a Spark program to a Semantic graph, tokens represent RDDs and
DStreams for batch and stream processing respectively. Actors are operators—either
transformations or actions—that transform data or return values (in-memory collec-
tion or files). Actors are activated only once in both batch and stream processing,
since each collection (either RDD or DStreams) is represented by a single token.

Parallel Execution and Runtime Support

From the application DAG, Spark infers a parallel execution dataflow, in which
many parallel instances of actors are created for each function and independent
actors are grouped into Stages. Due to the Spark batch-oriented implementation,
each stage that depends on some previous stages has to wait for their completion
before execution, according to the classical Bulk Synchronous Parallelism (BSP)
approach. Therefore, a computation proceeds in a series of global supersteps, each
consisting of: 1) Concurrent computation, in which each actor processes its own
partition; 2) Communication, where actors exchange data between themselves if
necessary (the shuffle phase); 3) Barrier synchronization, where actors wait until all
other actors have reached the same barrier.

Similarly to the MapReduce implementation, Spark’s execution model relies on the
Master-Workers model: a cluster manager (e.g., YARN) manages resources and su-
pervises the execution of the program. It manages application scheduling to worker
nodes, which execute the application logic (the DAG) that has been serialized and
sent by the master.

Apache Flink

Apache Flink (Carbone et al 2015) is similar to Spark, in particular from the API
standpoint. However, Flink is based on streaming as a primary concept, rather than
a mere linguistic extension on top of batch processing (as is in Spark). With the
exception of iterative processing, stream parallelism is exploited to avoid expensive



10 M. Aldinucci et al.

synchronizations among successive phases, when executing both batch and stream
programs.

API and Semantics

Apache Flink’s main focus is on stream programming. The abstraction used is the
DataStream, which is a representation of a stream as a single object. Operations are
composed (i.e., pipelined) by calling operators on DataStream objects. Flink also
provides the DataSet type for batch applications, that identifies a single immutable
multiset—a stream of one element. A Flink program, either for stream or batch
processing, is a term from an algebra of operators over DataStreams or DataSets,
respectively.

Listing 5 shows Flink’s source code for the simple Word Count application.

1 public class WordCountExample {
2 public static void main(String[] args) throws Exception {
3 final ExecutionEnvironment env =
4 ExecutionEnvironment.getExecutionEnvironment();
5 DataSet<String> text =
6 env.fromElements("Text...");
7 DataSet<Tuple2<String, Integer>> wordCounts =
8 text.flatMap(new LineSplitter())
9 .groupBy(0)

10 .sum(1);
11

12 wordCounts.print();
13 }
14

15 public static class LineSplitter
16 implements FlatMapFunction<String, Tuple2<String, Integer>> {
17 @Override
18 public void flatMap(String line, Collector<Tuple2<String, Integer>> out) {
19 for (String word : line.split(" ")) {
20 out.collect(new Tuple2<String, Integer>(word, 1));
21 }
22 }
23 }
24 }

Fig. 5 A Java Word Count example in Flink from its examples suite.

Flink applications can be applied to semantic Dataflow graphs in the same way as for
Spark, by treating DataSets and DataStreams as, respectively, RDDs and DStreams.

Parallel Execution and Runtime Support

Flink transforms a JobGraph into an ExecutionGraph, in which the JobVertex con-
tains ExecutionVertexes (actors), one per parallel sub-task. A key difference com-



Big Data Frameworks 11

pared to the Spark execution graph is that, apart from iterative processing (that is
still executed under BSP), there is no barrier among actors or vertexes: instead, there
is effective pipelining.

Also Flink’s execution model relies on the Master-Workers model: a deployment
has at least one job manager process that coordinates checkpointing and recovery,
and that receives Flink jobs. The job manager also schedules work across the task
manager processes (i.e., workers) which usually reside on separate machines and in
turn execute the code.

Apache Storm

Apache Storm (Nasir et al 2015; Toshniwal et al 2014) is a framework targeting
only stream processing. It is perhaps the first widely used large-scale stream pro-
cessing framework in the open source world. Whereas Spark and Flink are based
on a declarative data processing model—i.e., they provide as building blocks data
collections and operations on those collections—Storm is instead based on a “topo-
logical” approach in that it provides an API to explicitly build graphs.

