
The University of Manchester Research

Optimized Batched Linear Algebra for Modern
Architectures
DOI:
10.1007/978-3-319-64203-1_37

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Dongarra, J., Hammarling, S., Higham, N., Relton, S., & Zounon, M. (2017). Optimized Batched Linear Algebra for
Modern Architectures. In F. F. Rivera, T. F. Pena, & J. C. Cabaleiro (Eds.), Euro-Par 2017: Parallel Processing :
23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August 28-
September 1, 2017, Proceedings (pp. 511-522). (Lecture notes in computer science; Vol. 10417). Springer Nature.
https://doi.org/10.1007/978-3-319-64203-1_37
Published in:
Euro-Par 2017: Parallel Processing

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1007/978-3-319-64203-1_37
https://research.manchester.ac.uk/en/publications/a5fb9afa-fe31-4f31-983b-1672638d4b39
https://doi.org/10.1007/978-3-319-64203-1_37


Optimized Batched Linear Algebra for Modern

Architectures

Jack Dongarra1,2, Sven Hammarling2, Nicholas J. Higham2, Samuel D.
Relton2, and Mawussi Zounon2

1 University of Tennessee, Oak Ridge National Laboratory, TN, USA.

dongarra@icl.utk.edu
2 School of Mathematics, The University of Manchester, Manchester, UK.

sven.hammarling@btinternet.com, {nick.higham, samuel.relton,
mawussi.zounon}@manchester.ac.uk

Abstract. Solving large numbers of small linear algebra problems simul-

taneously is becoming increasingly important in many application areas.

Whilst many researchers have investigated the design of efficient batch

linear algebra kernels for GPU architectures, the common approach for

many/multi-core CPUs is to use one core per subproblem in the batch.

When solving batches of very small matrices, 2 × 2 for example, this

design exhibits two main issues: it fails to fully utilize the vector units

and the cache of modern architectures, since the matrices are too small.

Our approach to resolve this is as follows: given a batch of small matrices

spread throughout the primary memory, we first reorganize the elements

of the matrices into a contiguous array, using a block interleaved memory

format, which allows us to process the small independent problems as a

single large matrix problem and enables cross-matrix vectorization. The

large problem is solved using blocking strategies that attempt to optimize

the use of the cache. The solution is then converted back to the original

storage format. To explain our approach we focus on two BLAS routines:

general matrix-matrix multiplication (GEMM) and the triangular solve

(TRSM). We extend this idea to LAPACK routines using the Cholesky

factorization and solve (POSV). Our focus is primarily on very small

matrices ranging in size from 2× 2 to 32× 32. Compared to both MKL

and OpenMP implementations, our approach can be up to 4 times faster

for GEMM, up to 14 times faster for TRSM, and up to 40 times faster for

POSV on the new Intel Xeon Phi processor, code-named Knights Land-

ing (KNL). Furthermore, we discuss strategies to avoid data movement

between sockets when using our interleaved approach on a NUMA node.

1 Introduction

Over the last decade, the high-performance computing (HPC) community has
made significant strides in solving large-scale matrix problems efficiently. An-
other major challenge is to achieve good performance when computing a large
batch of small matrix problems: this situation occurs commonly in applications



including deep learning libraries [1,3], multifrontal solvers for sparse linear sys-
tems [5], and radar signal processing [4] etc. In deep learning applications, for
example, many applications require the solution of thousands of independent
(and very small) general matrix-matrix multiplication (GEMM) in Equation (1),
where batch_count is number of independent problems in the batch.

C(i) ← α(i)A(i)B(i) + β(i)C(i), i = 1 : batch_count. (1)

The challenge is to make more efficient use of computational cores than a simple
for loop around a single call to a vendor optimized GEMM kernel, where there
may not be enough work to keep the cores running at full efficiency. Note that,
depending on the application, the batch can contain matrices of different sizes
and α(i) and β(i) can have different values. But in this work, we focus on the
“fixed batch” case, which is more common in applications. In a fixed batch
the values of α and β are the same for all the problems in the batch and the
matrices have a constant size, i.e. the dimensions of A(i) are the same for all i
in [1, batch_count] and similarly for the matrices B(i) and C(i).

To address the need for efficient libraries to perform batches of small linear al-
gebra operations in parallel, new APIs have been investigated and a comparative
study of these APIs is given in [11]. While most research focuses on providing
high-performance batch linear algebra implementation for GPU architectures,
there is—at the time of writing—no better solution than using one core per
problem when it comes to many/multi-core architectures. When solving batches
of very small matrices, 2×2 for example, this design exhibits two main problems.
Due to the small size of the matrices we fail to fully utilize the vector units and
the cache of modern architectures.

In this work, we focus on level 3 BLAS routines because they are the critical
building blocks of many high-performance software. Our motivation to focus on
GEMM and triangular solve (TRSM) is that all of level 3 BLAS routines except
TRSM can be viewed as a specialized GEMM [8]. However, regardless of these
considerations, our proposed solutions are easily extended to all BLAS kernels
including the level 1 and 2 algorithms.

The key aspect of our approach is as follows: given a batch of small matrices
spread throughout RAM we first reorganize the elements of the matrices into a
contiguous array, using a block interleaved memory format, which allows us to
process the small independent problems as a single large matrix problem. The
large problem is solved using blocking strategies that attempt to optimize the
use of the cache. The solution is then converted back to the original storage
format.

Compared to the MKL batched BLAS implementation and an OpenMP for
loop around MKL BLAS kernels, our implementation is up to 4 times faster for
DGEMM and up to 14 times faster for DTRSM on the new self-hosted Intel Xeon
Phi processors, code named Knights Landing (KNL). By extending this idea to
LAPACK routines, specifically the Cholesky factorization and solve (POSV), we
can see that our approach can be extremely efficient and performs up to 40 times
faster than using an OpenMP for loop on the Intel KNL architecture.



The paper is organized as follows. In Section 2 we present the current state
of the art in batch BLAS algorithms and their limitations. Section 3 describes
our approach, the block interleaved batch BLAS, followed by some performance
analyses. In section 4, we discuss how to extend batch operations to include
LAPACK routines, with a focus on Cholesky factorization and solve. We then
discuss the main performance issues raised when using NUMA nodes in Section 5
before giving some concluding remarks in Section 6.

2 Related work

Motivated by the efficiency of vendor supplied libraries for small problems on
many/multi-core CPU architectures, the currently accepted method for solving
batches of small problems is to have a single core per problem in the batch [6].
Therefore, most of the effort in recent years has been devoted to developing
efficient batch kernels for GPUs. Our aim is to challenge the conventional wisdom
in many/multi-core CPU architectures, however a reader interested in efficient
CUDA kernels for batch BLAS operations may look at [2,7,9, 10].

2.1 Multicore CPUs and Xeon Phi implementations

At first glance, batched BLAS operations on multicore CPUs seemed to be re-
duced to the choice between: (i) solving one problem at the time using all the
available cores or (ii) solving many independent problems in parallel using a
single core per problem. Whenever small matrices are used the second approach
is preferred can be implemented simply: merely an OpenMP for loop around
vendor supplied BLAS kernels is required.

When processing thousands of very small matrices, the error checking pro-
cedure implemented by most of optimized vendor kernels can be significantly
time-consuming. To alleviate this overhead, Intel MKL allows us to skip the error
checking thanks to theMKL_DIRECT_CALL orMKL_DIRECT_CALL_SEQ
macros. Hence, the common wisdom for a fixed batched BLAS implementation
consists in checking the arguments once, as all the problems in the batch share
the same error prone arguments, then perform an OpenMP for loop over opti-
mized BLAS kernels.

While these solutions are acceptable for batches of matrices of medium size,
they may fail to exploit efficiently wide vector units on modern architectures.
For example, the AVX-512 vector units available in the Intel KNL, enable the
completion of 8 double precision vector operations within each cycle, while a
2× 2 matrix can fill only half of such a vector unit.

Furthermore, some BLAS routines don’t offer enough parallelism. For ex-
ample in the case of batched TRSM, the computation of each entry of each
right-hand side requires a single division before the updates. When one right-
hand side is required, regardless of the matrix size, the common approach will
perform only one double precision division in one clock cycle on a core capable



of 8 double precision divisions. However, by using the interleaved memory lay-
out described in Section 3 one can saturate the vector units at all steps of the
algorithm thanks to cross-matrix vectorization.

