
Verification of Component Fault Trees using
Error Effect Simulations

Sebastian Reiter1, Marc Zeller2, Kai Höfig2, Alexander Viehl1,
Oliver Bringmann1, Wolfgang Rosenstiel1

1 FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany

{sreiter, viehl, bringman, rosenstiel}@fzi.de
2 Siemens AG, Corporate Technology

Otto-Hahn-Ring 6, D-81379 Munich, Germany
{marc.zeller,kai.hoefig}@siemens.com

Abstract. The growing complexity of safety-relevant systems causes an
increasing effort for safety assurance. The reduction of development costs
and time-to-market, while guaranteeing safe operation, is therefore a
major challenge. In order to enable efficient safety assessment of complex
architectures, we present an approach, which combines deductive safety
analyses, in form of Component Fault Trees (CFTs), with an Error Effect
Simulation (EES) for sanity checks. Both CFTs and the EES provide a
modular, reusable and compositional safety analysis. The combination
reduces the drawbacks of both analyses, such as the subjective failure
propagation assumptions in the CFTs or the determination of relevant
fault scenarios for the EES. Since both are applicable throughout the
whole design process, they support continuous model refinement and the
reuse of conducted safety analysis and simulation models. Hence, safety
goal violations can be identified in early design stages and the reuse of
conducted safety analyses reduces the overhead for safety assessment.

1 Introduction

The growing number and complexity of safety-relevant embedded systems poses
new challenges, in many application domains such as the automotive domain
with the rapidly evolving advance driver assistance systems. Along with the
growing system complexity, also the need for safety assessment and its associated
effort is drastically increasing. Safety assessment is a mandatory part in order
to guarantee the high quality demands, imposed by the market. However, this
is contrary to industry’s aim to reduce costs and time-to-market.
In different application domains, safety standards, such as the IEC 61508 [10]
or its automotive adaption ISO 26262 [11] define the safety assurance process.
The goal of the safety assessment process is to identify all failures that cause
hazardous situations and to demonstrate that their probabilities are sufficiently
low. Traditionally, the analysis of systems in terms of safety consists of bottom-up
safety analysis approaches, such as Failure Mode and Effect Analysis (FMEA),

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer
Science (LNCS, volume 10437).The final authenticated version is available online at:
https://doi.org/10.1007/978-3-319-64119-5_14.

ar
X

iv
:2

10
6.

03
36

8v
1 

 [
cs

.S
E

] 
 7

 J
un

 2
02

1

https://doi.org/10.1007/978-3-319-64119-5_14


and top-down ones, such as Fault Tree Analysis (FTA). Both provide structured
procedure models to identify failure modes, failure causes and the effects on the
system safety goals. The early identification of safety goal violations is crucial
for a cost-efficient development process.

The quality of the safety assessment strongly depends on the correctness and
completeness of the safety analysis model, describing the failure propagation and
its transformation through the system. In current industrial practice, the quality
of the safety analysis models in terms of completeness and correctness needs to
be guaranteed manually by model reviews, which are very time-consuming tasks.
Since such reviews are required after the initial construction of the safety analysis
model as well as after each modification, the effort for maintaining its quality
during the whole design time is significant. Applying a development strategy with
frequent changes, such as agile methods, drastically increases this maintenance
effort, endangering the success of the development.

Since system-level simulations enable the simultaneous analysis of software
and digital/analog hardware, the application of simulations for safety evalua-
tions attracted growing attention [2–4, 14–17]. However, the focus of most of
these approaches is either the verification of fault tolerance mechanisms or the
identification of failure modes as well as their effects. The determination of the
analyzed fault space, as well as the integration in the still required safety assess-
ment process is neglected. The main contribution of this paper is the synergistic
combination of both methodologies. We present an approach for the verification
of a failure propagation specification in form of a Component Fault Tree (CFT)
methodology [12] with a Error Effect Simulation (EES) approach. Test cases
are automatically generated from CFTs, which serve as input to inject faults
into a system simulation. Additionally a test oracle, for failure effect detection,
is created automatically. Thus, it is possible to discover gaps and errors in the
failure propagation specification. This increases the quality while simultaneously
reduces the effort for the manual safety model review drastically.
Since system simulations can be performed at different levels of granularity and
CFT elements can be reused in different contexts, our approach is applicable
throughout the design process. Hence, iterative and agile development strate-
gies are supported by speeding up the analysis of the current system design
abstraction. Thereby, only the refined parts of the system must be modified.

The paper is organized as follows: In Sect. 2 relevant related work is briefly
summarized. The Sect. 3 presents the underlying method. The concept of CFTs
is presented in Sect. 4. The EES infrastructure is presented in Sect. 5. The Sect. 6
outlines how test cases can be automatically generated from CFTs as input for
the EES in order to review the safety analysis model. In Sect. 7 the benefits of
our approach are demonstrated. The paper is concluded in Sect. 8.

2 Related Work

As already mentioned, there exist manifold approaches that utilize simulation-
based fault injection (SFI), such as [2–4, 14–17]. These approaches use system



simulations combined with fault injection for enhancing safety analyses. They
focus on the efficient execution of the fault injection and the determination of
error effects. Randomly generated parameters are used in a large number of
simulation runs. But in order to get meaningful results which can be used as
evidence in a safety case, the number of test runs must be extremely high. And
still these approaches cannot guarantee that all relevant faults are injected into
the simulation. Additionally, previous approaches are missing a methodology to
combine the presented techniques with established safety assessment processes
which are still required for system qualification/certification. SFI mitigates the
new challenges, but cannot replace safety assessments such as FTA or FMEA.

Such an FMEA integration is presented in [6]. It presents a simulation-
assisted FMEA by formalizing the FMEA structure and deriving a system sim-
ulation. With the help of such an approach, the fault catalogues used during
FMEA are reused by the SFI. We utilize a similar approach for FTA, by map-
ping the FTA components to simulation components of a SFI. By provision
of both a component-based FTA and a component-based SFI the concept of
reusable databases is extended to reusable safety analysis artifacts.

The formalization of the FTA and the SFI structure are realized with the
UML. Approaches such as [5,20] are also using the UML to support safety assess-
ment. [5] provides a model-to-model transformation to map a UML specification
to a executable model based on the Action Language for Foundational UML.
However, the derivation or construction of FMEA tables are neglected.

In [13] Simulink-based simulation models are generated based on an EAST-
ADL description of the system. Safety analysis is explicitly targeted by this
approach, but it cannot be used to verify safety analysis. Similar to other SFI
approaches, it is not described how input for the fault injection is generated.

3 Methodology

The goal of the safety assessment process is to identify all failures that cause
hazardous situations and to demonstrate that their probabilities are sufficiently
low. In the application domains of safety-relevant systems, the safety assur-
ance process is defined by the means of safety standards (e.g. IEC 61508 [10]).
Fig. 1 illustrates typical activities and their relation to the development process.
Moreover, it outlines the used models and their interactions. As a first step, all
relevant hazards of the system are identified and the associated risks are assessed
during the so-called Hazard Analysis and Risk Assessment. Top-level safety re-
quirements are the result of this step. Based on the system requirements the
architecture of the system is designed in a model-based way using UML. Based
on this system specification, the safety engineer is developing a safety analysis
to identify failure modes, their causes, and effects with impact on the system
safety. The results of the safety analysis as well as results of verification activities
are used as evidences to evolve safety requirements to a safety case. Finally, the
system safety is assessed based on the safety case and a certificate is issued in
case of a positive assessment result.



Hazard Analysis 
and Risk 

Assessment

Specification Safety Analysis
Functional/Physical 

System Model (UML)
Safety Analysis Model

(CFT)

Implementation Simulation

Verification Safety Case

Restricted © Siemens AG 20XX

XX.XX.20XXPage 2 Author / Department

CertificateDevelopment &verification activity

Safety engineering activity

Fig. 1. Overview over the proposed methodology to verify safety analysis models

In our approach, we use the CFT methodology as a model- and component-
based approach for fault tree analyses to enable modular and compositional
safety analysis. Thereby, fault tree elements are related to their development
artifacts (defined in UML) and can be reused along with them. Based on the
available system specification in UML a system level simulation can be gen-
erated automatically. Since safety artifacts are associated with design artifacts
of the system architecture, a straightforward mapping between the entities in
the generated system simulation and the safety analysis model is given. Hence,
test cases with fault injection and test oracles are automatically generated from
CFTs. This way it possible to check whether the specified failure propagation
is correct, using the system-level simulation. This enhances the quality of the
CFT-based safety analysis model in terms of correctness, since failure modes as
well as failure mitigation mechanisms can be discovered which the safety engi-
neer overlooked. Moreover, failure propagation paths, which are not yet know,
e.g. caused by emergent behavior on system level, can be discovered.

4 Component Fault Trees

Component Fault Trees are Boolean models associated with system development
elements such as components [8, 12, 22]. It has the same expressive power as
classic fault trees, which are described in [19]. Like classic fault trees, CFTs are
used to model failure behavior of safety-relevant systems. This failure behavior,
including their appearance rate, is used to document the absence of unreasonable
risk of the overall system. In addition, it can also be used to identify drawbacks



of the design of a system. In CFT methodology, a separate CFT element is
related to a component, e.g. defined in UML [7].

Let the System Sys consist of a set of components C = {c1, ..., cn}. Each com-
ponent ci ∈ C has a set of inports IN(ci) = {in1, ..., inp} and a set of outports
OUT (ci) = {out1, ..., outq}. The information flow between the outport of a com-
ponent ci ∈ C and the inport of another component cj ∈ C (with ci 6= cj) is mod-
elled by a set of connections CON = {(outx, iny)|outx ∈ OUT (ci), iny ∈ IN(cj)}.

If ci ∈ C has a component fault tree element cfti ∈ CFT , then it is
˜CFT (ci) = cfti with cfti 6= ∅. Thus, the CFT of the system Sys is defined

by the set of CFT elements CFT = {cft1, ..., cftn}.
Failures that are visible at the outport of a component are modeled using

Output Failure Modes OFM(outl) = {ofm1, ..., ofmt} which are related to the
specific outport outl ∈ OUT (ci). To model how specific failures propagate from
an inport of a component to the outport, Input Failure Modes IFM(ink) =
{ifm1, ..., ifms} are used, which are related to an inport ink ∈ IN(ci). The
internal failure behavior that also influences the output failure modes is modeled
using Boolean gates such as OR and AND as well as Basic Events. Basic Events
B(cfti) = {b1, ..., br} represent failure modes that originate within a component.
Each Basic Event can be assigned a failure rate, e.g. the Mean Time Between
Failure (MTBF) or the Failure in Time (FIT). In case of an OR gate a failure
propagates if at least one of the inputs is active, while an AND gate propagates
failures only if all input failures are active.

A library, which contains CFT elements for all system components, eases the
reusability of safety artifacts. Hence, it is possible to create different CFTs by
just changing the assembly of the CFT elements. Every CFT can be transformed
to a classic fault tree by removing the input and output failure mode elements.

5 Error Effect Simulation

The EES consists of a Device Under Test (DUT) and its test bench. The DUT
models software, hardware and analog system parts. We use the IEEE standard
SystemC [9] because of its support of various simulation domains and its com-
prehensive support of different abstraction levels. The EES uses an approach
similar to [18]. It consists of a modular, parameterizable system simulation that
is used to assess error effects. One simulation instance is assembled of parame-
terizable Simulation Entities (SEs). To facilitate the analysis of different DUT
characteristics, the framework uses dynamic configuration that is supplied during
runtime. This covers the DUT architecture as well as the SEs parameterization.

The EES requires fault injectors, which cause a discrepancy within the DUT.
We provide injection capability by replacing simulation primitives with an in-
jectable container that encapsulates the original simulation primitive. This con-
tainer provides an interface to change the value of the simulation primitive. The
design of the injectors is particularly suited to support simulation models of dif-
ferent abstraction levels with their different modeling primitives. A centralized
injection control module stimulates the safety case by controlling the injectors.



The so-called Behavioral Threat Models (BTM) specifies the injected behav-
ior. A BTM is based on Timed Automata (TA). A TA consists of a finite set of
locations L, actions Σ and a set of clocks C, which can be reset individually.
An edge (li, σ, g(C), r(C), lj) ∈ E is a transition from location li to location lj
with an action σ ∈ Σ, a time dependent guard g(C) and a clock reset r(C).
For fault modeling the TA approach is extended in a way that guard statement
g(C,Ws,Wl,E) can additionally depend on the state of the simulation Ws, the
state of BTM local variables Wl and a set of events E that are used to synchro-
nize multiple BTMs. Actions σ(Ws,Wl) are extended to modify the simulation
state Ws or local variables within the BTM Wl. The centralized injection control
module interprets a BTM dynamically and stimulates faults.

For failure detection, the virtual prototype is extended with failure monitors,
which compare the behavior of one variable with a previous simulation run.
Using an error free simulation run as reference enables the detection of failures
that are caused by the fault injection. Ref. [1] presents a general failure mode
characterization, which cover content failures, early failures, late failures, halt
failures as well as erratic failures. The proposed failure monitors detect these
standard failure modes by default. Besides the detection of these standard failure
modes it is possible to specify queries that are checked both on the reference and
error trace. A Computation Tree Logic (CTL) expression specifies the queries.
This enables the detection of application specific failure modes.

A graphical specification of the EES based on the UML supports the user by
conducting analyses. It reduces the manual overhead by code generation steps
and increase the usability by a graphical user interface. The graphical specifica-
tion consists of the specification of the SEs, their instantiation, parametrization
and interconnection. Moreover, the placement of fault injectors, failure monitors
and fault behavior is specified.

With these extensions of the system simulation the question still remains, at
which location to inject faults (fault injector placement), how does the injected
behavior look like (BTM specification) and where to detect deviations from the
reference trace (monitor placement).

6 Verification of CFTs using Error Effect Simulation

In order to verify the failure behavior specified as CFT, test cases for the EES are
generated automatically. A test case covers the fault specification and the fault
injector placement. Additionally it includes a test oracle, which is realized by a
failure monitor. The test cases are derived from the CFT. For this purposes, we
define a so-called scope S of the CFT that involves only a certain amount of the
components with S ⊆ CFT . Thus, it is possible to verify both the entire failure
propagation model as well as only a part of it. A scope S ⊆ CFT provides a set
of inputs and outputs. The inputs of the scope INS ⊆

⋃
ci∈S IN(ci) are used to

enter a test scenario. The outputs OUTS ⊆
⋃

ci∈S OUT (ci) are used to measure
the results of a test scenario. The inner CFT logic can be simplified to a CFT
element for the scope S, which only contains the gates and basic events, input



and output failure modes that are related to the scope (cf. Ref. [21]). Internal
input and output failure modes are omitted. Hence, for a scope S ⊆ CFT , the
CFT element related to S is CFTS ⊆ CFT . It contains failure modes related to
the inports and outports and have a connection outside of the scope. Let

IFM(S) = {in | ∃(a, b) ∈ CON, a ∈ OUT (A), A /∈ S,
b ∈ IN(B), B ∈ S, in ∈ IFM(B)}

be the input failure modes of the scope S and

OFM(S) = {out | ∃(a, b) ∈ CON, a ∈ OUT (A), A ∈ S,
b ∈ IN(B), B /∈ S, ut ∈ OFM(A)}

be the output failure modes of the scope S. Moreover, let

B(S) =
⋃
ci∈S

B(ci)

be the set of basic events of the scope S.
In order to determine a set of test cases, we apply the methodology of Minimal

Cut Set Analysis (MCA). A MCA is a representation of a tree using a disjunction
of conjunctive terms that cannot be reduced further [19]. For a scope S, let

mci(t) = x1 ∧ . . . ∧ xn, t ∈ OFM(S), xi ∈ IFM(S) ∪B(S)

be all cut sets that result in the occurrence of the output failure mode t ∈
OFM(S) of the scope S ⊆ CFT . Moreover, let

MCA(t) = mc1(t) ∨ . . . ∨mcm(t), t ∈ OFM(S)

be the minimal cut set analysis of the output failure mode t and scope S ⊆ CFT .
Since in general multiple combinations of input data leads to different output
data for the same test case, typical measures can be applied here to further
reduce the set of test cases like equivalence class testing.

Thus, the results of the MCA are used to generate input for the fault injec-
tors. For each input failure mode ifmi a set of BTMs is generated BTM(ifmi) =
{btmi,1 . . . btmi,m} to control the fault injector at the inports INS of the respec-
tive component. Similar for each Basic Events bi a set of BTMs is generated
BTM(bi) = {btmi,1 . . . btmi,n} to inject faults by the modification of the com-
ponent state. In this work, we use sets of predefined BTMs that match the failure
behavior of the input failure modes and Basic Events within the CFT. An ap-
proach with a BTM-library is used and the generation process parametrizes
these predefined fault behaviors. The generated inputs stimulate the DUT and
will lead to a discrepancy from the intended behavior. Since the output failure
modes OFM(S) of S can be observed at the outports OUTS , failure monitors
are placed within the EES. These monitors detect general failure modes by de-
fault but can also be extended to detect application specific failure modes. With
this the the CFT can be verified by the EES.



7 Case study

We illustrate the benefits of our approach using an automotive case study namely
a coasting assistant. This assistant calculates driver hints such as acceleration
or braking with regard to an energy efficient driving strategy. The system is
designed for electric vehicles, where in case of a deceleration the driver has
the choice of freewheeling or braking with recuperation. The coasting assistant
displays the optimal driving choice w.r.t. energy efficiency in the Head-Unit.
Therefore, the coasting assistant ECU uses maps annotated with speed limits
but also a video-based speed limit detection to adjust to undocumented limits
such as road works. This speed limit detection will be the focus of the case study.

7.1 Overview

The coasting assistant functionality is distributed over multiple Electronic Con-
trol Units (ECUs) which are interconnected by different communication chan-
nels. Fig. 2 shows the involved ECUs and communication channels. The camera
ECU records the road in front of the vehicle and sends this image to a circle
detection algorithm using the synchronous channel of a MOST bus. In the next
processing step circles are detected and the containing image segments are for-
warded to a speed limit classification. The image segments are forwarded via the
dynamic segment of the FlexRay bus. Information about the estimated distance
of the potential speed sign is sent with a separate CAN message to the coasting
assistant ECU. The cropped circles are classified and the results are sent to the
coasting assistant via CAN. The coasting assistant uses the received information
on the next speed limit as well as the estimated distance and an internal look-up
table to calculate an energy efficient driving strategy.

Focus of the safety analysis in early development stages is the actual func-
tionality itself. The communication between simulation entities is abstracted by
function calls. The logical system architecture, specified with the CFT archi-
tectural model, is shown in Fig. 3. The data exchange is modeled using ports.

Fig. 2. Overview of the case study



Fig. 3. Functional architecture of the exemplary system

7.2 CFT-based analysis

For each of the components within the system architecture a CFT element is
specified. Fig. 4 (a) shows the CFT element describing the failure behavior of the
camera ECU. The different internal failures are modeled by Basic Events. Each of
them is associated with a specific failure rate. The CFT element of the camera
specifies failure modes like a frozen image stream, a corruption of the image
pixels, the omission of the complete images or a variation in the sampling time
of the camera. These failure modes are propagated via the components’ outports
to other components. This way the failures originating from the camera induces
the failure modes in the head unit and the Circle Detection ECU. Fig. 4 (b)
shows the failure modes within the coasting assistant ECU. The input failure
modes represent that a speed limit is reported too late that an erroneous speed
limit is reported or that speed limit is missing. The output failure modes depend
on the input failure modes and the Basic Events of the component. The output
failure modes determine the input failure modes of the next component - in our
case study the ones of the head unit.

Fig. 4. Excerpt of failure modes within the camera (a) and coasting assistant (b)



With the specification of the CFT elements for all components of the sys-
tem architecture it is possible to calculate the complete fault tree or differ-
ent fault trees w.r.t. a restricted scope. Table 1 shows a few of the gener-
ated test cases with different scopes. One example fault tree path would be

Scope Fault injection Failure monitor

camera camera defect omission of image

content failure frozen image

coastingAssistant sl omission OR di omission OR
ECU defect

missing hint

sl errornous erroneous hint

camera, circleRe-
cog, slClassfi,
coastingAssis

camera.content failure OR cam-
era.pixel failure

coastingAssis.erroneous hint

complete System camera.content failure OR cam-
era.pixel failure

HMI.image content failure

camera.samptime deviation HMI.sl late
Table 1. Excerpt of the generated test cases

that camera.content failure OR camera.pixel failure can cause the fail-
ure mode coastingAssis.erroneous hint, when the HMI is excluded from the
analyzed scope.

7.3 Simulation-based verification

After generation of the relation between input failure modes and output fail-
ure modes, these relations are verified using simulations. The EES shows if the
caused-by-relation specified in the safety analysis model is observed in the sim-
ulation. In case of OR-relations the simulation has to provoke an error effect if
any of the faults is injected. In case of an AND-relation the error effect should
only manifest if all input faults are injected simultaneous. For each component in
the CFT a corresponding SE exists in the simulation. Fig. 5 shows the graphical
specification of the simulation configuration. It contains the same components as
the CFT system architecture and for each of the components a CFT element is
specified. Model-to-model transformations enable the mapping of CFT elements
to simulation components. The simulation specification contains additional in-
formation that is not specified within the CFT system architecture or the CFT,
such as the SE parametrizations or the SEs of the test bench. Thus, it is no
bijective transformation. In the context of this work the developer is supported
by automated model-to-model transformations, but still manual extensions, e.g.
to specify the component parametrization or to extend the configuration with
sole simulation components, are required to create the simulation. This approach
offers the benefit that the system architecture or the CFT is not polluted with
information which is only required for the simulation.

