
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) / 

This is a self-archiving document (accepted version): 

Diese Version ist verfügbar / This version is available on: 

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-864925 

Alexander Krause, Thomas Kissinger, Dirk Habich, Hannes Voigt, Wolfgang Lehner 

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 
on Multiprocessor Systems 

Erstveröffentlichung in / First published in: 

European Conference on Parallel Processing. Santiago de Compostela, 28. August – 1. 

September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

DOI: https://doi.org/10.1007/978-3-319-64203-1 11 

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-853467


Partitioning Strategy Selection for In-Memory
Graph Pattern Matching on Multiprocessor

Systems

Alexander Krause(B), Thomas Kissinger(B), Dirk Habich(B), Hannes Voigt,
and Wolfgang Lehner

Database Systems Group, Technische Universität Dresden, Dresden, Germany
{alexander.krause,Thomas.Kissinger,dirk.habich,hannes.voigt,

wolfgang.lehner}@tu-dresden.de

Abstract. Pattern matching on large graphs is the foundation for a
variety of application domains. The continuously increasing size of the
underlying graphs requires highly parallel in-memory graph processing
engines that need to consider non-uniform memory access (NUMA) and
concurrency issues to scale up on modern multiprocessor systems. To
tackle these aspects, a fine-grained graph partitioning becomes increas-
ingly important. Hence, we present a classification of graph partition-
ing strategies and evaluate representative algorithms on medium and
large-scale NUMA systems in this paper. As a scalable pattern matching
processing infrastructure, we leverage a data-oriented architecture that
preserves data locality and minimizes concurrency-related bottlenecks on
NUMA systems. Our in-depth evaluation reveals that the optimal par-
titioning strategy depends on a variety of factors and consequently, we
derive a set of indicators for selecting the optimal partitioning strategy
suitable for a given graph and workload.

1 Introduction

Recognizing comprehensive patterns on large graph-structured data is a prereq-
uisite for a variety of application domains such as fraud detection [11], biomolec-
ular engineering [8], scientific computing [13], or social network analytics [9]. Due 
to the ever-growing size and complexity of the patterns and underlying graphs, 
pattern matching algorithms need to leverage an increasing amount of avail-able 
compute resources in parallel to deliver results with an acceptable latency. Since 
modern hardware systems feature main memory capacities of several ter-abytes, 
state-of-the-art graph processing systems (e.g., Ligra [12], Galois [7] or,  Green-
Marl [4]) tend to store and process graphs entirely in main memory, which 
significantly improves scalability, because hardware threads are not limited by 
disk accesses anymore. To reach such high memory capacities and to provide 
enough bandwidth for the compute cores, modern servers contain an increasing 
number of memory domains resulting in a non-uniform memory access (NUMA). 
For instance, on a multiprocessor system each processor maintains at least one

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

1 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



separate memory domain that is accessible for other processors via a communi-
cation network. However, efficient data processing on those systems faces several
issues such as the increased latency and the decreased bandwidth when accessing
remote memory domains. To further scale up on those NUMA systems, pattern
matching on graphs needs to carefully consider these issues as well as the limited
scalability of synchronization primitives such as atomic instructions [18].

To scale up pattern matching on those NUMA systems, we employ a fine-
grained data-oriented architecture (DORA) in this paper, which turned out to
exhibit a superior scalability behavior on large-scale NUMA systems as shown
by Pandis et al. [10] and Kissinger et al. [6]. This architecture is characterized
by implicitly partitioning data into small partitions that are pinned to a NUMA
node to preserve a local memory access. In contrast to the bulk synchronous
parallel (BSP) processing model [15], which is often used for graph processing,
the data partitions are processed by local worker threads that communicate
asynchronously via a high-throughput message passing layer. Hence, the overall
performance of the pattern matching mainly depends on the graph partitioning.

In this paper, we systematically evaluate the influence of different graph par-
titioning strategies on the performance of pattern matching using a data-oriented
architecture. Therefore, we introduce a novel classification of graph partitioning
strategies and evaluate performance aspects of representative partitioning algo-
rithms for each class. Our exhaustive evaluation on medium (4 sockets) and
large-scale (64 sockets) NUMA systems reveals that the selection of the appro-
priate partitioning strategy depends on a multitude of factors such as graph
characteristics, query pattern, the number of partitions, and worker threads.
Thus, we argue that there is no one-size-fits-all strategy for partitioning graphs
within a NUMA system and identify key features that shall guide partitioning
strategy selection process.

Contributions. Our contributions are summarized as follows:

(1) We present a graph pattern matching processing model that is based on a
fine-grained data-oriented architecture that is designed to operate on large
scale-up NUMA systems (Sect. 2).

(2) We provide a classification of graph partitioning strategies that arranges
the individual strategies based on a partitioning criterion and a balancing
criterion. Moreover, we describe instances of the respective classes that we
consider for our evaluations (Sect. 3).

(3) We exhaustively evaluate our identified partitioning strategies for different
graphs and patterns on a medium and large-scale NUMA system and rea-
son about the results. Our investigations show that the optimal partition
strategy depends on a variety of factors (Sect. 4).

(4) Based on our evaluations, we derive a set of indicators that should be consid-
ered in the process of selecting the optimal partitioning strategy for pattern
matching on graphs (Sect. 4.3).

Finally, we will give an overview of the related work (Sect. 5) and conclude the
paper (Sect. 6).

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

2 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



2 Graph Pattern Matching on NUMA Systems

Within this paper, we focus on edge-labeled multigraphs as a general and widely
employed graph data model [8,9,11]. An edge-labeled multigraph G(V,E, ρ,Σ, λ)
consists of a set of vertices V , a set of edges E, an incidence function ρ : E →
V × V , and a labeling function λ : E → Σ that assigns a label to each edge.
Hence, edge-labeled multigraphs allow any number of labeled edges between a
pair of vertices. A prominent example for edge-labeled multigraphs is RDF [3].

Pattern matching is a declarative topology-based querying mechanism where
the query is given as a graph-shaped pattern and the result is a set of match-
ing subgraphs [14]. For instance, the query pattern depicted on the left hand
side of Fig. 1 searches for all vertices that have two outgoing edges resulting in
three matching subgraphs for the given underlying graph. A well-studied mecha-
nism for expressing such query patterns are conjunctive queries (CQ) [17], which
decompose the pattern into a set of edge predicates each consisting of a pair of
vertices and an edge label. Assuming a wildcard label, the exemplary query
pattern is decomposed into the conjunctive query {( 1V1, ∗, V2), ( 11V1, ∗, V3)}.

Fig. 1. Scalable graph pattern matching based on a data-oriented architecture [6,10].

To scale up graph pattern matching on large multiprocessor systems, we
employ an approach that is based on a data-oriented architecture (DORA) [10],
which is known for its superior scalability on NUMA systems [6]. As illustrated
on the right hand side of Fig. 1, the graph is implicitly split into a set of disjoint
partitions. Each partition is placed in the local memory of a specific processor
that runs workers on its local hardware threads. These workers are limited to
operate exclusively on local graph partitions and leverage a high-throughput
message passing layer for the inevitable communication. Only one worker is
allowed to access a partition at a time to avoid costly fine-grained lockings
of the data structures. Consequently, the number of workers is limited to the
available local hardware threads and the number of local partitions can be chosen
arbitrarily. An integral part of the message passing layer is the routing table,
which keeps track of the partitioning and thus, maps the partitioning criteria (cf.,
Sect. 3) to the corresponding partition using a hash table. The overall goal of this

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

3 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



architecture is (1) to restrict the access of threads to data structures in the local
main memory, (2) to reduce the necessity of locks or atomic instructions, and
(3) to hide remote memory latency using the high-throughput message passing
layer.

To actually process conjunctive queries on such a data-oriented architecture,
the edge predicates – CQs are consisting of – are evaluated one after another.
Every time an edge predicate matches within a partition, a new message is
generated by the worker thread to evaluate the successive edge predicate unless
the predicate was the last one of the CQ. These messages are either sent to
a single partition (unicast) or to all partitions (broadcast) depending on the
edge predicate and partitioning criterion. Due to the topology-driven nature of
pattern matching and the comprehensive structure of graphs, the appropriate
selection of a partitioning strategy for a specific combination of query pattern and
underlying graph is crucial for such an architecture as we will show throughout
this paper.

3 Graph Partitioning Strategies

In this section, we provide a classification of known graph partitioning strategies
and detail on our heuristic implementations of the individual strategies that we
consider for further evaluation. We restrict our considerations to one representa-
tive algorithm per partitioning strategy, where partitioning strategies generate a
disjoint set of graph partitions and leave redundancy for future work. As shown
in Fig. 2, our classification spans two dimensions:

Balancing Criterion

Pa
r

on
 C

rit
er

io
n

Gr
an

ul
ar

ity

Fig. 2. Classification of graph partitioning strategies and representative algorithms.

(1) The partitioning criterion that denominates the basic unit of the graph a
partitioning strategy is operating on.

(2) The balancing criterion describing the unit of the graph that is balanced to
achieve an equal utilization of the parallel compute resources.

For both dimensions those units are either fine-grained edges (E), vertices (V),
or coarse-grained components (C) naming a connected set of vertices. Hence, a
partitioning strategy is a combination of a partitioning criterion and a balancing
criterion. Partitioning a graph at a specific granularity implies that more coarse-
grained balancing criteria are not applicable (i.e., E/V, E/C, and V/C strategy).

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

4 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



To the best of our knowledge, there are no known viable representatives for the
C/E and C/C strategy. In the following, we detail on the feasible strategies and
describe our heuristic implementations that we use for our evaluation:

E/E Strategy. This partitioning strategy works on the most fine-grained level.
We implemented this strategy using the round-robin (RR) algorithm, which
evenly distributes edges to partitions in a lightweight fashion. This strategy
is likely to distribute many or all outgoing edges of one vertex to multiple
partitions. This decomposition leads to the necessity of broadcasts for the
evaluation of all edge predicates.

V/V Strategy. This strategy partitions a graph by its vertices and balances
the amount of vertices per partition. Hence, our round-robin vertices (RRV)
algorithm is a specific implementation of this strategy and distributes every
vertex and all of its outgoing edges to the partitions using the lightweight
round-robin method. The advantage with regard to our pattern matching
processing model (cf., Sect. 2) is that all outgoing edges of a vertex belong to
a single partition being listed in the routing table. Thus, each edge predicate
with a known source vertex can be routed to a single partition (unicast).

V/E Strategy. Similar to the RRV strategy, the graph is partitioned by its
vertices. However, this partitioning strategy balances the number of edges. We
consider two specific algorithms as implementation of this strategy: balanced
edges (BE) and distributed skew (DS). Both algorithms sort the vertices by the
number of outgoing edges in a descending order. The BE algorithm iterates
over this sorted list and assigns each vertex and all of its outgoing edges
to the currently smallest partition to greedily balance the edges across the
partitions. Thus, all outgoing edges of a vertex belong to the same partition,
which once again results in a unicast for edge predicates with a known source
vertex. The DS algorithm is a state-of-the-art approximation for handling
skewed data in distributed joins [2] and extends the BE algorithm. To relieve
highly connected vertices, DS equally distributes the edges of vertices that
have significantly more outgoing edges compared to the average vertex across
all partitions. Nevertheless, edge predicates aiming at those source vertices
require a broadcast to all partitions. Because most real world graphs exhibit
a non-uniform edge per vertex distribution, all vertex-oriented partitioning
strategies (RRV, BE and DS) lead to different partitioning results.

C/V Strategy. The goal of a component-oriented strategy is to preserve locality
by storing strongly connected vertices within the same partition. We leverage
the well-known state-of-the-art multilevel k-Way algorithm as representative,
which tries to balance the vertices among the partitions. In this paper, we
use the k-Way implementation from the METIS library 5.1 [5]. Similar to the
vertex-oriented strategies, we store all outgoing edges of a vertex in the same
partition to avoid broadcasts during the pattern matching process.

4 Experimental Evaluation

To investigate the influence of the partitioning strategies (c.f, Sect. 3) on the
pattern matching performance, we conducted an exhaustive evaluation on a

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

5 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



medium and large-scale multiprocessor system. We use four test data graphs,
each representing an individual application domain, that are generated with the
graph benchmark framework gMark [1]. Additionally, we defined two conjunctive
queries as depicted in Fig. 3: (1) the V query shapes a V with five vertices and
four edges and (2) the Quad query is a rectangle, which consists of four vertices
and four edges. For both queries, four edge predicate evaluations are necessary.
Based on the query semantics, the evaluation of the edge predicates happens as
follows:

A B

E D

C

Predicate 1
(Broadcast)

Predicate 4
(Broadcast)

 

  

(a) V Query

A D

B C

Predicate 1
(Broadcast)

Predicate 3
(Broadcast)

Pr
ed

ic
at

e
2

(U
ni

ca
st

)

Predicate
4

(U
nicast)

A D

B C

(b) Quad Query (c) Graph meta information

Fig. 3. Query patterns and test graphs for the medium-scale system.

V Query. The first edge predicate evaluation is broadcasted to all partitions,
because only the edge label is known and not the source vertex. The inter-
mediate result is a set of end vertices, which are used as source vertices for
the second request. Depending on the partitioning strategy, the second edge
request is evaluated using either unicast or broadcast messages (cf., Sect. 3).
The intermediate result is a set of destination vertices, which are destina-
tion vertices for the third edge predicate. Hence, the third request needs to
be broadcasted to all partitions, because the source vertex is unknown. The
same applies for the fourth edge predicate evaluation.

Quad Query. The edge predicate evaluation of the Quad query is similar to
the one of the V query with the difference that the evaluation of the fourth
edge predicate depends on the partitioning strategy. Thus, this predicate can
mostly be evaluated without the need of a broadcast.

As the edge predicate evaluation of our two queries suggests, pattern matching
is a combination of unicasts and broadcasts within a partitioned environment.
On the one hand, broadcasts distribute the evaluation of edge predicates to
all partitions favoring edge-balanced partitions for an efficient execution. On
the other hand, unicast messages assign edge predicate evaluations to single
partitions, which – in contrast – favors vertex-balanced partitions.

For all of our experiments, we loaded the graph-under-test into main memory,
partitioned it, and evenly distributed the partitions across the sockets and exe-
cuted both pattern queries for all partitioning strategies and all possible system

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

6 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



configurations (SCs). In our case a system configuration denominates a combi-
nation of the active workers and the total number of partitions. We repeated
each experiment 20 times and calculated the average over all runs.

4.1 Evaluation on a Medium-Scale Multiprocessor System

Our medium-scale multiprocessor system consists of 4 sockets each equipped
with an Intel Xeon CPU E7-4830 – resulting in 32 physical cores and 64 hard-
ware threads – and 128 GB of main memory. Because of the possible size of
intermediate results during the pattern matching process, it is advisable to have
sufficient main memory, even if the stored graphs size is rather small, compared
to the total amount of memory. For this system, we use the graphs with the
characteristics listed in Fig. 3(c).

Partitioning Results. Figure 4 shows an overview of partitioning results for
the different strategies and our test graphs. Since we have 64 hardware threads,
we split the graphs into 64 partitions. The plots show the distribution of vertices
and edges over the 64 partitions using box plots. From these plots and our
experiments with a varying number of partitions, we can derive the following
observations:

(a) Vertex distribution. (b) Edge distribution.

Fig. 4. Partitioning results for 64 partitions.

(1) The partitioning and balancing criteria of the respective strategies are ful-
filled independently of the graphs. For instance, our round-robin vertices
(RRV) algorithm partitions the graphs by vertices and ideally balances the
vertices among the 64 partitions, i.e., the vertices are evenly distributed over
the partitions as depicted in Fig. 4(a). The same applies for balanced edges
(BE) and distributed skew (DS), which perfectly balance the edges among
the partitions, as shown in Fig. 4(b).

(2) Depending on the strategy, balancing is done either by vertices or edges. This
can lead to an imbalance on the non-balancing criterion depending on the
underlying graph. For instance, BE and DS balance the partitions on edges.

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

7 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



However, there are few partitions with a much higher number of vertices than
the others (illustrated as single dots in Fig. 4(a)). These outliers depend on
the graph data. For DS outlier partitions exist for Uniprot and Social, but
not for Biblio and Shop. The same effect is observable for RRV, however the
imbalance on the edges over the partitions is not as remarkable.

(3) The k-Way algorithm partitions graphs by components and balances the
vertices. On the one hand, this leads to an even distribution of the vertices
over the partitions for our test graphs as shown in Fig. 4(a). This potentially
leads to an imbalanced number of edges per partition and this imbalance is
very different for the four test graphs, as visible in Fig. 4(b).

(4) The E/E strategy performs worst. The round-robin distribution of the edges
among all partitions leads to the necessity of broadcasts during all edge
predicate evaluations, which massively inhibits the system. Therefore, we
omit the E/E results henceforward.

To summarize, each partitioning strategy is able to successfully maintain its
respective balancing criterion while partitioning the graph into the considered
number of partitions. However, the quality of the result is different for each
case. Depending on the graph, there are partitions that vary greatly from the
majority.

Number of Partitions and Workers. If we compare the partitioning results
of Fig. 4 for the Biblio graph, we find that the V/V strategy (RRV) achieves
the best partitioning result in terms of balanced partitions for both vertices and
edges. Generally, such partitioning is very beneficial for our pattern matching.

In the first set of experiments, we use that setting to investigate the influ-
ence of the system configuration on the pattern matching performance for the
V query. Thus, we varied the number of active workers between 8 and 64 and
used 8 to 256 partitions. The heat map from Fig. 5 shows the slowdown factors
compared to the optimal configuration. The optimal configuration uses 32 par-
titions and 32 workers. Generally, the pattern matching scales well for physical
hardware threads, which is indicated by the coloring trend from orange to green

8 16 32 64
8 2.46 2.11 2.04 3.02

16 2.31 1.38 1.01 1.49
32 2.30 1.46 1.00 1.17
64 2.36 1.23 1.02 1.35

128 2.59 1.40 1.16 1.44
256 2.99 1.72 1.26 1.52

Pa
r

on
s

Worker

Fig. 5. System configuration heat map
for RRV. V query on Biblio graph.
(Color figure online)

Fig. 6. Messages per partitioning algo-
rithm. V query on Biblio graph.

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

8 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



between the columns for 8 and 32 workers. In this case, 64 workers are not ben-
eficial, because the V query employs two broadcasting requests at the end and
the hyper-threads do not provide as much performance as their physical siblings.

Partitioning Strategies. After examining the query performance for a sin-
gle graph partitioning strategy, we conducted the same experiments with the
remaining strategies to show the influence of the different partitioning strategies
in detail. The resulting heat maps are depicted in Fig. 7. From these heat maps,
we derive the following three facts:

(1) The V/E strategy, represented by the BE and DS algorithms, performs
comparatively bad. This happens because the query massively hits the ver-
tex outlier partition, which can be seen in Fig. 4(a). Hence, this partition
becomes a bottleneck for the second edge predicate of the V query.

(2) The k-Way partitioning results in a better query performance and utilizes
the whole system with its optimal system configuration being 64 partitions
by 64 workers. The advantage of k-Way is the partitioning and balancing of
components. For the Biblio graph this results in even distribution of vertices
and an almost even distribution of edges among the partitions. Furthermore,
connected vertices are partitioned together, which is not necessarily the case
for RRV as illustrated in Fig. 6. For the k-Way partitioning, the system cre-
ates mostly socket local messages and only a few remote messages, whereas
the V/V strategy results in many remote messages as connected vertices are
distributed among partitions on remote sockets.

From these results, we can conclude that the C/V partitioning strategy results
in partition population that allows the system to scale up to its full potential.

8 16 32 64
8 3.39 3.36 3.36 5.18

16 3.41 1.98 1.68 2.54
32 3.48 1.95 1.04 1.48
64 3.34 2.02 1.09 1.00

128 3.54 1.98 1.07 1.09
256 3.91 2.18 1.20 1.13

Worker

Pa
r

on
s

(a) C/C: k-Way

8 16 32 64
8 4.15 3.56 3.44 5.10

16 3.90 2.33 1.71 2.52
32 3.88 2.46 1.69 1.98
64 3.98 2.08 1.73 2.27

128 4.38 2.35 1.96 2.44
256 5.04 2.90 2.13 2.56

Worker

Pa
r

on
s

(b) V/V: RRV

8 16 32 64
8 16.13 16.43 16.61 25.77

16 16.02 16.43 16.30 24.79
32 15.98 16.48 15.77 24.88
64 15.36 15.86 15.61 23.91

128 16.93 15.80 15.70 23.79
256 16.14 15.95 15.59 24.21

Pa
r

on
s

Worker

(c) V/E: BE

8 16 32 64
8 15.86 16.20 16.27 24.43

16 15.45 16.68 16.25 24.89
32 15.55 15.96 15.95 24.57
64 15.32 15.95 15.41 23.55

128 15.75 15.68 16.07 23.96
256 15.71 15.86 16.20 23.34

Worker

Pa
r

on
s

(d) V/E: DS

Fig. 7. System configuration heat map. V query on Biblio graph. Color shadings rela-
tive to the global optimum (k-Way 64/64). (Color figure online)

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

9 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



Varying Graphs. After thoroughly examining the influences of different parti-
tioning strategies on one graph, we conducted the same experiments for all other
graphs from Fig. 3(c). Figure 8 presents the best system configurations per par-
titioning strategy and highlights the overall optimum. We showed that the C/C
strategy performs best for the V query on the Biblio graph by utilizing the whole
system and therefore should be used as the best strategy. However, when query-
ing the Shop graph with a k-Way partitioning, the query performance drops by
a factor of 2.3 while employing 32/32 as its optimal system configuration. The
slowdown can be explained by the massive imbalance of edges within the par-
titions of k-Way as shown in Fig. 4(b). The other strategies show well balanced
edges per partition, therefore all of them result in equal query performance. The
same holds for the Social graph. The Uniprot graph is special in terms of the
intermediate results, which are shown in Fig. 11. Compared to the Biblio graph,
the V query produces a huge number of broadcasts for the Uniprot graph in the
third edge predicate (c.f. Fig. 3(a)), which inhibts the system from scaling well,
and therefore yields better performance for less workers. We conclude that the
behavior of the query is strongly tied to the underlying graph.

Varying Queries. The previous paragraph concluded our test series for the
V query. Now we want to show the performance implications of all considered
influence factors for a second query type, namely the Quad query from Fig. 3(b).
The results for all system configurations, graphs and partitioning strategies are
shown in the heat maps of Figs. 9 and 10. The optimal configurations are now
always tied to 32 Workers with a varying number of partitions. We see the same
run time behavior as for the V query, except for the V/E strategy. The Quad
query does not hit the vertex outlier partitions (c.f. Fig. 4(a)), which enables
the BE and DS partitionings to compete with RRV and k-Way. The Shop and
Social graphs show an equal slowdown for C/V, compared to the other strategies.
However, the Uniprot graph now scales well with the hardware threads, since
there are more intermediate results in the Unicast edge predicate.

4.2 Evaluation on a Large-Scale Multiprocessor System

Our large multiprocessor system is an SGI UV 3000 with 64 sockets each
equipped with an Intel Xeon CPU E5-4655 v3 and a total of 8 TB main mem-

V/V: RRV 32/32 65 32/32 11790 32/32 665 8/8 884

V/E: BE 32/128 838 32/32 12387 16/16 666 8/8 878

V/E: DS 8/16 849 32/32 11964 32/32 673 8/8 890

C/V: k Way 64/64 48 32/32 27376 32/32 864 8/8 885

Fig. 8. Optimal system configurations
per graph and partitioning strategy for
the V query.

V/V: RRV 32/32 2663 32/64 5773 32/32 102 32/32 22

V/E: BE 32/32 2617 32/64 5850 16/16 132 32/32 21

V/E: DS 32/32 2682 32/64 5982 32/32 94 32/32 22

C/V: k Way 32/32 2254 64/128 15217 32/64 304 32/32 24

Fig. 9. Optimal system configurations
per graph and partitioning strategy for
the Quad query.

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

10 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



8 16 32 64
8 1.61 1.64 1.67 2.56

16 2.15 1.32 1.36 2.12
32 3.27 1.78 1.00 1.70
64 5.75 3.16 2.09 2.31

128 10.00 5.88 3.89 4.06
256 10.00 10.00 7.81 7.93

Pa
r

on
s

Worker
8 16 32 64

8 1.67 1.67 1.69 2.48
16 2.25 1.22 1.33 1.87
32 3.39 1.78 1.18 1.66
64 5.80 3.28 2.03 2.30

128 10.00 5.86 3.85 4.28
256 10.00 10.00 7.75 8.41

Pa
r

on
s

Worker

C/V: k-Way V/V: RRV

8 16 32 64
8 1.69 1.68 1.70 2.51

16 2.26 1.23 1.33 1.87
32 3.32 1.78 1.16 1.68
64 5.80 3.25 1.92 2.34

128 10.00 5.87 3.88 4.31
256 10.00 10.00 7.79 8.36

Worker

Pa
r

on
s

8 16 32 64
8 1.74 1.74 1.77 2.52

16 2.21 1.25 1.40 1.91
32 3.31 1.82 1.19 1.71
64 5.79 3.32 2.07 2.35

128 10.00 6.03 3.93 4.34
256 10.00 10.00 8.09 8.52

Pa
r

on
s

Worker

SD:E/VEB:E/V

Fig. 10. System configuration heat maps. Quad query on Biblio graph.

299,488   971   

117   970   

267   294,932   

837   10.320   

Unicast Broadcast Final result

Fig. 11. Intermediate results for each edge predicate of the V query

ory. We conducted the same experiments as for Sect. 4.1 and used gMark to
scale up all graphs from Fig. 3(c) by a factor of 10 while preserving all other
graph properties. All in all, we found that the entirety of our experiments on the
large-scale system confirmed our observations from the medium-scale system.
Figure 12 illustrates the heat maps for the Quad query on the Social graph for
the SGI system. As for the medium-scale system, we see that using the hyper-
threads is also not feasible on the SGI system. However, utilizing all physical
cores leads to optimal performance in many cases, which underlines that our
processing scales well with the employed hardware. In contrast to the medium-
scale system, we see more variations in the heat maps, which is explained by the
bigger number of sockets and the increasing influence of the NUMA effect on
query performance.

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

11 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Workers
Pa

r
on

s

x

(a) C/V: k-Way

64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Pa
r

on
s

Workers

x

(b) V/V: RRV

64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Workers

Pa
r

on
s

x

(c) V/E: BE

64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Workers

Pa
r

on
s

x

(d) V/E: DS

Fig. 12. System configuration heat maps. Quad query on Social graph.

4.3 Lessons Learned

Employing an optimal partitioning strategy is crucial for query performance. To
find out the best strategy for a given query, we found that weighing the amount
of broadcasts against unicasts, which result from the query pattern, is important.

Dominant Unicasts. It is desirable to partition the graph using a strategy
which balances both edges and vertices. We argue that employing the C/V
strategy is beneficial, even if there is a minor edge imbalance, since the unicast
part of the query will benefit from the locality property of adjacent graph
partitions. However, if the edge imbalance exceeds a certain limit, we suggest
switching to the V/V strategy.

Dominant Broadcasts. Each partitioning strategy performs well. However it
is desirable to achieve a balanced amount of edges between the partitions.
As edges represent the amount of data records per partition, balancing them
results in a more evenly distributed work in the system. All of the evalu-
ated partition strategies have proven to be viable for graph pattern matching
on a data-oriented architecture, except for the E/E strategy because of its
broadcast-only nature.

The challenge is to adequately estimate the influences of broadcasts and unicasts
due to their dependency on the underlying graph. Our experiments showed, that
the optimal system configuration varies among the different workloads. As a rule
of thumb, we found that it is beneficial to not use hyper threads in most cases
and directly map the number of graph partitions to the number of workers.

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

12 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden



5 Related Work

Many graph systems like Ligra [12] or Galois [7] often only state that the data will
be partitioned but omit the reasoning behind the selected graph partitioning.
We have shown that using one specific partitioning scheme for all graphs or
workloads is not the optimal solution and may result in huge slowdown factors,
compared to the possibly best system configuration.

Verma et al. [16] examine different graph partitioning strategies of existing
systems and suggest which strategy is to be used for specific analytical algo-
rithms. In contrast to the authors, we generally categorize graph partitioning
strategies based on their partitioning and balancing criterion. Also, we don’t
evaluate specific algorithms but whole graph partitioning categories with respect
to their influence on the query performance.

Graph processing on NUMA systems is considered by a broad community.
There are many studies on optimizing the data partitioning for a Breadth First
Search (BFS) on a NUMA machine as Yasui et al. show in [18]. We have shown
that it is not always the best practice to always utilize the maximum number of
available cores, depending on the executed query.

Running BFS is furthermore considered by the authors of Polymer [19], who
argue that using an edge-balanced partitioning is the best way to go. However,
this is only true if the edges are directly addressed instead of the vertices. We
found that, for our architecture, direct addressing of vertices is more important.
Thus we argue that the partitioning scheme is also dependent on the processing
system. However, we also found that having an evenly distributed workload, i.e.
the employment of a suitable partitioning, is crucial for optimal performance.

6 Conclusions and Future Work

In this paper, we could show a plethora of dependencies for graph partitioning
and processing on NUMA systems. We could show for the variety of our tested
domains and the employed graph partitioning strategies, that there is no one-
size-fits-all strategy in terms of a good combination of a system configuration and
partitioning algorithms out of the box. As outlined in Sect. 3, we see a need to
examine the effects of optimization measures such as vertex or edge replication.

Acknowledgments. This work is partly funded within the Collaborative Research
Center SFB 912 (HAEC).

References

1. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Advokaat, N.: Gener-
ating flexible workloads for graph databases. PVLDB 9(13), 1447–1460 (2016).
http://www.vldb.org/pvldb/vol9/p1457-bagan.pdf

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

13 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

http://www.vldb.org/pvldb/vol9/p1457-bagan.pdf


2. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Efficiently handling
skew in outer joins on distributed systems. In: 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid 2014, Chicago, IL,
USA, 26–29 May 2014, pp. 295–304 (2014)

3. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.C.A., Broekstra, J.,
Erdmann, M., Horrocks, I.: The semantic web: the roles of XML and RDF. IEEE
Internet Comput. 4(5), 63–74 (2000)

4. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and
efficient graph analysis. In: Proceedings of the 17th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2012, London, UK, 3–7 March 2012, pp. 349–362 (2012)

5. Karypis, G., Kumar, V.: MeTis: unstructured graph partitioning and sparse matrix
ordering system, version 5.1 (2013). http://www.cs.umn.edu/∼metis

6. Kissinger, T., Kiefer, T., Schlegel, B., Habich, D., Molka, D., Lehner, W.: ERIS: a
NUMA-aware in-memory storage engine for analytical workload. In: International
Workshop on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures - ADMS 2014, Hangzhou, China, 1 September 2014, pp.
74–85 (2014). http://www.adms-conf.org/2014/adms14 kissinger.pdf

7. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP
2013, Farmington, PA, USA, 3–6 November 2013, pp. 456–471 (2013)

8. Ogata, H., Fujibuchi, W., Goto, S., Kanehisa, M.: A heuristic graph comparison
algorithm and its application to detect functionally related enzyme clusters. Nucleic
Acids Res. 28(20), 4021–4028 (2000)

9. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the
information sciences. J. Inf. Sci. 28(6), 441–453 (2002)

10. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-
oriented transaction execution. PVLDB 3(1), 928–939 (2010).
http://www.comp.nus.edu.sg/ vldb2010/proceedings/files/papers/R83.pdf

11. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: Netprobe: a fast and scalable
system for fraud detection in online auction networks. In: Proceedings of the
16th International Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, 8–12 May 2007, pp. 201–210 (2007)

12. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory. In: ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2013, Shenzhen, China, 23–27 February 2013, pp. 135–146
(2013)

13. Tas, M.K., Kaya, K., Saule, E.: Greed is good: optimistic algorithms for bipartite-
graph partial coloring on multicore architectures. CoRR abs/1701.02628 (2017).
http://arxiv.org/abs/1701.02628

14. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candi-
dates for efficient keyword search on graph-shaped (RDF) data. In: Proceedings
of the 25th International Conference on Data Engineering, ICDE 2009, Shanghai,
China, 29 March–2 April 2009, pp. 405–416 (2009)

15. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

16. Verma, S., Leslie, L.M., Shin, Y., Gupta, I.: An experimental comparison of par-
titioning strategies in distributed graph processing. Proc. VLDB Endow. 10(5),
493–504 (2017)

17. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60
(2012)

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

14 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

http://www.cs.umn.edu/~metis
http://www.adms-conf.org/2014/adms14_kissinger.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R83.pdf
http://arxiv.org/abs/1701.02628


18. Yasui, Y., Fujisawa, K., Goh, E.L., Baron, J., Sugiura, A., Uchiyama, T.: NUMA-
aware scalable graph traversal on SGI UV systems. In: Proceedings of the ACM
Workshop on High Performance Graph Processing, HPGP@HPDC 2016, Kyoto,
Japan, 31 May 2016, pp. 19–26 (2016)

19. Zhang, K., Chen, R., Chen, H.: NUMA-aware graph-structured analytics. In: Pro-
ceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, San Francisco, CA, USA, 7–11 February 2015,
pp. 183–193 (2015)

Final edited form was published in "European Conference on Parallel Processing". Santiago de Compostela, 
28. August – 1. September 2017, S. 149–163. Springer. ISBN 978-3-319-64203-1. 

https://doi.org/10.1007/978-3-319-64203-1_11

15 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden


	Partitioning Strategy Selection for In-Memory Graph Pattern Matching on Multiprocessor Systems
	1 Introduction
	2 Graph Pattern Matching on NUMA Systems
	3 Graph Partitioning Strategies
	4 Experimental Evaluation
	4.1 Evaluation on a Medium-Scale Multiprocessor System
	4.2 Evaluation on a Large-Scale Multiprocessor System
	4.3 Lessons Learned

	5 Related Work
	6 Conclusions and Future Work
	References

	ADP5009.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	Alexander Krause, Thomas Kissinger, Dirk Habich, Hannes Voigt, Lehner