3 Data layout optimization

Dealing with thousands of independent, small matrices requires a careful choice
of memory layout, and a good memory layout should be user-friendly without
penalizing performance. There are currently 3 competing data layouts advocated
by the linear algebra community for batched BLAS operations. In this section,
we illustrate the underlying idea of each data layout using the example of solving
three independent 2× 2 matrix problems (A(1),A(2), A(2)).

3.1 Pointer-to-pointer layout

Most of the existing interfaces for both CPU and GPU architectures use an
array of pointers, where each pointer leads to a matrix in memory. We call
this the pointer-to-pointers (P2P) layout. As depicted in Figure 1, it allows
us to allocate matrices independently. This is the solution currently used in
cblas_dgemm_batch and cublasDgemmBatched, the batch DGEMM kernels avail-
able in Intel MKL 11.3 beta and NVIDIA cuBLAS version 4.1, respectively. This
approach is very flexible but has two main issues as reported in [7] and [11]. First,
the allocation and deallocation of thousands of small matrices can be excessively
time-consuming. Second, processing very small matrices stored separately can
increase the number of memory accesses required and induces sub-optimal cache
use. In addition, the array of pointers approach suffers from high data movement
costs when data is offloaded to hardware accelerators.

A(1) a0,0 a1,0 a0,1 a1,1 A(2) a0,0 a1,0 a0,1 a1,1 A(3) a0,0 a1,0 a0,1 a1,1

Fig. 1: Pointer to pointer (P2P) memory layout. The three matrices are stored
in different memory locations in column major order.

3.2 Strided layout

To alleviate the design issues intrinsic to the pointer to pointers memory layout,
NVIDIA cuBLAS advocated another interface called the strided layout [12]. It
consists of storing a collection of matrices in one contiguous block of memory.
As illustrated in Figure 2, this involves allocating a large chunk of memory to
store all the Ai matrices.



A a0,0 a1,0 a0,1 a1,1 a0,0 a1,0 a0,1 a1,1 a0,0 a1,0 a0,1 a1,1

Fig. 2: Strided memory layout. The three matrices are stored in one contiguous
chunk of memory.

3.3 Interleaved memory layout
Solving batches of small size matrix problems on modern architectures is chal-
lenging because these architectures are primarily designed to address large-scale
problems. The main objective of the interleaved memory layout approach is to
reformulate the thousands of independent small BLAS operations as a single
large-scale problem. This involves providing a relevant way to store the indepen-
dent matrices. Interleaving the entries of different matrices enables cross-matrix
vectorization to fill the vector units on modern architectures. As illustrated in
Figure 3, the interleaved layout is a permutation of the strided memory layout.

A a0,0 a0,0 a0,0 a1,0 a1,0 a0,1 a0,1 a0,1 a0,1 a1,1 a1,1 a1,1

Fig.3: Interleaved memory layout. The three matrices are stored in one contigu-
ous chunk of memory, but their elements are mixed together.

3.4 Design of interleaved batch BLAS
While the interleaved layout has the potential for better vectorization and data
locality, it requires redesigning the BLAS algorithms. This is achieved by adding
inner for loops to the original algorithms in order to create batches of float-
ing point operations. We illustrate this in a simplified version of an interleaved
TRSM displayed in Algorithm 1. For the sake of simplicity and readability, A
and B denote the interleaved layout containing m×m lower triangular matrices
A(i) and the m×n right hand side matrices B(i), respectively; and the notation
A[i][j][idx] is used to refer to the entry ai,j of the matrix A(idx) in the batch.

Compared to the original TRSM algorithm, our interleaved version has an
additional for loop (Algorithm 1, line 5) that accesses each matrix in the batch.
Some operations have also been moved to the innermost loop (Algorithm 1, line
7 and 10), for the sake of better vectorization without affecting the numerical
stability. The innermost loop contains thousands of floating point operations
parallelized among cores thanks to the #pragma openmp parallel for directive
whilst the simd directive makes use of vector pipelines within each core.