The fault injection targets mainly the internal information of the components.
The failure modes specified in the CFT element of the Camera (cf. Fig. 4) target



Fig. 5. Specification of the system simulation for the case study

the internal storage of the transmitted image. The failure mode frozen image

is represented by altering the sampling time of the camera, the wrong pixels

fault by altering the image payload. A camera defect (omission of image) is
modeled by an infinite sampling time. If two failure modes are affecting the
same injector, e.g. the camera defect and the frozen image, the user have to
assure the interaction between the two failures modes is desired. The simulation
contains therefore fault injectors that are associated with the payload array and
with the sampling time variable. Fig. 6 (above) shows the BTMs to inject a
pixel failure and Fig. 6 (below) shows the behavior of the content failure. It

1 <ESname > eInit <EStype > initial
2 <ESname > eFree
3 <ESname > eState
4 <ETsrc> eInit <ETtgt> eFree
5 <ETaction > ids = [id for id in range (719*200 ,719*210)]
6 <ETsrc> eFree <ETtgt> eState
7 <ETguard > BTMclock(’OKTime ’).read()== sc_time (23, sc_time_unit.SC_SEC)
8 <ETaction > [VPvar(’m_Camera.pixel’)[id]. force(0x00) for id in ids]
9 <ETsrc> eState <ETtgt> eState

10 <ETaction > [VPvar(’m_Camera.pixel’)[id]. release () for id in ids];
11 [VPvar(’m_Camera.pixel ’)[id]. force(0x00) for id in ids]

1 <ESname >errFree <EStype >initial
2 <ESname >errState1
3 <ETsrc>errFree <ETtgt>errState1
4 <ETguard > BTMclock(’OKTime ’).read()== sc_time (22, sc_time_unit.SC_SEC)
5 <ETaction > VPvar(’m_Camera.pixel’)[0]. force(
6 VPvar(’m_Camera.pixel’)[0]. read())

Fig. 6. BTM for image corruption (above) and a freeze frame failure (below)

can be seen that both BTMs control the injector VPvar(’m Camera.pixel’).
In the context of the CFT the different failure modes determine the selection of
the BTMs (BTM(ifmi) or BTM(bi)). In this case study, for each input failure



Fig. 7. Effect of different pixel corruption strategies

mode or Basic Event in the CFT a set of BTM are created. For instance, the
BTM in Fig. 6 (below) is generated for the camera.content failure solely. For
the camera.pixel failure different BTMs that stimulate different corruption
patterns are created. Fig. 7 illustrates three effects of the generated BTMs. The
picture on the left shows the pixel corruption limited to a horizontal line, the
middle one to a vertical line and the picture on the right shows a random pixel
corruption over the complete image.

Each output failure mode within the CFT is presented in the simulation by
a monitor. In this case study a monitor is added at the received speed limit
in the coasting assistant, corresponding to the output failure mode specified in
the CFT element of the coasting assistant. Before each simulation with fault
injection a reference trace is generated without fault injection. Based on this
generated reference trace the monitors classify the current trace, caused by the
fault injection.

In this example the traces indicate a late failure. The reference trace re-
ports a speed limit at 28.8 seconds but the injection trace first at 29.1 seconds.
This is based on the fact that the speed sign is recorded in sequence of im-
ages, while the vehicle drives towards the sign, and that the first classifications
is prevented based on the pixel corruption within the image. In this fault sce-
nario the horizontal line is injected, blocking the speed limits far away. This
situation was overseen during the creation of the CFT. As mentioned earlier
a camera.content failure OR camera.pixel failure can cause the failure
mode coastingAssis.erroneous hint. The simulation has shown that this is
a very unlikely case, because the classification will most likely return no clas-
sification at all instead of the wrong classification. Resulting in a late failure
mode because a sequence of images is taken from the actual speed limit sign and
most likely a subsequent image will be classified correctly. The nearer the speed
limit the more robust is the classification against pixel errors. Subsequent to the
EES the CFT, particularly the classification component, is adjusted in a way
that the classification.erroneous circle recognition input failure addi-
tionally causes classification.speed-limit information-too-late output
failures. This case is a very good example how the none-complete simulation
approach and the deductive safety analysis in form of a CFT complement each
other. A very large number of simulation runs would be necessary to reproduce
the behavior of corrupted speed limit information within the coasting assistant
based on a pixel corruption in the camera. Therefore, the safety analyst can spec-



ify this case manually in the fault tree after verifying the CFT using an EES.
On the other hand when solely using the top-down safety analysis (in form of a
CFT), the safety experts could have missed the propagation of a pixel corruption
to a late speed limit failure mode.