API and Semantics

Storm’s programming model is based on three key notions: Spouts, Bolts, and
Topologies. A Spout is a source of a stream, that is (typically) connected to a data
source or that can generate its own stream. A Bolt is a processing element, so it
processes any number of input streams and produces any number of new output
streams. Most of the logic of a computation goes into Bolts, such as functions, fil-
ters, streaming joins, or streaming aggregations. A Topology is the composition of
Spouts and Bolts resulting in a network.

Storm uses tuples as its data model, that is, named lists of values of arbitrary type.
Hence, Bolts are parametrized with per-tuple kernel code. It is also possible to define
cyclic graphs by way of feedback channels connecting Bolts. Figure 6 show Storm’s
source code for the simple Word Count application.

As for the mapping applications to Dataflow graphs, whereas in the previously de-
scribed frameworks the graph is implicit and tokens represent whole datasets or
streams, Storm is different: 1. The Dataflow graph is already explicit, as it is con-
structed using the provided API; 2. Each token represents a single stream item (tu-
ple), and the actors, representing (macro) Dataflow operators, are activated each
time a new token is available.



12 M. Aldinucci et al.

1 public class WordCountTopology {
2 public static class SplitSentence extends ShellBolt implements IRichBolt {
3 public SplitSentence() {
4 super("python", "splitsentence.py");
5 }
6

7 @Override
8 public void declareOutputFields(OutputFieldsDeclarer declarer) {
9 declarer.declare(new Fields("word"));

10 }
11

12 @Override
13 public Map<String, Object> getComponentConfiguration() {
14 return null;
15 }
16 }
17

18 public static class WordCount extends BaseBasicBolt {
19 Map<String, Integer> counts = new HashMap<String, Integer>();
20

21 @Override
22 public void execute(Tuple tuple, BasicOutputCollector collector) {
23 String word = tuple.getString(0);
24 Integer count = counts.get(word);
25 if (count == null) count = 0;
26 count++;
27 counts.put(word, count);
28 collector.emit(new Values(word, count));
29 }
30

31 @Override
32 public void declareOutputFields(OutputFieldsDeclarer declarer) {
33 declarer.declare(new Fields("word", "count"));
34 }
35 }
36

37 public static void main(String[] args) throws Exception {
38 TopologyBuilder builder = new TopologyBuilder();
39 builder.setSpout("spout",
40 new RandomSentenceSpout(), 5);
41 builder.setBolt("split",
42 new SplitSentence(), 8).shuffleGrouping("spout");
43 builder.setBolt("count",
44 new WordCount(), 12).fieldsGrouping("split", new
45 Fields("word"));
46

47 Config conf = new Config();
48 conf.setDebug(true);
49 conf.setNumWorkers(3);
50

51 StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
52 }
53 }

Fig. 6 A Java Word Count example in Storm from its examples suite.

Parallel Execution and Runtime Support

At execution level, each actor is replicated to increase the inter-actor parallelism
and each group of replicas corresponds to the Bolt/Spout in the semantics Dataflow.
Each of these actors represents independent data parallel tasks, on which pipeline



Big Data Frameworks 13

parallelism is exploited. Eventually, tasks are executed by a Master-Workers engine,
as in the previous frameworks.

Google Cloud Platform and Apache Beam

Google Dataflow SDK (Akidau et al 2015) is part of the Google Cloud Platform.
Google Dataflow supports a simplified pipeline development via Java and Python
APIs in the Apache Beam SDK, which provides a set of windowing and session
analysis primitives as well as an ecosystem of source and sink connectors. Apache
Beam allows the user to create pipelines that are then executed by one of Beam’s
supported distributed processing back-ends, which include, amongh others, Apache
Flink, Apache Spark, and Google Cloud Dataflow, which are called runners.

API and Semantics

Apache Beam programming model is centered around the concept of Pipeline, that
represents a data processing program consisting of a set of operations that can read
a source of input data, transform that data, and write out the resulting output. A
Pipeline can be linear but it can also branch and merge, thus making a Pipeline a
DAG defined through conditionals, loops, and other common programming struc-
tures. A pipeline stage is a Transform, that accepts one or more PCollections (i.e., a
possibly unbounded immutable collection, either ordered or not) as input, performs
an operation on its elements, and produces one or more new PCollections as output.
The ParDo is the core element-wise transform in Apache Beam, invoking a user-
specified function on each of the elements of the input PCollection to produce zero
or more output elements (flat-map semantics) collected into an output PCollection.

When mapping a Beam program into a semantic graph, tokens represent PCollec-
tions and actors are Transorms accepting PCollections in input and producing PCol-
lections in output.

Figure 7 shows how to create a Word Count Pipeline.

Parallel Execution and Runtime Support

The bounded (or unbounded) nature of a PCollection also affects how data is pro-
cessed. Bounded PCollections can be processed using batch jobs, that might read
the entire data set once and perform processing as a finite job. Unbounded PCol-
lections must be processed using streaming jobs—as the entire collection will never



14 M. Aldinucci et al.

1 static class ExtractWordsFn extends DoFn<String, String> {
2 private final Counter emptyLines =
3 Metrics.counter(ExtractWordsFn.class, "emptyLines");
4 private final Distribution lineLenDist =
5 Metrics.distribution(ExtractWordsFn.class, "lineLenDistro");
6

7 @ProcessElement
8 public void processElement(ProcessContext c) {
9 lineLenDist.update(c.element().length());

10 if (c.element().trim().isEmpty())
11 emptyLines.inc();
12

13 // Split the line into words.
14 String[] words = c.element().split(ExampleUtils.TOKENIZER_PATTERN);
15

16 // Output each word encountered into the output PCollection.
17 for (String word : words)
18 if (!word.isEmpty())
19 c.output(word);
20 }
21

22 public static class FormatAsTextFn
23 extends SimpleFunction<KV<String, Long>, String> {
24 @Override
25 public String apply(KV<String, Long> input) {
26 return input.getKey() + ": " + input.getValue();
27 }
28 }
29

30 public static class CountWords
31 extends PTransform<PCollection<String>, PCollection<KV<String, Long>>> {
32 @Override
33 public PCollection<KV<String, Long>> expand(PCollection<String> lines) {
34 // Convert lines of text into individual words.
35 PCollection<String> words =
36 lines.apply(ParDo.of(new ExtractWordsFn()));
37

38 // Count the number of times each word occurs.
39 PCollection<KV<String, Long>> wordCounts =
40 words.apply(Count.<String>perElement());
41

42 return wordCounts;
43 }
44 }
45

46 public static void main(String[] args) {
47 // options initialization ...
48 Pipeline p = Pipeline.create(options);
49

50 p.apply("ReadLines", TextIO.read().from(options.getInputFile()))
51 .apply(new CountWords())
52 .apply(MapElements.via(new FormatAsTextFn()))
53 .apply("WriteCounts", TextIO.write().to(options.getOutput()));
54

55 p.run().waitUntilFinish();
56 }
57 }

Fig. 7 Java code fragment for a Word Count example in Apache Beam from its examples suite.



Big Data Frameworks 15

be available for processing at any one time—and bounded subcollections can be
obtained through logical finite size windows.

As mentioned, Beam relies on the runner specified by the user. When executed, an
entity called Beam Pipeline Runner (related to execution back-end) translates the
data processing pipeline into the API compatible with the selected distributed pro-
cessing back-end. Hence, it creates an execution graph from the Pipeline, including
all the Transforms and processing functions. That graph is then executed using the
appropriate distributed processing back-end, becoming an asynchronous job/pro-
cess on that back-end, thus the final parallel execution graph is generated by the
back-end.

The parallel execution dataflow is similar to the one in Spark and Flink, and paral-
lelism is expressed in terms of data parallelism in Transforms (e.g., ParDo function)
and inter-actor parallelism on independent Transforms. In Beam’s nomenclature,
this graph is called the Execution Graph. Similarly to Flink, pipeline parallelism is
exploited among successive actors.

Future Direction for Research

In this chapter, some of the most common tools for analytics and data management
were presented. One common drawback of all of them is that their operators are not
polymorphic with respect to the data model (e.g., stream, batch). This means ana-
lytics pipelines should be either re-designed or simulated to match a different data
model, as in the lambda or kappa architectures, respectively. This is often hardly
acceptable either in term of effort or performance.

The PiCo framework has been recently proposed to overcome this problem. PiCo’s
programming model aims at making easier the programming of data analytics ap-
plications while preserving or enhancing their performance. This is attained through
three key design choices: 1) unifying batch and stream data access models, 2) de-
coupling processing from data layout, and 3) exploiting a stream-oriented, scalable,
effiicient C++11 runtime system. PiCo proposes a programming model based on
pipelines and operators that are polymorphic with respect to data types in the sense
that it is possible to re-use the same algorithms and pipelines on different data mod-
els (e.g., streams, lists, sets, etc.). Being PiCo designed as a C++11 header-only
library, it can be easily ported in any general-purpose or specialised device support-
ing vanilla C++ run-time, including any low-power device in the edge of computing.
Preliminary results show that PiCo can attain equal or better performances in terms
of execution times and hugely improve memory utilization when compared to Spark
and Flink in both batch and stream processing (Misale 2017; Misale et al 2017b).



16 M. Aldinucci et al.

References

Akidau T, Bradshaw R, Chambers C, Chernyak S, Fernàndez-Moctezuma RJ, Lax R, McVeety S,
Mills D, Perry F, Schmidt E, Whittle S (2015) The dataflow model: A practical approach to
balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data pro-
cessing. Proceedings of the VLDB Endowment 8:1792–1803

Aldinucci M, Danelutto M, Anardu L, Torquati M, Kilpatrick P (2012) Parallel patterns + macro
data flow for multi-core programming. In: Proc. of Intl. Euromicro PDP 2012: Parallel Dis-
tributed and network-based Processing, IEEE, Garching, Germany, pp 27–36

Carbone P, Fóra G, Ewen S, Haridi S, Tzoumas K (2015) Lightweight asynchronous snapshots for
distributed dataflows. CoRR abs/1506.08603

Chu CT, Kim SK, Lin YA, Yu Y, Bradski G, Ng AY, Olukotun K (2006) Map-reduce for machine
learning on multicore. In: Proc. of the 19th International Conference on Neural Information
Processing Systems, pp 281–288

Cole M (1989) Algorithmic Skeletons: Structured Management of Parallel Computations. Re-
search Monographs in Parallel and Distributed Computing, Pitman

Dean J, Ghemawat S (2004) MapReduce: Simplified data processing on large clusters. In: Proc. of
6th Usenix Symposium on Opearting Systems Design & Implementation, pp 137–150

Lee EA, Parks TM (1995) Dataflow process networks. Proceedings of the IEEE 83(5):773–801
Misale C (2017) PiCo: A domain-specific language for data analytics pipelines. PhD thesis, Com-

puter Science Department, University of Torino
Misale C, Drocco M, Aldinucci M, Tremblay G (2017a) A comparison of big data frameworks on

a layered dataflow model. Parallel Processing Letters 27(01):1740,003
Misale C, Drocco M, Tremblay G, Aldinucci M (2017b) PiCo: A novel approach to stream data

analytics. In: Euro-Par 2017 Auto-DaSP Workshop
Nasir MAU, Morales GDF, Garcı́a-Soriano D, Kourtellis N, Serafini M (2015) The power

of both choices: Practical load balancing for distributed stream processing engines. CoRR
abs/1504.00788

Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu
M, Donham J, Bhagat N, Mittal S, Ryaboy D (2014) Storm@twitter. In: Proc. of the ACM
SIGMOD International Conference on Management of Data, pp 147–156

Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica
I (2012) Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In: Proc. of the 9th USENIX Conference on Networked Systems Design and Im-
plementation