3.5 Block interleaved layout
While the interleave layout increases the vectorization within the floating point
units, it may lead to a high cache miss rate: since the first entries of the matrices



Algorithm 1 Interleaved TRSM algorithm:B(i) ← α(A(i))−1B(i)

1: for j ← 1 to n do . Iterate over n right hand sides

2: for k ← 1 to m do . Iterate over rows of A

3: for i← k to m do . Iterate over columns of A

4: #pragma omp parallel for simd
5: for idx← 1 to batch_count do . Iterate over problems in the batch

6: if k == 0 then
7: B[i][j][idx]← β ×B[i][[j][idx] . Apply α
8: end if
9: if i == k then

10: B[k][j][idx]← B[k][j][idx]/A[k][k][idx] . Division by ak,k

11: continue

12: end if
13: B[i][j][idx]← B[i][j][idx]−B[k][j][idx]×A[i][k][idx] . Update

14: end for
15: end for
16: end for
17: end for

are stored followed by the second entries etc., the next entries required by the
algorithm are unlikely to be in the cache at any given time. To alleviate this
problem, we divide the initial batch into small sub-batches (blocks), then apply
the interleaved strategy within each block. The block size is selected such that
each sub-batch could be solved efficiently by a single core. The optimal block size
is a tunable parameter and depends on the number of cores and the memory
hierarchy of the target machine. In our experiments we let InterleaveTRSM
denote Algorithm 1. For the block interleaved TRSM (BlockInterleaveTRSM)
we replace #pragma omp parallel for simd by #pragma simd in Algorithm 1
and use an OpenMP for loop over the blocks defined above.

3.6 Interleaved batch BLAS user interfaces

We note that data layout utilized by the user and that used internally to the
computation need not be the same. Indeed our code has two interfaces: a simple
P2P interface for user convenience (which performs all the memory layout con-
version internally) and, for expert users, we expose the interleaved layout kernels
and the associated conversion functions directly. For the simpler functions with
P2P-based interfaces, the design is as follows:

1. Convert from user layout to block interleaved layout.
2. Call block interleaved kernels.
3. Convert back to the user layout.

The conversion routines are designed for better data locality, and exploit both
thread and vector level parallelism. For safety, the user is required to provide the



extra memory intended for conversion. More details on the API and the codes
can be found on our Github repository3.

3.7 Experimental results

The aim of this subsection is to evaluate how the block interleaved (Blkintl)
batch kernels compare to both the optimized Intel MKL batch BLAS kernels
(MKL) and OpenMP for loop over Intel MKL BLAS kernels (OpenMP). The
experiments are performed on a 68-core Intel KNL4 configured in flat mode
with all data allocated in the high bandwidth memory. To obtain more reliable
results, we take the average time over ten runs and carefully flush the cache
between each run.

0 2 4 6 8 10 12 14 16
Matrix size

0

20

40

60

80

100

120

G
flo

p/
s

Blkintl
MKL
OpenMP

(a) 5,000 DGEMM

0 2 4 6 8 10 12 14 16
Matrix size

0

20

40

60

80

100

120

G
flo

p/
s

Blkintl
MKL
OpenMP

(b) 10,000 DGEMM

0 2 4 6 8 10 12 14 16
Matrix size

0

20

40

60

80

100

120

G
flo

p/
s

Blkintl
MKL
OpenMP

(c) 20,000 DGEMM

Fig. 4: Performance comparison of different implementations of batch DGEMM
using 68 threads on the Intel KNL with different batch sizes on square matrices
ranging in size from 2× 2 to 16× 16.

The first experiment displayed in Figure 4, compares the performance in
GFlop/s (the higher the better) of three batch DGEMM implementations. A
batch containing a few thousand matrices is enough to saturate the KNL, and
the performance doesn’t increase significantly when doubling the batch size. It
is important to notice that we also consider layout conversion time in the per-
formance of Blkintl. The conversion overhead is significant for GEMM because
it involves three batches of matrices (A(i), B(i) and C(i)). Despite this overhead,
Blkintl outperformsMKL for very small matrices ranging from 2×2 to 7×7, and
OpenMP for matrices up to 11× 11. In the particular case of a batch of 20,000
2× 2, Blkintl is four times faster than MKL. As the matrix sizes increase, both
MKL and OpenMP outperform Blkintl for two main reasons: (i) the increasing
cost of data layout conversion, and, (ii) the current Blkintl implementation is
not taking advantage of advanced memory prefetching strategies. Since the three

3 https://github.com/sdrelton/bblas_interleaved
4 https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-

GHz-68-core



kernels are performing the same floating point operations in a different order,
we can view this as a race to fill the vector units within the cores.

Furthermore, on average, MKL is 15% better than OpenMP. This suggests
that the MKL approach to batch BLAS is more sophisticated than a simple
OpenMP for loop over optimized BLAS kernels.

As MKL provides only batch kernels for DGEMM, in Figure 5 we can only
compare the performance of Blkintl andOpenMP for a batch of 10,000 DTRSM.
Compared to GEMM, TRSM has a lower numerical intensity, but the perfor-
mance can be increased by operating on multiple right-hand sides. In Figures 5a
and 5b, for example, the performance almost doubled for both OpenMP and
Blkintl from one right-hand side to two. The superiority of Blkintl overOpenMP
is significant even with matrix sizes up to 32× 32, which is consistent with our
analysis in Subsection 2.1. Interleaving multiple triangular solves alleviates the
synchronization penalty of performing only one division per right-hand side be-
fore parallel updates. Another factor is a lower conversion overhead: since the
TRSM algorithm operates on triangular matrices and a few right-hand sides, the
conversion overhead is reasonably low when compared to GEMM.

0 4 8 12 16 20 24 28 32
Matrix size

0

4

8

12

16

20

24

G
flo

p/
s

Blkintl
OpenMP

(a) One right-hand side

0 4 8 12 16 20 24 28 32
Matrix size

0

4

8

12

16

20

24

G
flo

p/
s

Blkintl
OpenMP

(b) Two right-hand sides

0 4 8 12 16 20 24 28 32
Matrix size

0

4

8

12

16

20

24

G
flo

p/
s

Blkintl
OpenMP

(c) Four right-hand sides

Fig. 5: Performance of a batch of 10, 000 DTRSM operations using 68 threads
on the Intel KNL with different numbers of right hand sides (rhs), on matrices
ranging in size from 2× 2 to 32× 32. Blkintl is 14 times better than OpenMP
in (a) for 2× 2 matrices.

4 Application to batched Cholesky factorization and

solve

Efficient LAPACK kernel implementations are commonly achieved by dividing
the matrices in blocks or tiles, and taking advantage of Level 3 BLAS routines
as much as possible to process the blocks or tiles. However, very small matrices
cannot easily be divided into blocks. To solve batches of very small LAPACK
problems we can extend the interleaved approach to LAPACK routines. This
allows us to optimize the use of wide vector units and also take advantage of
interleaved BLAS kernels whenever possible. In particular we will focus on the



Cholesky solve (POSV) algorithm which solves Ax = b, where A is a symmetric
definite positive matrix. It starts with a Cholesky factorization (POTRF) A =
LLT , then performs a forward substitution (TRSM kernel, Ly = b) before finally
performing a backward substitution (TRSM kernel, LTx = y). In this example,
the implementation effort involves mainly developing the Blkintl POTRF kernel,
as Blkintl TRSM has already been discussed above.

0 4 8 12 16 20 24 28 32
Matrix size

0
4
8

12
16
20
24
28
32

G
Fl

op
/s

Blkintl
OpenMP

(a) 5,000 DPOTRF.

0 4 8 12 16 20 24 28 32
Matrix size

0
4
8

12
16
20
24
28
32

G
Fl

op
/s

Blkintl
OpenMP

(b) 10,000 DPOTRF

0 4 8 12 16 20 24 28 32
Matrix size

0
4
8

12
16
20
24
28
32

G
Fl

op
/s

Blkintl
OpenMP

(c) 20,000 DPOTRF

Fig.6: Performance of batch Cholesky factorization (DPOTRF) using 68 threads
on the Intel KNL, with different batch sizes, on matrices ranging in size from
2×2 to 32×32. Blkintl is 18 times better than OpenMP in (c) for 2×2 matrices.

As illustrated in Figure 6, Blkintl POTRF outperforms the OpenMP version
for the same reasons discussed for the Blkintl TRSM kernel: better use of the
vector units and low memory conversion overhead, and the conversion cost is
even lower than the TRSM case since it involves only one triangular matrix per
problem in the batch. An overview of the Blkintl POSV algorithm is provided
in Algorithm 2.

Algorithm 2 Blkintl POSV algorithm: B(i) ← (A(i))−1B(i)

1: Conversion of A(i) and B(i) into Blkintl format

2: Call Blkintl POTRF

3: Call Blkintl TRSM (forward substitution)

4: Call Blkintl TRSM (backward substitution)

5: Convert A(i) and B(i) back to the user’s format

The two main features of Algorithm 2 are: (i) conversions are performed
once before using the three Blkintl kernels, (ii) reuse of Blkintl BLAS kernels.
In particular, performing the conversion only once allows us to obtain very good
performance with this approach. The results shown in Figure 7, for example,
show that the gap in performance between Blkintl and OpenMP is larger than
the one observed for TRSM in Figure 5.



0 4 8 12 16 20 24 28 32
Matrix size

0

7

14

21

28

35

42

49

G
flo

p/
s

Blkintl
OpenMP

(a) One right-hand side

0 4 8 12 16 20 24 28 32
Matrix size

0

7

14

21

28

35

42

49

G
flo

p/
s

Blkintl
OpenMP

(b) Two right-hand sides

0 4 8 12 16 20 24 28 32
Matrix size

0

7

14

21

28

35

42

49

G
flo

p/
s

Blkintl
OpenMP

(c) Four right-hand sides

Fig. 7: Performance on a batch of 10, 000 Cholesky solve (DPOSV) using 68
threads on the Intel KNL with different numbers of right-hand sides, on matrices
ranging in size from 2× 2 to 32× 32. Blkintl is 40 times better than OpenMP
in (a) for 2× 2 matrices.

The same strategy is applicable to other batched LAPACK kernels, with lots
of potential for large speedups over an OpenMP for loop.

5 Efficient Batch linear algebra on NUMA nodes

As explained in Subsection 3.7, obtaining good performance is a race to fill the
vector units of the cores as quickly as possible. In addition, data layout con-
versions required by Blkintl make our algorithms sensitive to data locality and
data movement. These two factors are potential limitations for achieving good
performance on non-uniform memory access (NUMA) nodes. In fact, when run-
ning a batch of very small matrices on a 2-socket NUMA node for example, the
matrices are more likely to be allocated on a single socket, and the second socket
will have only a remote access to data. This induces a high communication cost
and performance drop due to the cost of remote memory access. This issue is
commonly addressed by interleaving the data allocation thanks to the numactl
–interleave=all option available on Linux systems. Memory will then be allo-
cated using a round robin procedure between the nodes. As depicted in Figure 8,
there is a slight performance improvement for both Blkintl and OpenMP when
changing the standard memory allocation (Figure 8a) into the interleaved al-
location configuration (Figure 8b). In general spreading the memory allocation
improves the performance but, in the case of batch operations, there is no guar-
antee that we will allocate all data required for each independent problem on
the same node. For example A(i) may be allocated on the first socket while the
corresponding B(i) allocated on the second socket.

One way to significantly improve the performance is to split the batch into
two independent batches and use one socket per batch. Unfortunately current
OpenMP runtimes are not NUMA aware, however the user can manage the mem-
ory allocation themselves to enforce optimal data placement, using the libnuma
API for example. The user can then call our batch BLAS kernel on each socket in



parallel. This strategy should improve the performance significantly as observed
in Figure 8c, but requires a lot of user effort.

On the particular machine we used, the NUMA node vector units are half the
size of the Intel KNL vector units. This explains the decrease of the performance
gap between Blkintl and OpenMP when compared to those observed for Intel
KNL. We believe that further studies can help in designing new efficient batch
kernels which are specially optimized for NUMA nodes.

0 4 8 12 16 20 24 28 32
Matrix size

0
4
8

12
16
20
24
28
32

G
Fl

op
s/

s

Blkintl
OpenMP

(a) Standard NUMA

allocation

0 4 8 12 16 20 24 28 32
Matrix size

0
4
8

12
16
20
24
28
32

G
Fl

op
s/

s

Blkintl
OpenMP

(b) Using numactl

interleave

0 4 8 12 16 20 24 28 32
Matrix size

0
4
8

12
16
20
24
28
32

G
Fl

op
s/

s

Blkintl
OpenMP

(c) Memory distributed

half per node

Fig.8: Performance of a batch of 10, 000 Cholesky solve (DPOSV) operations
using 20 threads on a NUMA node of two 10-core sockets, Intel Xeon E5-2650
v3 (Haswell), with different numbers of right-hand sides, on matrices ranging in
size from 2× 2 to 32× 32.

6 Concluding remarks

In this research we have explained, and demonstrated the large potential of, the
block interleaved strategy for batched BLAS operations. We have shown that
our approach can offer significant performance improvements over an OpenMP
for loop around vendor optimized BLAS kernels, with speedups of up to 40×
for a batched Cholesky solve.

While generally satisfactory speedups are achieved on the Intel KNL ar-
chitecture, we noted that further prefetching techniques may help to further
improve the performance of the Blkintl DGEMM kernel. We have also shown
that advanced memory placement configurations are necessary to increase the
performance of batched kernels on NUMA nodes.

Finally, this study has focused only on an element-wise interleaving strat-
egy. However, we believe that other data interleaving approaches such as row
interleaving, column interleaving, and mixtures of the above could also provide
similar (or even better) performance. It is clear that there is a large amount of
further investigation to be done in this area.



Acknowledgements

The authors would like to thank The University of Tennessee for the use of their
computational resources. This research was funded in part from the European
Union’s Horizon 2020 research and innovation programme under the NLAFET
grant agreement No. 671633.

References

1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, et al. TensorFlow:

Large-scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org.

2. Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra. Per-

formance, design, and autotuning of batched GEMM for gpus. In High Performance

Computing - 31st International Conference, ISC High Performance 2016, Frank-

furt, Germany, June 19-23, 2016, Proceedings, pages 21–38, 2016.

3. Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller,

Dzmitry Bahdanau, et al. Theano: A Python framework for fast computation

of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

4. Michael J Anderson, David Sheffield, and Kurt Keutzer. A predictive model for

solving small linear algebra problems in gpu registers. In Parallel & Distributed

Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 2–13. IEEE,

2012.

5. Iain Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric

linear equations. ACM Trans. Math. Softw., 9(3):302–325, 1983.

6. Azzam Haidar, Tingxing Tim Dong, Stanimire Tomov, Piotr Luszczek, and Jack

Dongarra. A framework for batched and gpu-resident factorization algorithms

applied to block householder transformations. In International Conference on High

Performance Computing, pages 31–47. Springer, 2015.

7. Chetan Jhurani and Paul Mullowney. A gemm interface and implementation on

nvidia gpus for multiple small matrices. Journal of Parallel and Distributed Com-

puting, 75:133–140, 2015.

8. Bo Kågström, Per Ling, and Charles van Loan. Gemm-based level 3 blas: High-

performance model implementations and performance evaluation benchmark. ACM

Trans. Math. Softw., 24(3):268–302, September 1998.

9. M. Graham Lopez and Mitchel D. Horton. Batch Matrix Exponentiation, pages

45–67. Springer International Publishing, Cham, 2014.

10. Ian Masliah, Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, Marc

Baboulin, Joël Falcou, and Jack Dongarra. High-performance matrix-matrix mul-

tiplications of very small matrices. In European Conference on Parallel Processing,

pages 659–671. Springer, 2016.

11. Samuel D. Relton, Pedro Valero-Lara, and Mawussi Zounon. A comparison of po-

tential interfaces for batched BLAS computations. MIMS EPrint 2016.42, Manch-

ester Institute for Mathematical Sciences, The University of Manchester, UK, 2016.

12. Yang Shi, UN Niranjan, Animashree Anandkumar, and Cris Cecka. Tensor contrac-

tions with extended blas kernels on cpu and gpu. arXiv preprint arXiv:1606.05696,

2016.