Besides the verification of existing failure propagation paths within the CFT
it is also possible to verify if failure propagation exists that are not represented
in the CFT. Therefore, the input failure modes and Basic Events, respectively
the generated fault behavior, are combined with different output failure modes,
respectively their failure monitors. Thus, missing propagation paths within the
CFT can be revealed using the EES. With increasing complexity of safety anal-
ysis models the effort to verify all combinations of fault injection and monitors
is rapidly increasing. One benefit of our approach is that different failure moni-
tors can be used within one simulation run in order to examine different failure
propagation paths at once.

7.4 Analyses refinement

In later stages of the design process the models will be refined. In this case
study only the communication between the components is refined. In a first
refinement step, the communication is mapped to abstract transaction models
and in a second step to detailed bus models of CAN, FlexRay and MOST.
With each more detailed abstraction level, new failure sources are added and
the CFT is extended with CFT elements of the corresponding components. This
will enable more detailed safety analyses of the system. On the other hand the
already verified CFTs and simulation models of the application are reused with
each refinement step. This is an example of the benefit of using a modular,
compositional approach for the safety analysis and the simulation.
Another benefit is the reuse of components (CFT, EES) within a single system
configuration. For example the models of the transaction-based communication
are required at different locations of the system. Through a single CFT- and
simulation-element it is possible to create multiple instances. This way the effort
is reduced and the failures are automatically applied at different system parts.

8 Summary

The presented approach enables the verification of failure propagation models in
form of Component Fault Trees (CFT) by an Error Effect Simulations (EES).
Automatic generation steps are provided to generate the injected fault behavior,
required for the EES, as well as a test oracle to classify the monitored failure
behavior. It is shown how the verification of the safety analysis model is ap-
plied during different phases of the development process. In particular, after
each change of the system design, including modifications or refinements of the
system architecture. Since the inputs of the fault injection as well as the test
oracle are generated automatically, the repeated verification of the failure prop-
agation model can be performed efficiently.



Supporting a safety analysis technique, like CFT, with a non-complete simulation-
based analysis reduces the weaknesses of both methodologies. The results of the
CFT-based analysis are only as good as the system knowledge of the involved
experts. Especially, the safety analysis model of large-scale, complex systems
might be incomplete. The system simulation on the other hand offers a method
to enable different stakeholders, in particular IP providers, to contribute their
system knowledge. Such simulation models offer a good basis to support safety
analysis, since they enable a quantitative assessment of failure mitigation mech-
anisms. On the other hand, only selective use cases are analyzed and the detailed
assessment of failure rates can cause a huge simulation effort. By the automatic
generation of fault injection input and test oracles for the simulation from the
CFT these weaknesses are reduced. Hence, our approach enables the verification
whether the specified failure propagation is defined correctly within a CFT-based
safety analysis model. Moreover, additional failures on system level as well as
additional failure mitigation mechanisms can be discovered. It is also possible
to discover failure propagation paths, which are not yet know. Another benefit
is that in most cases the simulation doesn’t have to be executed with a random
fault injection based on very small failure rates. Firm fault combinations are in-
jected and the propagation is evaluated by the EES. The probabilistic analyses
is then executed on the verified CFTs, reducing the simulation effort drastically.

References

1. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure Computing,
IEEE Transactions on, 1(1):11–33, 2004.

2. I. Ayestaran, C.F. Nicolas, J. Perez, A. Larrucea, and P. Puschner. Modeling and
Simulated Fault Injection for Time-Triggered Safety-Critical Embedded Systems.
In IEEE 17th International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), pages 180–187, 2014.

3. M. Becker, C. Kuznik, and W. Mueller. Virtual Platforms for Model-Based Design
of Dependable Cyber-Physical System Software. In 17th Euromicro Conference on
Digital System Design (DSD), pages 246–253, 2014.

4. C. Bolchini, A. Miele, and D. Sciuto. Fault Models and Injection Strategies in
SystemC Specifications. In 11th EUROMICRO Conference on Digital System De-
sign Architectures, Methods and Tools (DSD), pages 88–95, 2008.

5. V. Bonfiglio, L. Montecchi, F. Rossi, P. Lollini, A. Pataricza, and A. Bondavalli.
Executable models to support automated software fmea. In 2015 IEEE 16th In-
ternational Symposium on High Assurance Systems Engineering, 2015.

6. M. Chaari, W. Ecker, C. Novello, B. A. Tabacaru, and T. Kruse. A model-based
and simulation-assisted fmeda approach for safety-relevant e/e systems. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015.

7. Rasmus Adler et. al. Integration of component fault trees into the UML. In Models
in Software Engineering - Workshops and Symposia at MODELS, 2010.

8. K. Höfig, M. Zeller, and R. Heilmann. ALFRED: A Methodology to Enable Com-
ponent Fault Trees for Layered Architectures. In 41st Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2015.



9. IEEE Computer Society. IEEE 1666-2011 Standard SystemC Language Reference
Manual, 2011.

10. International Electrotechnical Commission (IEC). IEC 61508: Functional safety of
electrical/electronic/programmable electronic safety related systems, 1998.

11. International Organization for Standardization (ISO). ISO 26262: Road vehicles
— Functional safety, 2011.

12. B. Kaiser, P. Liggesmeyer, and O. Mäckel. A new component concept for fault
trees. In Proceedings of the 8th Australian Workshop on Safety Critical Systems
and Software - Volume 33, SCS ’03, pages 37–46, 2003.

13. R. Marinescu, H. Kaijser, M. Mikučionis, C. Seceleanu, H. Lönn, and A. David.
Analyzing Industrial Architectural Models by Simulation and Model-Checking.
Springer International Publishing, 2015.

14. S. Misera, H.T. Vierhaus, and A. Sieber. Fault Injection Techniques and their
Accelerated Simulation in SystemC. In 10th Euromicro Conference on Digital
System Design Architectures, Methods and Tools (DSD), pages 587–595, 2007.

15. J.-H. Oetjens, N. Bannow, and et. al. Safety evaluation of automotive electron-
ics using virtual prototypes: State of the art and research challenges. In 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2014.

16. J. Perez, M. Azkarate-askasua, and A. Perez. Codesign and Simulated Fault Injec-
tion of Safety-Critical Embedded Systems Using SystemC. In European Dependable
Computing Conference (EDCC), pages 221–229, 2010.

17. S. Reiter, M. Pressler, A. Viehl, O. Bringmann, and W. Rosenstiel. Reliability
assessment of safety-relevant automotive systems in a model-based design flow. In
18th Asia and South Pacific Design Automation Conference (ASP-DAC), 2013.

18. S. Reiter, A. Viehl, O. Bringmann, and W. Rosenstiel. Fault injection ecosystem
for assisted safety validation of automotive systems. In 2016 IEEE Int. High Level
Design Validation and Test Workshop (HLDVT), Oct 2016.

19. W. Vesely, F. Goldberg, N. Roberts, and D. Haasl. Fault Tree Handbook. US
Nuclear Regulatory Commission, 1981.

20. R. Weissnegger, M. Schuß, Ch. Kreiner, M. Pistauer, K. Römer, and Ch. Steger.
Seamless Integrated Simulation in Design and Verification Flow for Safety-Critical
Systems. Springer International Publishing, 2016.

21. M. Zeller and K. Höfig. Confetti – component fault tree-based testing. In Luca
Podofillini, Bruno Sudret, Bozidar Stojadinovic, Enrico Zio, and Wolfgang Kröger,
editors, Safety and Reliability of Complex Engineered Systems: Proceedings of the
25th European Safety and Reliability Conference (ESREL), pages 4011–4017, 2015.

22. M. Zeller and K. Höfig. INSiDER: Incorporation of system and safety analysis
models using a dedicated reference model. In 2016 Annual Reliability and Main-
tainability Symposium (RAMS), 2016.


	Verification of Component Fault Trees using Error Effect Simulations
	1 Introduction
	2 Related Work
	3 Methodology
	4 Component Fault Trees
	5 Error Effect Simulation
	6 Verification of CFTs using Error Effect Simulation
	7 Case study
	7.1 Overview
	7.2 CFT-based analysis
	7.3 Simulation-based verification
	7.4 Analyses refinement

	8 Summary


