Skip to main content

Generalizing Movement Primitives to New Situations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Abstract

Although motor primitives (MPs) have been studied extensively, much less attention has been devoted to studying their generalization to new situations. To cope with varying conditions, a MP’s policy encoding must support generalization over task parameters to avoid learning separate primitives for each condition. Local and linear parameterized models have been proposed to interpolate over task parameters to provide limited generalization.

In this paper, we present a global parametric motion primitive (GPDMP) which allows generalization beyond local or linear models. Primitives are modeled using a linear basis function model with global non-linear basis functions. The model is constructed from initial non-parametric primitives found using a single human demonstration and subsequent episodes of reinforcement learning to adapt the demonstrated skill to other task parameters. The initial models are then used to optimize the parameters of the global parametric model. Experiments with a ball-in-a-cup task with varying string lengths show that GPDMP allows greatly improved extrapolation compared to earlier local or linear models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Autonom. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  2. Chernova, S., Veloso, M.: Confidence-based policy learning from demonstration using Gaussian mixture models. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, p. 233. ACM (2007)

    Google Scholar 

  3. Sammut, C., Hurst, S., Kedzier, D., Michie, D., et al.: Learning to fly. In: Proceedings of the Ninth International Workshop on Machine Learning, pp. 385–393 (1992)

    Google Scholar 

  4. Hovland, G.E., Sikka, P., McCarragher, B.J.: Skill acquisition from human demonstration using a hidden Markov model. In: IEEE International Conference on Robotics and Automation, Proceedings, vol. 3, pp. 2706–2711. IEEE (1996)

    Google Scholar 

  5. Calinon, S., D’halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: Learning and reproduction of gestures by imitation. IEEE Robot. Autom. Mag. 17(2), 44–54 (2010)

    Article  Google Scholar 

  6. Carrera, A., Palomeras, N., Hurtós, N., Kormushev, P., Carreras, M.: Learning multiple strategies to perform a valve turning with underwater currents using an I-AUV. In: OCEANS 2015-Genova, pp. 1–8. IEEE (2015)

    Google Scholar 

  7. Da Silva, B., Konidaris, G., Barto, A.: Learning parameterized skills. arXiv preprint arXiv:1206.6398 (2012)

  8. Forte, D., Gams, A., Morimoto, J., Ude, A.: On-line motion synthesis and adaptation using a trajectory database. Robot. Autonom. Syst. 60(10), 1327–1339 (2012)

    Article  Google Scholar 

  9. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans. Robot. 26(5), 800–815 (2010)

    Article  Google Scholar 

  10. Matsubara, T., Hyon, S.-H., Morimoto, J.: Learning parametric dynamic movement primitives from multiple demonstrations. Neural Netw. 24(5), 493–500 (2011)

    Article  Google Scholar 

  11. Calinon, S., Alizadeh, T., Caldwell, D.G.: On improving the extrapolation capability of task-parameterized movement models. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 610–616. IEEE (2013)

    Google Scholar 

  12. Kober, J., Peters, J.R.: Policy search for motor primitives in robotics. In: Advances in Neural Information Processing Systems, pp. 849–856 (2009)

    Google Scholar 

  13. Kober, J., Oztop, E., Peters, J.: Reinforcement learning to adjust robot movements to new situations. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 2650 (2011)

    Google Scholar 

  14. Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., Sigaud, O.: Learning compact parameterized skills with a single regression. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 417–422. IEEE (2013)

    Google Scholar 

  15. Nemec, B., Vuga, R., Ude, A.: Efficient sensorimotor learning from multiple demonstrations. Adv. Robot. 27(13), 1023–1031 (2013)

    Article  Google Scholar 

  16. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. Int. J. Robot. Res. 32(3), 263–279 (2013)

    Article  Google Scholar 

  17. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2002, vol. 2, pp. 1398–1403. IEEE (2002)

    Google Scholar 

  18. Peters, J.R.: Machine learning of motor skills for robotics. Ph.D. thesis, University of Southern California (2007)

    Google Scholar 

  19. Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.: Learning force control policies for compliant manipulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4639–4644. IEEE (2011)

    Google Scholar 

  20. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4569–4574. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murtaza Hazara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lundell, J., Hazara, M., Kyrki, V. (2017). Generalizing Movement Primitives to New Situations. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics