Skip to main content

Leveraging Hierarchy and Community Structure for Determining Influencers in Networks

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10440))

Included in the following conference series:

Abstract

Predicting influencers is an important task in social network analysis. Prerequisite for understanding the spreading dynamics in on-line social networks, it finds applications in product marketing, promotions of innovative ideas, constraining negative information etc.

The proposed prediction method IPRI (Influence scoring using Position, Reachability and Interaction) leverages prevailing hierarchy, interaction patterns and community structure in the network for identifying influential actors. The proposal is based on the hypothesis that capacity to influence other social actors is an interplay of three facets of an actor viz. (i) position in social hierarchy (ii) reach to diverse homophilic groups in network, and (iii) intensity of interactions with neighbours. Preliminary comparative performance evaluation of IPRI method against classical and state-of-the-art methods finds it effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Python code for implemented measures is available on GitHub.

References

  1. Al-Garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method. Phys. A 468(C), 278–288 (2017)

    Article  Google Scholar 

  2. de Arruda, G.F., Barbieri, A.L., Rodríguez, P.M., Rodrigues, F.A., Moreno, Y., da Fontoura Costa, L.: Role of centrality for the identification of influential spreaders in complex networks. Phys. Rev. E 90(3), 032812 (2014)

    Article  Google Scholar 

  3. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A 404, 549–559 (2014)

    Article  MathSciNet  Google Scholar 

  4. Barabási, A.L.: Network Science. Cambridge University Press, New York (2016)

    MATH  Google Scholar 

  5. Cohen, J.: Trusses: cohesive subgraphs for social network analysis (2008). http://www.cslu.ogi.edu/~zak/cs506-pslc/trusses.pdf

  6. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  7. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  8. Li, Q., Zhou, T., Lv, L., Chen, D.: Identifying influential spreaders by weighted leaderrank. Phys. A 404, 47–55 (2014)

    Article  MathSciNet  Google Scholar 

  9. Liu, G., Zhu, F., Zheng, K., Liu, A., Li, Z., Zhao, L., Zhou, X.: TOSI: a trust-oriented social influence evaluation method in contextual social networks. Neurocomputing 210, 130–140 (2016)

    Article  Google Scholar 

  10. Liu, Y., Tang, M., Zhou, T., Do, Y.: Identify influential spreaders in complex networks, the role of neighborhood. CoRR abs/1511.00441 (2015)

    Google Scholar 

  11. Pei, S., Muchnik, L., Andrade, J.S., Zheng, H., Makse, H.A.: Searching for superspreaders of information in real-world social media. Sci. Rep. 4, 5547 (2014)

    Article  Google Scholar 

  12. Rossi, M.E.G., Malliaros, F.D., Vazirgiannis, M.: Spread it good, spread it fast: identification of influential nodes in social networks. In: Proceedings of the 24th International Conference on World Wide Web, pp. 101–102. ACM (2015)

    Google Scholar 

  13. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS 109, 5962–5966 (2012)

    Article  Google Scholar 

  14. Wang, J., Cheng, J.: Truss decomposition in massive networks. Proc. VLDB Endow. 5(9), 812–823 (2012)

    Article  Google Scholar 

  15. Wang, M., Wang, C., Yu, J.X., Zhang, J.: Community detection in social networks: an in-depth benchmarking study with a procedure-oriented framework. Proc. VLDB Endow. 8(10), 998–1009 (2015)

    Article  Google Scholar 

  16. Wang, S., Wang, F., Chen, Y., Liu, C., Li, Z., Zhang, X.: Exploiting social circle broadness for influential spreaders identification in social networks. World Wide Web 18(3), 681–705 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhi Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kaur, S., Saxena, R., Bhatnagar, V. (2017). Leveraging Hierarchy and Community Structure for Determining Influencers in Networks. In: Bellatreche, L., Chakravarthy, S. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2017. Lecture Notes in Computer Science(), vol 10440. Springer, Cham. https://doi.org/10.1007/978-3-319-64283-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64283-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64282-6

  • Online ISBN: 978-3-319-64283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics