Skip to main content

Graph Exploration and Search

  • Living reference work entry
  • First Online:
  • 335 Accesses

Definition

Exploratory methods have been proposed as a mean to extract knowledge from relational data without knowing what to search (Idreos et al. 2015). Graph exploration has been introduced to perform exploratory analyses on graph-shaped data (Mottin and Müller 2017). Graph exploration aims at mitigating the access to the data to the user, even if such user is a novice.

Algorithms for graph exploration assume the user is not able to completely specify the object of interest with a structured query like a SPARQL (see chapter “Graph Query Languages”), but rather expresses the need with a simpler, more ambiguous language.

This asymmetry between the rigidity of structured queries and ambiguity of the user has inspired the study of approximate, flexible, and example-based methods.

Overview

The research on graph exploration has revolved around three main pillars: keyword graph queries, exploratory graph analysis, and refinement of query results.

Keyword graph queries

applies user-friendly...

This is a preview of subscription content, log in via an institution.

References

  • Achiezra H, Golenberg K, Kimelfeld B, Sagiv Y (2010) Exploratory keyword search on data graphs. In: SIGMOD, pp 1163–1166

    Google Scholar 

  • Arenas M, Cuenca Grau B, Kharlamov E, Marciuska S, Zheleznyakov D (2014) Faceted search over ontology-enhanced RDF data. In: CIKM. ACM, pp 939–948

    Google Scholar 

  • Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S (2002) Keyword searching and browsing in databases using banks. In: ICDE, pp 431–440

    Google Scholar 

  • Byrka J, Grandoni F, Rothvoss T, Sanità L (2013) Steiner tree approximation via iterative randomized rounding. J ACM 60(1):6

    Google Scholar 

  • Carpineto C, Romano G (2012) A survey of automatic query expansion in information retrieval. ACM Comput Surv (CSUR) 44:1

    Google Scholar 

  • Ding B, Yu JX, Wang S, Qin L, Zhang X, Lin X (2007) Finding top-k min-cost connected trees in databases. In: ICDE, pp 836–845

    Google Scholar 

  • Gionis A, Mathioudakis M, Ukkonen A (2015) Bump hunting in the dark – local discrepancy maximization on graphs. In: ICDE

    Google Scholar 

  • Hurtado CA, Poulovassilis A, Wood PT (2008) Query relaxation in RDF. J Data Semant 4900(Chapter 2): 31–61

    Google Scholar 

  • Idreos S, Papaemmanouil O, Chaudhuri S (2015) Overview of data exploration techniques. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, pp 277–281

    Google Scholar 

  • Islam MS, Liu C, Li J (2015) Efficient answering of why-not questions in similar graph matching. TKDE 27(10):2672–2686

    Google Scholar 

  • Jayaram N, Goyal S, Li C (2015a) VIIQ: auto-suggestion enabled visual interface for interactive graph query formulation. PVLDB 8(12):1940–1943

    Google Scholar 

  • Jayaram N, Khan A, Li C, Yan X, Elmasri R (2015b) Querying knowledge graphs by example entity tuples. IEEE Trans Knowl Data Eng 27(10):2797–2811. https://doi.org/10.1109/TKDE.2015.2426696

  • Kargar M, An A (2011) Keyword search in graphs: finding r-cliques. In: VLDB, pp 681–692

    Google Scholar 

  • Koutrika G, Zadeh ZM, Garcia-Molina H (2009) Data clouds: summarizing keyword search results over structured data. In: EDBT, pp 391–402

    Google Scholar 

  • Lee J, Han WS, Kasperovics R, Lee JH (2012) An in-depth comparison of subgraph isomorphism algorithms in graph databases. In: PVLDB, VLDB Endowment, vol 6, pp 133–144

    Google Scholar 

  • Li G, Ooi BC, Feng J, Wang J, Zhou L (2008) Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD, pp 903–914

    Google Scholar 

  • Ma S, Cao Y, Fan W, Huai J, Wo T (2014) Strong simulation: capturing topology in graph pattern matching. ACM Trans Database Syst (TODS) 39(1):4

    Google Scholar 

  • Mottin D, Müller E (2017) Graph exploration: from users to large graphs. In: SIGMOD, pp 1737–1740

    Google Scholar 

  • Mottin D, Bonchi F, Gullo F (2015) Graph query reformulation with diversity. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 825–834

    Google Scholar 

  • Mottin D, Lissandrini M, Velegrakis Y, Palpanas T (2016) Exemplar queries: a new way of searching. VLDBJ 25(6):741–765

    Article  Google Scholar 

  • Perozzi B, Akoglu L, Iglesias Sánchez P, Müller E (2014) Focused clustering and outlier detection in large attributed graphs. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1346–1355

    Google Scholar 

  • Pienta R, Abello J, Kahng M, Chau DH (2015) Scalable graph exploration and visualization: sensemaking challenges and opportunities. In: 2015 International Conference on Big Data and smart computing (BigComp), pp 271–278

    Google Scholar 

  • Ruchansky N, Bonchi F, García-Soriano D, Gullo F, Kourtellis N (2015) The minimum wiener connector problem. In: SIGMOD. ACM, New York, pp 1587–1602

    Google Scholar 

  • Staudt CL, Marrakchi Y, Meyerhenke H (2014) Detecting communities around seed nodes in complex networks. In: IEEE international conference on big data (Big Data). IEEE, pp 62–69

    Google Scholar 

  • Tong H, Faloutsos C (2006) Center-piece subgraphs: problem definition and fast solutions. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 404–413

    Google Scholar 

  • Tran QT, Chan CY (2010) How to conquer why-not questions. In: SIGMOD, pp 15–26

    Google Scholar 

  • Tran T, Wang H, Rudolph S, Cimiano P (2009) Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE, pp 405–416

    Google Scholar 

  • Tran QT, Chan CY, Parthasarathy S (2014) Query reverse engineering. In: VLDB, pp 721–746

    Google Scholar 

  • Vasilyeva E, Thiele M, Bornhövd C, Lehner W (2016) Answering “why empty?” and “why so many?” queries in graph databases. J Comput Syst Sci 82(1):3–22

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Aggarwal CC (2010) A survey of algorithms for keyword search on graph data. In: Managing and mining graph data, pp 249–273

    Google Scholar 

  • Xie M, Bhowmick SS, Cong G, Wang Q (2017) Panda: toward partial topology-based search on large networks in a single machine. VLDBJ 26(2):203–228

    Article  Google Scholar 

  • Yi P, Choi B, Bhowmick SS, Xu J (2017) Autog: a visual query autocompletion framework for graph databases. VLDBJ 26(3):347–372

    Article  Google Scholar 

  • Yu JX, Qin L, Chang L (2010) Keyword search in relational databases: a survey. IEEE Data Eng Bull 331: 67–78

    Google Scholar 

  • Zeng Y, Bao Z, Ling TW, Jagadish H, Li G (2014) Breaking out of the mismatch trap. In: ICDE, pp 940–951

    Google Scholar 

  • Zloof MM (1975) Query by example. In: Proceedings of the May 19–22, 1975, national computer conference and exposition. ACM, pp 431–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davide Mottin or Yinghui Wu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mottin, D., Wu, Y. (2018). Graph Exploration and Search. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_80-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics