Enabling the Automatic Generation of User Interfaces
for Remote Laboratories

Wissam Halimi', Christophe Salzmann?, Hagop Jamkojian!, and Denis Gillet!

1 EPFL, REACT, Station 11, CH-1015 Lausanne, Switzerland
wissam.halimi@epfl.ch, hagop. jamkojian@epfl.ch, denis.gillet@epfl.
ch
2 EPFL, Automatic Control Laboratory, Station 9, CH-1015 Lausanne, Switzerland
christophe.salzmann@epfl.ch

Abstract. Remote laboratories are an important component of blended and dis-
tance science and engineering education. By definition, they provide access to a
physical lab in a distant location. Many architectures enabling remote laboratory
systems exist, the most common of which are Client-Server based. In this con-
text, the Server interfaces the physical setup and makes it software-accessible.
The Smart Device Specifications revisit a Client-Server architecture, with the
main aim of cancelling the dependencies which inherently exist between a Client
and a Server. This is done by describing the Server as a set of services, which
are exposed as well-defined APIs. If a remote laboratory is built following the
Smart Device Specifications, any person with programming skills can create a
personalized client application to access the lab. But in practice, teachers rely on
the mediated contact with a lab provider to have information about what kind of
experiment(s) the lab in question implements. Even though there is a complete
description of the available sensors and actuators making up a lab and how to be
accessed, it is not clear how they are connected (relationships). In this sense, a
list of sensors and actuators are not enough to make a guided selection of compo-
nents to create the interface to an experiment. Therefore, the aim of this work is
to support teachers in choosing the experiments and creating the respective Ul on
their own, in a pedagogically oriented scenario and by taking into consideration
the target online learning environment. This is done by revisiting the Smart De-
vice Specifications and extending them, in addition to proposing a tool that will
automatically generate the user interface of the chosen experiment(s).

Keywords: remote laboratories, online learning, cyber physical systems, user
interfaces, personalisation

1 Introduction

Remote laboratories (RLs) are an important component of distance and blended learn-
ing for science and engineering education. They allow learners to experiment in order
to validate or refute a hypothesis, accept or reject a taught subject. By definition, they
provide remote access to hands-on sessions, which are essential for the process of learn-
ing and assimilating scientific concepts [?][?]. As some Web technologies emerged and

2 Halimi et al.

died, many architectures for remote laboratory systems have been proposed. These ar-
chitectures range from being case-specific to more generalised. The most adopted ar-
chitectures, are Client-Server based where typically the Server interfaces the physical
equipment of a lab, and the Client provides a software application through which users
can access the lab. With the birth of the ‘separation of concerns’ paradigm enabling
Service Oriented Architectures (SOA), lab providers started building their laboratories
in a more modular way [?][?]. With such architectures, the access to the remote setup
is done through web services or APIs where the laboratory server is exposed as ser-
vices [?][?][?]. The main aim of adopting a Service Oriented Architecture for RLs is
to separate the tiers of the remote laboratory system. The Smart Device Specifications
for remote labs describe the Server as services through well-defined interfaces as pro-
posed in [?]. This approach is motivated by the complete separation of the Client from
the Server encourages the broader sharing of remote labs. The Smart Device Paradigm
decouples the Client and the Server further enabling the personalization of the client
applications. When the Smart Device Specifications are adopted for an RL, the Server
is exposed as services described by APIs enabling any person with programming skills
to create user applications to connect to the labs. This is possible by “talking” to the
APIs and understanding how client applications can access the services provided by a
remote setup. With the Smart Device Specifications, the development and deployment
of remote laboratories is much easier, faster, and modular for different stakeholders,
namely the lab provider and the user client developer.

In this context, invoking a service is equivalent to controlling actuators or retriev-
ing data from sensors making up the laboratory setup. Provided the APIs, it is possible
to personalize the client application accessing the labs by enabling the teachers to use
the RLs in different ways, according to their educational needs, by designing their own
experiments. This is the case of remote laboratories that are configurable and offer
the flexibility of conducting different experiments, corresponding to different scientific
phenomena. In this work, we refer to the activity which allows students to freely vary
the parameters on lab equipment as an experiment, and we refer to the combination of
sensors and actuators used in an experiment as a “configuration” from a lab owner point
of view. Since the information provided by the APIs based on the Smart Device Spec-
ifications do not covey enough information that shows how the sensors and actuators
are connected and dependant, usually the teachers resort to the mediated contact with
a lab provider to have information about what kind of experiment(s) the lab in ques-
tion implements. On another note, creating User Interfaces (Uls) is still largely reliant
on disposing of a software developer, preventing teachers with no such privileges from
personalizing their own applications. We recognise that it is important in such setups to
give teachers the autonomy to select and create user interfaces for remote labs that fulfil
their own pedagogical objectives, without the need to contact a lab provider through an
application developer. Therefore, the aim of this work is to support teachers in choosing
the experiments and creating the respective Ul on their own, in a pedagogically oriented
scenario and by taking into consideration the target online learning environment. This
is done by revisiting the Smart Device Specifications and extending them, in addition
to proposing a tool that will automatically generate the user interface of the chosen
experiment(s).

Enabling the Automatic Generation of User Interfaces for Remote Laboratories 3

This paper is structured as follows: we begin by providing on overview of exist-
ing remote labs architectures while identifying their pros and cons for the challenges
at hand. In Section ?? we elaborate on our extension of the Smart Device Specifica-
tions to enable the automatic generation of Uls for configurable labs. In Section ?? we
present our proposed tool for UI generation, and an accompanying example for a remote
laboratory: the Mach-Zehnder Interferometer.

2 Related Work

In [?] the authors make their debut in defining Smart Devices (SDs) motivated by the
need to move away from adopting proprietary technologies for building remote lab-
oratories, and the need to converge towards common conventions for designing and
building remote laboratory systems. Accordingly, they re-engineer the server side by
implementing separate services for the different hardware access which are possible for
their example lab. In parallel, instead of creating a complete web application or widget,
they provide four separate ones for each of the accessible services: a graph tool, a video
feed, a control panel for the system’s parameters, and a tool for saving the experimental
data. The users of a remote lab can choose any subset or all the provided widgets to use
the lab in a ‘metawidget’. While this effort is a move toward a personalization of the
user client, it is still proprietary for the embedding web-based environment.

Later in [?] and [?], the authors elaborate in more detail about the Smart Device
Paradigm and introduce the concept of LaaS (Lab as a Service). The Smart Device
Paradigm revisits the reputed Client-Server architecture for remote labs by re-thinking
the server side and equipping its component with some ‘intelligence’. This is based on
Thomson’s definition of smart devices, as devices which have identity and kind, mem-
ory and status tracking, communication capabilities, and more [?]. Accordingly, the
Smart Device Specifications extend this definition to support complex systems such
as remote labs. Motivated by the need to completely separate the server and client
sides to further enable the personalization of client applications, the mentioned spec-
ifications represent the behaviour of the connected sensors and actuators as services
exposed through well-defined APIs. The services representing a sensor or actuator in-
stance are fully described through ‘metadata’. The ‘metadata’ provide a description
of the considered lab through the General Metadata which tells the name of the lab,
a short high-level description, a contact person, and licensing information. The API
Metadata defines the supported services by the lab, by specifying the corresponding
sensor and actuator requests and responses. Moreover, the Smart Device Specifications
provide service descriptions for authorisation, which takes care of user authentication.
This metadata category is of no interest to this work. It is claimed that the ‘metadata’ is
enough for building user applications without the need for further information from a
lab provider. While this might be true for laboratories supporting one experiment, it is
not true for configurable labs which provide the possibility of conducting many exper-
iments with the same connected equipment. This is due to the absence of a description
of how the sensors and actuators are connected and which configurations are possible.
The Smart Device specifications provide a description of services as independent units.

4 Halimi et al.

Other frameworks for the generation of remote lab user interfaces exist, such as the
tool based on EjsS in [?]. In this work, the authors bring to importance the need for user
interfaces which can be well integrated in web-based learning environments such as
Moodle. Additionally they invoke the necessity to support open web technologies and
move away from Java applets which are no longer supported by modern web browsers.
While they provide a solution that is reusable, and prevents application developers from
building Uls from scratch for each lab, this framework only supports the generation
of Uls for labs which are compatible with their implementation of the presented app
builder.

3 Revisited Smart Device Specifications

The API Metadata of the Smart Device Specifications specify the communication proto-
col and formats for sending requests and receiving responses from a remote laboratory.
It is composed of two main sections: apis and models. The apis describe which ser-
vices are implemented and how they can be accessed, by providing information on the
adopted communication protocol, the type of requests to write and responses to receive
specified by their corresponding models, the parameters to pass to the request, and the
authorization schema to implement at the client side if applicable. The models section
details the structure of the requests, responses, and data to be applied to the actuators or
sensed by the sensors. It includes information on the unit, type, allowed ranges, range
steps, last measured values, and the value update frequency.

The apis section is based on four main API calls: getSensorMetadata, getSensor-
Data, getActuatorMetadata, and setActuatorData. getSensorMetadata is formatted as
a SensorMetadataRequest model, returns a list of all sensors in the lab in a response
formatted as a SensorMetadataResponse model. In the response to this request, the sen-
sorlds are included to allow for separate calls to each. To read the data on a specific
sensor, the UI calls the getSensorData request as modeled by a SensorDataRequest by
including the corresponding sensorld, as a response the data captured by the sensor
is returned in a SensorDataResponse. A getActuatorMetadata request sent as an Ac-
tuatorMetadataRequest returns a list of all actuators in the lab: the actuatorlds in an
ActuatorMetadataResponse. The actuatorlds is an array which contains the actuatorld
of separate actuators. To write data to an actuator, it is sufficient to invoke the sendAc-
tuatorData request formatted as a SetActuatorData request, providing an actuatorld.

With such information a basic automatic Ul generator can be put in place. The
API calls in addition to the requests and responses models are provided. It is worth
mentioning that all exchanged requests and responses with the Smart Device are JSON-
encoded, further facilitating the parsing of the API calls, which can be automatized. But
what sensors to pick with which actuators? How are the sensors and actuators working
together? Are there several possible experiments that can be conducted with the same
setup, but using different sensor-actuator configuration? All of this information is not
included in the existing SD Specifications. What differentiates remote laboratories from
other cyber-physical systems is that they are built to fulfil an educational goal: conduct-
ing pre-defined experiments to reflect on certain topics. With no knowledge about the
interconnections of the lab components, it is not possible to build a UI that interfaces

Enabling the Automatic Generation of User Interfaces for Remote Laboratories 5

‘pedagogically meaningful’ experiments. In this section, we extend the Smart Device
Specifications to describe the possible “configurations” or “experiments” of labs sup-
porting one or various experiments, further enabling the auto generation of the user
interface. We extend the detailed ‘metadata’ to add a service to the apis which returns
the configurations or experiments supported by the remote lab, in addition to the re-
quests and responses models. The extended SD Specifications with the experiments ser-
vice provides enough information to enable the automatic generation of user interfaces
without the need of the lab owner to confirm the possibility of conducting a particular
experiment. Our proposed extension is two-fold:

1. Define the models for an Experiment, SendExperimentsRequest, SendExperimen-
tRequest, ExperiementsMetadataResponse, and ExperiementMetadataResponse
2. Define the new api calls: getExperiments and getExperiment

Experiment model: An Experiment model is characterised by 2 fields common to
all models: id and properties. The id characterises the model at hand, in this case its
value is Experiment. This id field gives knowledge to the automatic generator about the
format of an Experiment JSON object for further processing. The properties are made
up of 5 sub-fields:

— experimentld: which can take any string value. The value of this field is defined by
the lab provider.

— fullName: which contains a non-formal name of the experiment. It can take any
string value.

— description: a human readable description of what the experiment is about. This
field is meant to be informative for teachers, to get a high level description of the
experiment.

— sensors: it is an array containing a list of the sensor ids used in a particular experi-
ment. sensorlds can have any string value. The string values of sensorlds contained
in this JSON object should be corresponding sensorlds defined in the metadata.

— actuators: it is an array containing a list of the actuator ids used in a particular
experiment. actuatorlds can have any string value. The string values of actuatorlds
contained in this JSON object should be corresponding actuatorlds defined in the
metadata

A complete Experiment model is shown below:

"Experiment": {

"id": "Experiment",

"properties": {

"experimentId": {
"type": "string"
b

"fullName": {
"type": "string"
I

"description": {
"type": "string"

6 Halimi et al.

}I
"sensors": {
"type": "array",
"items": {
"id": "Sensor",
"properties": {
"sensorId": {
"type": "string"
P}
}I
"actuators": {
"type": "array",
"items": {
"id": "Actuator",
"properties": {
"actuatorId": {
"type": "string"
P}

getExperiments api: The getExperiments api allows the retrieval of a list of supported
experiments. The nickname of this call is “getExperiments” which means it needs to be
used when initiating a request. summary and notes fields give a high level description of
what this call does: answers with a JSON object containing the list of available exper-
iments ids. The response of this call is formatted as an ExperimentMetadataResponse
which will be detailed later in this section. As it can be deducted from the properties
field, the request is formatted as a SimpleRequest defined in the original SD Specifi-
cations. The authorization field designates authentication mechanisms that the remote
lab is using to permit users to access the lab, if empty it means no authorization needs
to be done. responseMessages detail the possible responses that can be received at the
requester end, in case an ExperimentMetadataResponse cannot be received.

{"method": "Send",
"nickname": "getExperiments",
"summary": "Returns a list of possible experiments",
"notes": "Returns a JSON array with all the ids of possible experiments",
"type": "ExperimentMetadataResponse",
"parameters": [{
"name": "message",
"description": "The payload for the getExperiments service.",
"required": true,
"paramType": "message",
"type": "SimpleRequest",

"allowMultiple": false
1y
"authorizations": {},
"responseMessages": [{
"code": 402,

Enabling the Automatic Generation of User Interfaces for Remote Laboratories 7

"message": "Too many users"}, {

"code": 404,

"message": "Experiments not found"}, {

"code": 405,

"message": "Method not allowed. The requested method is not allowed

by this server."}, {
"code": 422,
"message": "The request body is unprocessable"

11}

ExperimentRequest model: To retrieve the required actuatorlds and sensorlds for a
particular experiment, an ExperimentRequest has to be sent to the Smart Device hosting
the laboratory as shown hereafter. The ExperimentRequest should contain the experi-
mentld of the desired experiment. A list of experimentslds can be retrieved with the
getExperiments call.

"ExperimentRequest": {
"id": "ExperimentRequest",
"required": ["method", "experimentId"],
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the nickname of one
of the provided services."},
"experimentId": {
"type": "string"}

ExperiementMetadataResponse model: The response of an ExperiemntRequest is an
ExperimentMetadataResponse. The id of this response tells the type of JSON object to
expect at the receiving end. It is formatted as to contain the Experiment JSON object
which defines an experiment. This should be enough for an auto generator to create a
UI corresponding to the required request.

"ExperimentMetadataResponse": {
"id": "ExperimentMetadataResponse",
"properties": {
"method": {
"type": "string"},
"experiments": {
"type": "array",
"items": {
"Sref": "Experiment"

PHEY

In Sections ?? and ?? we present our automatic generator of user interfaces based
on the extended Smart Device Specifications, to demonstrate their completeness for
our purpose. In addition to providing the teachers with a tool that enables them to au-
tonomously create basic Uls for remote labs, this automatic UI generator provides the

8 Halimi et al.

possibility of personalizing the UI for embedding in a platform of choice: the social
media platform graasp®, or an LTI consumer platform such as Moodle or edX*. The
proposed approach is illustrated through a remote laboratory supporting multiple exper-
iments: the remote Mach-Zehnder interferometer. This remote laboratory was presented
as a work in progress in [?], where we build the lab using software templates according
to the Smart Device Specifications, and in this paper we extend the implementation to
support the personalised auto-generation of the user interface with the added configu-
rations.

4 An Example: Light Interference Experiences

4.1 The Mach-Zehnder Interferometer

As mentioned earlier, we are especially interested in reconfigurable experiments. The
Mach-Zehnder Interferometer is an example of devices which are used to study differ-
ent subjects ranging from light interference to optical telecommunication, in classical
and also in quantum physics [?] [?]. The Mach-Zehnder interferometer considered in
this paper has a layout shown in Fig.??. The apparatus is composed of a monochro-
matic light beam, two half-mirrors, two complete mirrors, two beam splitters, a density
filter, and a detection screen mounted with a photo diode. With this layout, some light
interference characteristics and resulting phenomena can be studied by repeatedly re-
flecting the light beam on the mirrors and half-mirrors before its arrival on the detection
screen. In the next subsection we describe two of the possible experiments that can be
conducted with this equipment. For visualization purposes, two cameras are placed in
the lab in order to reflect the status of real environment: a camera placed in front of the
detector screen to see the resulting incident light, and an infrared camera (because the
experiments are conducted in the dark) that shows the whole setup.

4.2 The Experiments

The mind map in Fig.?? shows two possible experiments that can be done with the
Mach-Zehnder interferometer, upon which we will base our explanation of the imple-
mentation and function of the automatic Ul generator in Section ??.

The first and second experiments are conducted in a high light intensity setup, mean-
ing that the density filter is not attenuating the intensity of the light coming from the
monochromatic light beam. The first experiment enables the users to quantitatively un-
derstand light interference, by visualizing the resulting fringes on the screen, and/or
also the feed from the infrared camera, in addition to depicting the direction in which
the fringes move when the mirror mounted with a piezo actuator manually controlled
with a voltage which is increasing or decreasing in value. In the second experiment, the
students can quantitatively study light interference by observing the emitted signal from
the photo diode as the piezo is controlled with a triangular signal causing a translation
motion.

3 http://graasp.eu/
* https://www.edx.org/

Enabling the Automatic Generation of User Interfaces for Remote Laboratories 9

Half-mirror Mirror

Fig. 1. The Mach-Zehnder Interferometer Layout

Camera showing fringes
IR Camera feed showing complete setup

r
Qualitative study
Beam shutters 1 & 2

acl etel High light intensity | \
Q?f!‘_th“der I"(efTﬂ%@"Lﬁ _ Automatic control of piezo actuator
‘I Manual control of piezo

' Quantitative study
%{ Capture signal on the photodiod.

Fig. 2. Mindmap of the Mach-Zehnder Experiments

When a getExperiments api call is sent to the Smart Device hosting this laboratory,
the following response is received:

{"method": "getExperiments",

"experiments": [{
"experimentId": "qualitative",
"fullName": "Qualitative Study",
"description": "Observing light interference on the screen",
"sensors": [{"sensorId": "Video"}, {"sensorId": "VideoIR"}],
"actuators": [{"actuatorId": "laser"}, {"actuatorId": "piezo"},
{"actuatorId": "bsl"}, {"actuatorId": "bs2"}]
Fod
"experimentId": "quantitative",
"fullName": "Quantitative Study",
"description": "Studying the signal provided by the photodiode",
"sensors": [{"sensorId": "photodiode"}],
"actuators": [{"actuatorId": "laser"}, {"actuatorId": "piezo"},
{"actuatorId": "bsl"}, {"actuatorId": "bs2"}]

11}

The response shows that there are two possible experiments with the experimentlds
“qualitative” and “quantitative”. Accordingly, the list of sensors and actuators for each
of the experiments can be either used from this response, or retrieved by a separate call
to getExperiment while passing the corresponding experimentld.

10 Halimi et al.

5 The Automatic UI Generator

5.1 Design Considerations

In most cases, a remote laboratory is part of a learning activity comprising other educa-
tional resources such as documents, videos, etc... The learning activity is usually hosted
by a MOOC platform such as edX, or social media platform such as graasp. When a
remote lab is used in such contexts, it is important to take into consideration the fol-
lowing points to insure the integration of the RL user client in the platform on several
levels: knowledge about user identity (awareness), the context, and having access to the
storage resources of the platform.

Awareness about user identity is necessary for several purposes: authentication with
the RL when required, saving and retrieving the data, and capturing user interaction with
the RL user application. It is necessary to associate this data to the platform users for
personalization purposes. Additionally, when conducting an experiment a lot of data
is generated. Usually, when students are doing their experiments in physical labs, they
save the data in files to be used for processing or take note of certain parameters. In
all cases, these assets are saved for later reference or post processing. It is primordial
to provide such facilities to the students, where keeping and retrieving their data can
be accomplished within the platform. We take into account these considerations when
implementing the automatic UI generator as detailed next.

5.2 Implementation

The automatic UI generator is a tool that enables the creation of a fully functional
remote lab web client with a few clicks. The teacher needs to know the IP address and
the port number over which a Smart Device is serving the desired remote lab. Using
this information, the tool initiates a WebSocket connection with the lab server, and
subsequently call the getExperiments service, which returns an array describing each
experimental configuration supported by the Smart Device. As mentioned in Section
??, each experiment is described by: the experimentld that uniquely identifies each
experiment, the fullname and description of the experiment, in addition to the sensors
and actuators arrays that contain the ids of all the respective sensors and actuators used
by each experimental configuration. These configurations are displayed as checkboxes
having the full name and the description of the experiment as their labels. The teachers
can then select one or more of the presented possible configurations according to their
educational goals. After performing this selection, the auto generator knows the ids of
all the different sensors and actuators required for each experiment, and will thus send
getAcutatorMedata and getSensorMetadata requests to the lab server in order to acquire
the necessary information about each (See Fig.??).

For actuator access, the auto generator makes use of some of the fields obtained
from the actuator metadata, in order to generate the necessary Ul components. It uses
the actuatorld which uniquely identifies each actuator, to populate the actuatorld field
of the request packet which is sent to the Smart Device whenever a user of the gener-
ated lab client alters the state of an actuator, thus making a call to the sendActuatorData
service. The auto generator also uses the values field of the metadata, which is an array

Enabling the Automatic Generation of User Interfaces for Remote Laboratories 11

sman
Generator Device

What configurations do you have?
{"method" : "getExperiments"}

These are the experiments that | support:
{ "method" : "getExperiments”, "experiments™ [
{"experimentid” : "qualitative”, “fullName": ...}, ...]1 }

.G __________________________________

Can you describe the actuators you have?
{"method" : "getActuatorMetadata™}

These are my actuators:
{ “method" : "getActuatorMetadata”, “actuators™ [{
“actuatorld” : "laser”, ..., "values™ [| "name": "laserPower”,
le “type": "boolean”, ... }]...}, .1 }

Can you describe the sensors you have?
{"method" : "getSensorMetadata”)

These are my sensors:
{ "method” : "getSensorMetadata”, "sensors™: [{ "sensorid"
“photodiode”, ..., "values™. [{ "name". "pholodiodeVvioltage”.
“type": "string”, .. }]..}, .1 }

.<_ __________________________________

Fig. 3. How the automatic UI generator interacts with the Smart Device to build the Ul

of all the measurement values each actuator contains. Each actuator value will be rep-
resented as a separate UI component in the generated widget. The auto generator uses
the following fields from the metadata of each value:

— name: used to differentiate among the multiple values of an actuator.

