Skip to main content

Self-adaptive Context Aware Audio Localization for Robots Using Parallel Cerebellar Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Abstract

An audio sensor system is presented that uses multiple cerebellar models to determine the acoustic environment in which a robot is operating, allowing the robot to select appropriate models to calibrate its audio-motor map for the detected environment. There are two key areas of novelty here. One is the application of cerebellar models in a new context, that is auditory sensory input. The second is the idea of applying a multiple models approach to motor control to a sensory problem rather than a motor problem. The use of the adaptive filter model of the cerebellum in a variety of robotics applications has demonstrated the utility of the so-called cerebellar chip. This paper combines the notion of cerebellar calibration of a distorted audio-motor map with the use of multiple parallel models to predict the context (acoustic environment) within which the robot is operating. The system was able to correctly predict seven different acoustic contexts in almost 70% of cases tested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Argentieri, S., Danès, P., Souères, P.: A survey on sound source localization in robotics: from binaural to array processing methods. Comput. Speech Lang. 34(1), 87–112 (2015)

    Article  Google Scholar 

  2. Dean, P., Porrill, J., Ekerot, C.F., Jorntell, H., Ekerot, C.-F.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence (report). Nat. Rev. Neurosci. 11(1), 30 (2010)

    Google Scholar 

  3. Porrill, J., Dean, P., Anderson, S.R.: Adaptive filters and internal models: multilevel description of cerebellar function. Neural Netw. 47, 134–149 (2013)

    Article  Google Scholar 

  4. Porrill, J., Dean, P., Stone, J.V.: Recurrent cerebellar architecture solves the motor-error problem. Proc. Royal Soc. B Biol. Sci. 271(1541), 789–796 (2004)

    Article  Google Scholar 

  5. Assaf, T., Wilson, E.D., Anderson, S., Dean, P., Porrill, J., Pearson, M.J.: Visual-tactile sensory map calibration of a biomimetic whiskered robot. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 967–972. IEEE (2016)

    Google Scholar 

  6. Blauert, J.: Spatial Hearing: The Psychophysics of Human Sound Localization, vol. Rev. MIT Press, Cambridge, Mass, London (1997)

    Google Scholar 

  7. Imamizu, H., Kawato, M.: Cerebellar internal models: implications for the dexterous use of tools. Cerebellum 11(2), 325–335 (2012). (London, England)

    Google Scholar 

  8. Baumann, O., Borra, R., Bower, J., Cullen, K., Habas, C., Ivry, R., Leggio, M., Mattingley, J., Molinari, M., Moulton, E., Paulin, M., Pavlova, M., Schmahmann, J., Sokolov, A.: Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14(2), 197–220 (2015)

    Article  Google Scholar 

  9. Fujita, M.: Adaptive filter model of the cerebellum. Biol. Cybern. 45(3), 195–206 (1982)

    Article  MATH  Google Scholar 

  10. Marr, D.: A theory of cerebellar cortex. J. Physiol. 202(2), 437–470 (1969)

    Google Scholar 

  11. Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10(12), 25–61 (1971)

    Article  Google Scholar 

  12. Sejnowski, T.J.: Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4(4), 303–321 (1977)

    Article  MathSciNet  Google Scholar 

  13. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Netw. 11(78), 1317–1329 (1998)

    Article  Google Scholar 

  14. Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Comput. 13(10), 2201–2220 (2001)

    Article  MATH  Google Scholar 

  15. Sugimoto, N., Haruno, M., Doya, K., Kawato, M.: Mosaic for multiple-reward environments. Neural Comput. 24(3), 577–606 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Ahmad Sheikh for his contribution to developing the moving sound source apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Baxendale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baxendale, M.D., Pearson, M.J., Nibouche, M., Secco, E.L., Pipe, A.G. (2017). Self-adaptive Context Aware Audio Localization for Robots Using Parallel Cerebellar Models. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics