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Abstract. Facial recognition has become a critical constituent of com-
mon automatic border control gates. Despite many advances in recent
years, face recognition systems remain susceptible to an ever evolving di-
versity of spoofing attacks. It has recently been shown that high-quality
face morphing or splicing can be employed to deceive facial recognition
systems in a border control scenario. Moreover, facial morphs can eas-
ily be produced by means of open source software and with minimal
technical knowledge. The purpose of this work is to quantify the severe-
ness of the problem using a large dataset of morphed face images. We
employ a state-of-the-art face recognition algorithm based on deep con-
volutional neural networks and measure its performance on a dataset
of 7260 high-quality facial morphs with varying blending factor. Using
the Inception-ResNet-v1 architecture we train a deep neural model on 4
million images to obtain a validation rate of 99.96% at 0.04% false accep-
tance rate (FAR) on the original, unmodified images. The same model
fails to repel 1.13% of all morphing attacks, accepting both the impostor
and the document owner. Based on these results, we discuss the observed
weaknesses and possible remedies.

Keywords: face recognition, biometric spoofing, face morphing, deep
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1 Introduction

The detection of biometric counterfeits, commonly known as anti-spoofing, is
a very active field of research. A diversity of techniques has been proposed in
literature for protecting face recognition systems in real authentication scenarios
like border control. However, as shown in recent surveys [4,6], most works have
only considered presentation attacks, neglecting the often fragile face biometrics
enrollment process. In particular, a simple face morphing trick can be applied
so that two different persons can potentially pass through an automated border
control gate with the same electronic machine readable travel document (eM-
RTD). This attack simply consists in submitting for enrollment a facial image



that is obtained from morphing the face of the legitimate document owner (ac-
complice) and the face of a reasonably similar looking impostor. In a successful
attack, the face recognition system positively matches the tampered template
stored in the eMRTD to the live image of the impostor. The authors of [3] orig-
inally presented the possibility of such an attack. However, in that work only
commercial, closed source face recognition systems and a very limited set of test
images were employed. In contrast hereto, the main contribution of this work is
a quantitative estimate of the severeness of the so-called morphing attack (see
Fig. 1 for an example illustration) based on extensive experimental results, us-
ing a large test dataset and an exemplar face recognition method that is both
state-of-the-art and publicly accessible. The employed exemplary methods and
datasets are selected in order to model a sufficiently realistic, yet optimistic
scenario. Herewith, we aim to estimate the lower bounds of the success rate of
morphing attacks against current face recognition methods.

2 Related Work

Intentional manipulation of images and its impact on modern generic image
recognition systems has been addressed in the case of image classification. The
authors of [20] and [12] show how to perform image modifications that are imper-
ceptible to the human eye, and yet drastically change the outputs of the attacked
recognition system. Also unintentional effects produced by the image acquisition
system, like perspective distortion, can pose a problem for face recognition. This
has been addressed in [21] through image de-warping models. The dependency
of recognition performance on image quality in a broader sense has been the
subject of research in several works [1, 8]. The threat of a morphing attack in a
eMRTD scenario using commercial face recognition software was first identified
in [3]. More recent publications [11,15] have addressed this specific problem and
propose methods for both the generation of morphs and for the detection of
manipulation traces in the image.

3 Methods

In this section, we introduce the methods employed for generating our face mor-
phing dataset and describe the face recognition pipeline.

3.1 Face Morphing

Face morphing is usually done by projecting and blending the coordinates and
texture informations of many corresponding image regions [23] from two source
images S1 and S2 into a new synthesized destination image D. These regions
can be generated by an automatic landmark detection followed by a Delaunay
triangulation. One problem with this approach is the occurrence of blending
artifacts, especially in non related regions. Since we only have reliable landmarks
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Fig. 1. Visualization of the morphing process with respect to blending factors. The
images were generated using two identities 191 (top) and 217 (bottom) from the Mul-
tiPIE dataset [16]. A blending factor of 1.0 corresponds to the original, unmanipulated
image, whereas 0.0 represents the case where the image information of the destination
image was entirely replaced by the image data of the source image. All other images
show a linear transformation between these two extremes.

for the facial regions, such unrelated assignments will occur outside the convex
hull of these landmarks. A way to suppress such artifacts could be the manual
retouch of the synthesized image, but this is infeasible for generating a large
amount of examples. To address this problem, we only blend the facial regions Ŝ1

and Ŝ2 that lie within the convex hulls of our landmarks. To obtain these regions
we first detect 68 landmarks [9] using the Dlib library [10] within S1 and S2,
followed by a Delaunay triangulation. We next determine corresponding triangles
to compute the projections. To obtain our morphing image we first set D = S2.
We next blend the geometry and texture informations of eyes, nose, and mouth of
Ŝ1 and Ŝ2. By adopting the outer shape of Ŝ2 we obtain the destination image
D̂. At this moment D̂ consists only of the morphed facial region. Finally, we
blend D̂ with D using the Poisson blending of [14]. An exemplary face morphing
is depicted in Figure 1. One can see that the outer shape of S2 will be preserved,
while the geometry and texture information of the relevant facial regions of both
input images will be blended.

3.2 Face Recognition Methods

Face Registration. In order to improve performance of facial recognition sys-
tems a number of preprocessing steps are applied to the input images, including
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Fig. 2. Input image preprocessing using the deep cascaded multi-task framework [24].

face detection and alignment. In our work, we use the recently proposed deep
cascaded multi-task framework for face detection and alignment [24]. Its hierar-
chical architecture with three stages of deep convolutional networks predicts face
and landmark location in a coarse-to-fine manner. The resulting face bounding
box is padded by a margin of 16 pixels on each side and finally resized to a
160 × 160 pixel square in order to fit the input of our neural network (Fig. 2).
The input image size translates to about 90 pixels interpupillary distance, which
complies with the ICAO recommendations1 for eMRTDs and corresponds to the
actual conditions of a real morphing attack.

Feature Extraction. We have tested several network architectures for face
verification including the works of Parkhi et al. [13] and Schroff et al. [18]. The
best performing network is based on the recently purposed Inception-ResNet-
v1 architecture [19]. Its topology includes inception modules as well as residual
connections and achieves a state-of-the-art accuracy of 99.3%±0.04 on the chal-
lenging LFW benchmark dataset [7]. We compute the face embeddings using a
tensorflow implementation [17] of the FaceNet architecture introduced by Schroff
et al. [18]. Instead of a pure inception model, as described in the original pa-
per, [17] employs the Inception-ResNet-v1 network architecture. Furthermore,
the network is trained as a classifier using the Center Loss approach [22] instead
of Triplet Loss. We extract the feature vectors by tapping the last fully con-
nected layer before the softmax. The output of this layer is a 1792-dimensional
L2-normalized vector. For decision making, we threshold the Euclidean distance
between pairs of feature vectors computed by the neural network.

1 ICAO, Machine Readable Travel Documents, Seventh Edition 2015, Part 9: Deploy-
ment of Biometric Identification and Electronic Storage of Data in eMRTDs.



4 Experiments

4.1 Datasets

Training. In order to train the deep neural network from scratch, we use the
MS-Celeb-1M dataset which contains the top 100k subjects from the 1M most
popular celebrities list [5]. There are approximately 100 images of each celebrity,
resulting in about 10M images in total. Due to the vast number of automatically
acquired data some images suffer from mislabeling. Therefore, only a subset
of them was used for training. The dataset was cleaned up by computing the
distance between a given image embedding and its class center. Keeping only
75% of the images that are closest to its class center reduces the dataset size to
about 4M images divided into 51k classes.

Morphing. The face images used for investigating the impact of a morphing
attack on our system come from the well known MultiPIE [16] dataset. The
image data was collected under controlled conditions, similar to those prescribed
for eMRTDs. MultiPIE contains images of 337 subjects from four different photo
sessions, including variations in viewpoint, illumination and expression. In this
work, we consider only frontal views and discard coarse illumination changes. To
create our morphing dataset we only use images from session one and restrict
ourselves to subjects that occur in at least one more session. Furthermore, we
only consider subjects not wearing glasses and those belonging to the same
gender, in order to avoid unnatural image artifacts. In total, we create 3630 pairs
with 22 morphed images each. These images are used for enrollment purposes
only, whereas images of session two to four are used for verification.

4.2 Data Preparation

We subdivide the dataset into positive and negative pairs of identities and use
this structure for all experiments throughout the study. The positive pairs consist
of the morphed image and the accomplice image whereas the negative pairs
contain the impostor and the morphed image. Given subjects from session one
of the MultiPIE dataset, we select two images Ia and Ib such that

‖φ(Ia)− φ(Ib)‖2 > t (1)

where φ is an embedding of facial features. By this constraint, we make sure
that the recognition algorithm is able to discern the individuals. Next, we merge
those two images using the method described in the previous section and obtain
a morphed image Iab

morph(Ia, Ib)→ Iab (2)

During the evaluation process, the generated image Iab is matched against im-
ages from session two to four, provided that the respective individual is available
in that session

‖φ(Iab)− φ(Ix)‖2 < t, where x 6= a ∧ x 6= b (3)



so that the images used for producing the morphs are not being used in the eval-
uation process. For any given identity pair, we generate two kinds of morphing
images Iab and Iba by swapping the source and destination identities. Following
the described procedure, we generate 17992 image pairs for both positive and
negative class, resulting in a total number of 35984 pairs.

4.3 Evaluation Procedure

The evaluation procedure starts by combining identity pairs that share a common
morphed image into a triplet. We generate a total number of 44546 triplets using
positive and negative identity pairs. The morphed image acts as reference and
the accomplice or impostor image as query. For the purpose of this study we
define the morphing attack as follows:

Definition 1. Let Ia be the accomplice image and Ib the impostor image. Let
t be some optimal threshold and φ an embedding of facial features. A morphing
attack using a tempered template Iab is successful if and only if

‖φ(Iab)− φ(Ib)‖2 < t ∧ ‖φ(Iab)− φ(Ia)‖2 < t (4)

We only consider triplets of images consisting of the morphed image Iab, the
impostor image Ia, and the accomplice image Ib. From that, we derive four
possible outcome cases, as shown in Figure 3.

Case 1. The first case represents a successful morphing attack where both
the accomplice and the impostor succeed and get accepted by the system. We
also consider cases where only one of the individuals gets accepted, either the
accomplice or the impostor.

Case 2. The second case reflects a correct operation mode of a face recognition
system where the accomplice gets accepted and the impostor is rejected.

Case 3. Case three represents the reverse situation where the impostor gets
accepted and the accomplice is rejected. This case could also be seen as a suc-
cessful morphing attack, but in this work we restrict ourselves only to Case 1 as
defined in 1.

Case 4. In the last, fourth case, both the accomplice and impostor are rejected.
In this situation, a total failure of an morphing attack is simulated.
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Fig. 3. Four possible outcome cases: a) Successful morphing attack. b) Correct verifi-
cation. c) Accomplice rejection. d) Accomplice and impostor rejected.

4.4 Analysis of Variance

The success of a morphing attack is closely related to the discriminatory abilities
of the employed classifier. By this token, a successful attack could be regarded as
a misclassification error related to poor class separability in the feature space. In
our case, the discriminant function was learned by the feature extracting neural
network which encodes facial features and maps them to a new data distribution.
We perform an analysis of variance in order to test for discriminatory power of
features computed by our neural network. The goal is to determine at which
blending factor a misclassification is most likely to occur. The analysis of variance
(ANOVA) within and between the identity groups was conducted for positive as
well as negative pairs of images by computing a test statistic. With this criterion,
the quality of separability of classes in the feature space is measured. We perform
a one-way ANOVA on the original images by using the Euclidean distance as a
factor.

5 Results

5.1 Threshold Selection

Using the original images from the MultiPIE dataset, we compute the Euclidean
distances between mated and unmated pairs of facial features and select a thresh-
old at 0.1% FAR, as commonly prescribed for border control applications [2].
The optimal baseline threshold of 0.78 was selected using a 8-fold cross-validation
procedure with a verification rate of 99.96% at 0.04% FAR.

5.2 Evaluation of Cases

Case 1: Successful Morphing Attack. As shown in Figure 4 the optimal
blending factor from the perspective of a potential impostor is 0.4 for our setup.
The plot also shows the maximum percentage of successful attacks on our system
which amounts to 1.13% (Tab. 1). The low success rate is due to an early rejection
of the accomplice while the blending factor increases and not due to rejection of
the impostor.
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Fig. 4. Case 1: Successful morphing attack. The peak of 1.13% is reached at a blending
factor of 0.4.

Table 1. Case 1: Successful attack rates for different blending factors. A factor of 1.0
corresponds to the original image and a factor of 0.0 to a complete replacement of the
original face region. In this case both the accomplice and the impostor are accepted by
the system.

Blending Factor Acceptance Rate [%] Threshold

1.0 0.03 % 0.78
0.9 0.09 % 0.78
0.8 0.17 % 0.78
0.7 0.27 % 0.78
0.6 0.51 % 0.78
0.5 0.98 % 0.78
0.4 1.13 % 0.78
0.3 0.84 % 0.78
0.2 0.49 % 0.78
0.1 0.33 % 0.78
0.0 0.16 % 0.78

Case 2: Correct Verification. This case reflects the correct operation mode
of a face recognition system. The performance of the system drops drastically
for blending factors less than 0.7 (Fig. 5). The impostor rejection rate reaches
its maximum of 29.86% at a blending factor of 0.0 (Tab. 2). This discrepancy is
due to the fact that the accomplice fails to pass the verification process as we
already stated in the previous paragraph. This is also the main reason for the
low verification rate which, at a blending factor of 0.5, amounts to only 34.66%.
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Fig. 5. Case 2: Correct verification rates for different blending factors. A factor of
1.0 corresponds to the original image and a factor of 0.0 to a complete replacement
of the original face region. The main (blue) curve represents the correct verification
case where the impostor gets rejected and the accomplice gets accepted. The impostor
rejection rate was plotted for comparison.

Table 2. Case 2: The table shows accomplice acceptance rates with respect to the
blending factor. A factor of 1.0 corresponds to the original image and a factor of 0.0
to a complete replacement of the original face region. Here the accomplice is accepted
and the impostor is rejected.

Blending Factor Acceptance / Rejection Rate [%] Threshold

1.0 99.97 % 0.78
0.9 99.89 % 0.78
0.8 99.49 % 0.78
0.7 96.14 % 0.78
0.6 73.50 % 0.78
0.5 34.66 % 0.78
0.4 9.76 % 0.78
0.3 1.85 % 0.78
0.2 0.41 % 0.78
0.1 0.12 % 0.78
0.0 0.03 % 0.78

Case 3: Accomplice Rejection. In this case the accomplice gets rejected by
the recognition system while the impostor gets accepted. There is almost no
rejection of the accomplice down to a blending factor of 0.7 (Fig. 6). However,
the system fails to accept most of the accomplices at a blending factor of 0.5.
This is due to manipulations introduced by our morphing tool which was to
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Fig. 6. Case 3: Accomplice rejection rates for different blending factors. A factor of 1.0
corresponds to the original image and a factor of 0.0 to a complete replacement of the
original face region. The impostor is accepted and the accomplice is rejected in this
case. The main curve corresponding to Case 3 is depicted in blue.

strong for the accomplice to get accepted. Up to this point there were also no
impostor images that got accepted by the system.

Table 3. Case 3: The table shows impostor acceptance rates with respect to the blend-
ing factor. A factor of 1.0 corresponds to the original image and a factor of 0.0 to a
complete replacement of the original face region. In this case the impostor is accepted
and the accomplice is rejected.

Blending Factor Acceptance / Rejection Rate [%] Threshold

1.0 0.0 % 0.78
0.9 0.0 % 0.78
0.8 0.0 % 0.78
0.7 0.0 % 0.78
0.6 0.0 % 0.78
0.5 0.27 % 0.78
0.4 2.03 % 0.78
0.3 7.90 % 0.78
0.2 16.84 % 0.78
0.1 25.05 % 0.78
0.0 29.86 % 0.78

Case 4: Complete Rejection. This case represents the complete opposite to
the morphing attack, where both the accomplice and the impostor get rejected.
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Fig. 7. Case 4: Complete rejection rates for different blending factors. A factor of 1.0
corresponds to the original image and a factor of 0.0 to a complete replacement of the
original face region. Both the accomplice and the impostor are rejected in this case.
The drop in the main curve (blue) is attributed to the increasing impostor acceptance
rates depicted in orange.

The maximum rejection rate has its peak of about 90% at a blending factor of
0.3 (Tab. 4). After that, it drops to about 70% at 0.0. The drop is due to the
increasing impostor acceptance rate, which is also shown in Figure 7.

Table 4. Case 4: The table shows rejection rates with respect to the blending factor.
A factor of 1.0 corresponds to the original image and a factor of 0.0 to a complete re-
placement of the original face region. In this case both the impostor and the accomplice
are rejected.

Blending Factor Rejection Rate [%] Threshold

1.0 0.0 % 0.78
0.9 0.02 % 0.78
0.8 0.34 % 0.78
0.7 3.59 % 0.78
0.6 25.99 % 0.78
0.5 64.08 % 0.78
0.4 87.08 % 0.78
0.3 89.40 % 0.78
0.2 82.27 % 0.78
0.1 74.50 % 0.78
0.0 69.95 % 0.78



5.3 Examples of Successful Attacks

In Figure 8 three successful morphing attacks are shown. We only consider face
morphs with a blending factor of 0.5 for this illustration and select individuals
from three different ethnic groups. Our experiments revealed that about 75% of
successful attacks were attributed to individuals of Asian descent. The reason
for this situation may lay in our training dataset that contains mainly people of
Caucasian descent. As a consequence, the model used for face recognition might
be biased towards discerning Caucasian more accurately than Asians.

Fig. 8. Face images from three successful morphing attacks with a blending factor of
0.5. Accomplice image (left), morphed image (middle), impostor image (right).

5.4 Analysis of Variance

The null hypothesis is rejected if the F-value calculated from the data is greater
than the critical value of the F-distribution for some desired false-rejection prob-
ability. The F-test reveals that for a blending factor of 1.0, the variance within
positive and negative identity pairs is much lower than between the pairs. How-
ever, the situation changes with increasing blending factors. For a factor of 0.5,
we fail to reject the null hypothesis with a significance level of 0.01 (Fig. 9).
This means that starting from a blending factor of 0.5, the two groups con-
taining positive and negative identity pairs cannot be separated anymore. A
misclassification is most likely to occur at a blending factor of 0.4. The results
are consistent with the evaluation presented in Section 5.1.
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Fig. 9. F-values for increasing blending factors and critical F-values for two different
significance levels. For values above 6.635, the null hypothesis that all group means are
equal can be rejected with a significance level of 0.01.

Table 5. ANOVA test for an increasing blending factor. The lowest value is measured
at a blending factor of 0.4. This is consistent with the result obtained for case 1 (Fig.
4).

Blending factor

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

F (1,∞) 47.1 41.6 31.2 18.4 8.1 2.3 0.2 0.3 1.6 3.3 4.9

6 Conclusions

We present the results of a simulated morphing attack on a state-of-the-art
face recognition system using a large dataset with varying blending factor. By
defining a successful morphing attack as a situation where both accomplice and
impostor get accepted, we state that the main reason for the low success rate
of the attack is the rejection of the accomplice. This is a direct consequence of
the compactness of identity clusters which could be attributed to good feature
representation delivered by the convolutional neural network. CNNs account for
less variability within the identity groups than previous methods, thus allowing
for tighter thresholds and making the morphing attack less significant. However,
poor image quality and low resolution can have a negative impact on cluster
compactness. This may open the door for potential morphing attacks, as less
compact identity groups require wider baseline thresholds.

In order to improve the robustness against morphing attacks, we plan to
analyze facial features in more detail using soft biometrics and face symmetry.
This includes the analysis of regions affected by the blending operation, e.g.



eyes and mouth as well as regions that were not manipulated, e.g. hair, ears
and forehead. Face shape analysis is another factor that could help to reduce the
number of successful attacks. The currently used registration method normalizes
the original face shape, thus suppressing discriminative information that could
help to repel the attack. We would like to investigate these presumptions in
future work.
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