— type: used to decide what type of UI component needs to be created for each value.
For instance, a value of type boolean will be represented as a button that can be
turned on or off by the user. Moreover, a value of type float will be represented as
a numeric slider.

— rangeMinimum and rangeMaximum: used by the auto generator to specify the
boundaries of the numeric slider that is created for a value of type float.

For sensor requests, the UI generator uses the sensorld, which uniquely identifies
each sensor, to populate the sensorld field of the request packet that is sent to the Smart
Device whenever the lab client makes a call to the getSensorData service. The gen-
erator also takes into consideration the webSocketType field of the sensor metadata to
check whether a given sensor requires a text or a binary WebSocket. In case of a binary
WebSocket, the generator assumes that it is a video feed and creates a UI component
that displays the video. In the case of a text WebSocket, the generator uses the values
field of the sensor metadata and represents each value as a separate Ul component in
the generated gadget. The auto generator uses the following fields from the metadata of
each value:

— name: used to differentiate among the multiple values of a sensor.

12 Halimi et al.

— type: used to decide what type of UI component should to be created for each sensor
value. For instance, a value of type boolean will be represented as a LED indicator.
Moreover, a value of type string will be represented as a text value.

— unit: used by the generator to append a unit symbol to the retrieved sensor value.

1N 172.22.11.2
Port Number:

Get Configurations

Choose at least one configuration:
¥ Qualitative Study : Observing light interference on the screen
v Quantitative Study : Studying the signal provided by the photodiode

‘Choose your educational platform:
* Graasp @ LTI Consumer

Download Gadget Add Gadget to Graasp

You can add the gadget as an app using the following link as App URL:
http://graasp.eu/resources/582d679b4fcc0ac468d548fd/iraw

Show Instructions

Fig. 4. The landing page of the automatic Ul generator showing the two available experiment
configurations for the Mach-Zehnder lab

Furthermore, the teacher has to choose an educational platform in which the gener-
ated UI will be embedded (See Fig. ??). Currently, the automatic Ul generator provides
Uls which can be embedded in graasp, or in an LTI consumer platform (such as Moodle,
or edX). If an LTT hosting platform is chosen as the target platform, then the resulting
lab client application will automatically instantiate a WebSocket connection with the
Smart Device whenever a user accesses the lab client, update the UI components of the
sensors upon receiving new sensor values, handle the actuator changes performed by the
user and send the new actuator data to the Smart Device. According to the teacher’s se-
lection of one or more experiments, the application will contain one or more tabs. Each
tab represents a selected experimental configuration. Clicking on a tab in the client ap-
plication will result in accessing the corresponding experiment, and displaying all the
sensors and actuators associated with that setup. In this case, the resulting Ul is an html
file which can be used by the teacher to embed in the LTI consumer platform.

On the other hand, if graasp is chosen as the target educational platform, then the
generated lab client application is an OpenSocial (OS) widget which can be embedded
in the platform. Graasp supports OpenSocial widgets through its own implementation
of the Shindig Apache server, enabling third party applications to access its database for
user information, and for saving and retrieving files, actions, and other platform specific

Enabling the Automatic Generation of User Interfaces for Remote Laboratories 13

@ Qualitative Study © Quantitative Study

(EELTEC T Turn On

piezoVCItage: i — .- .- -,
piezoFrequency: I
photodiodeVoltage: 1.1325V

Save Data

Fig. 5. The generated remote lab client application on graasp for the Mach-Zehnder lab

data [?]. Consequently, the OS widget will have all the aforementioned features of the
LTI-targeted application, in addition to the following (See Fig. 5):

— Action logging: the generated graasp gadget will use the ActionLogger library?,
which provides an easy mechanism for logging the activities of the students. Inter-
actions with the different Ul components are saved as Activity Streams that have
the actor-verb-object format. The logged activities can later be used to perform
learning analytics.

— Saving experimental data: The lab application allows students to save the actuator
and sensor data that were acquired while conducting the experiment. The data is
saved in a specific format, that allows students to use it in other applications on the
platform. For example, the students can have a graphical view of the experimental
results using the Data Viewer application®.

6 Teacher Customization

The automatic UI generator provides a basic and fully functional client application for
operating a remote lab. The Ul components are very basic, and might not be visually
attractive. Using the generated code, the teachers can further personalize the UI appear-
ance to fit their taste and needs. For example, a teacher in the Gymnase de Morges in
Switzerland, chose to customize the UI to be embedded in graasp as shown in Fig.??.
In this widget, there are two tabs to switch between two possible experiments. In the
Quantitative Study tab, there is a simulation diagram which allows students to control
the lab by clicking on the corresponding image of a component. For example, to turn
the laser beam ON/OFF it is enough to click on the box representing the light source.
On the diagram are also present the placements of the IR camera and the normal camera
allowing the student to know about the perspective of the video feeds. In this widget,
the teacher chose to only display the video coming from Camera 2 showing the fringes
on the screen. Next to it is a graphing tool that shows the signal captured by the photo
diode in real-time. Since the teacher doesn’t want the students to have to scroll, and

5 https://github.com/go-lab/ils/wiki/ActionLogger
® http://go-lab.gw.utwente.nl/production/dataViewer/build/dataViewerTool.xml

14 Halimi et al.

since the simulation diagram conveys a real-time status of the lab, he decided that there
are enough UI components for the students to conduct the experiment while having a
good user experience.

@ Qualitative Study © Quantitative Study

Camera 2

Photodiode Voltage: OV

Fig. 6. Example of personalized Mach-Zehnder OS widget in graasp

Of course, the UI could have been customized otherwise to show the Ul components
differently, or to resize them in a different way. For example, an input box to control
the piezo actuator could have been a replacement for the slider control. Also, instead of
only showing the feed of Camera 2, both feeds from Camera 1 and Camera 2 could have
been shown, in addition to the graphing tool. All of this is possible by starting from the
code provided by the automatic UI generator. This alleviates the burden of establishing
connections and parsing the remote lab APIs, making it more easy to personalize the
appearance of user client according to a desired user experience.

7 Conclusion & Future Work

To describe a remote laboratory and enable the automatic generation of user interfaces,
it is not enough to solely rely on describing the services making up laboratories. In this
work we presented the extended Smart Device Specifications to support the descrip-
tion of the different configurations remote laboratories provide. This extension further
enables the automatic generation of user interfaces. We also proposed a generator tool
which helps teachers in autonomously creating client applications for different target
platforms: graasp or an LTI-consumer environment. In our implementation of the tool,
we take into consideration the need for full-integration with a target platform hosting
the UI by providing an integration layer already embedded in the application supporting
user identification, activity tracking, saving and retrieving experimental data.

Enabling the Automatic Generation of User Interfaces for Remote Laboratories 15

To the best of our knowledge, this is the first automatic UI generator for remote
lab clients, which is also integrating data storage for the target embedding learning
environment. To ease the adoption of the Smart Device Specifications and to enable the
targeting of other learning environments, the Ul generator application is openly shared
under the CC-BY-NC” creative commons licenses, on this link: http://shindig2.
epfl.ch/gadget/automatic_gadget_generator/

Acknowledgment. This research is partially funded by the European Union in the con-
text of Go-Lab (grant no. 317601) project under the ICT theme of the 7th Framework
Programme for R&D (FP7).

7 https://creativecommons.org/licenses/by-nc/2.0/

