Skip to main content

Analyzing Modular Robotic Systems

  • Conference paper
  • First Online:
Online Engineering & Internet of Things

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 22))

Abstract

This paper surveys modular robot systems, which consist of multiple modules and aim to create versatile, robust, and low cost systems. The modularity allows these robots to self-assemble, self-reconfigure, self-repair, and self-replicate. Therefore, the surveyed research covered the previous characteristics along with evolutionary robotics and 3D printed robots. These fields are interdisciplinary, so we organize the implemented systems according to the main feature in each one. The primary motivation for this is to categorize modular robots according to their main function and to discover the similarities and differences of implementing each system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faíña, A., Bellas, F., López-Peña, F., Duro, R.J.: EDHMoR: evolutionary designer of heterogeneous modular robots. Eng. Appl. Artif. Intell. 26(10), 2408–2423 (2013)

    Article  Google Scholar 

  2. White, P., Zykov, V., Bongard, J.C., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Robotics: Science and Systems, pp. 161–168 (2005)

    Google Scholar 

  3. Fukuda, T., Kawauchi, Y.: Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In: IEEE International Conference on Robotics and Automation (ICRA 1990), pp. 662–667 (1990)

    Google Scholar 

  4. Yim, M.: A reconfigurable modular robot with many modes of locomotion. In: JSME International Conference on Advanced Mechatronics, Tokyo, Japan (1993)

    Google Scholar 

  5. Yim, M., Duff, D., Roufas, K.: PolyBot: a modular reconfigurable robot. In: IEEE International Conference on Robotics and Automation (ICRA 2000), pp. 514–520 (2000)

    Google Scholar 

  6. Golovinsky, A., Yim, M., Zhang, Y., Eldershaw, C., Duff, D.: PolyBot and PolyKinetic™ system: a modular robotic platform for education. In: Robotics and Automation (ICRA 2004), vol. 2, pp. 1381–1386 (2004)

    Google Scholar 

  7. Chiang, C., Chirikjian, G.: Similarity metrics with applications in modular robot motion planning. Auton. Robots (special issue on Modular Reconfigurable Robots) 10(1), 91–106 (2001)

    MATH  Google Scholar 

  8. Rus, D., Vona, M.: Crystalline robots: self-reconfiguration with compressible units modules. Auton. Robots (special issue on Modular Reconfigurable Robots) 10(1), 107–124 (2001)

    MATH  Google Scholar 

  9. Kotay, K., Rus, D.: Motion synthesis for the self-reconfiguring molecule. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 843–851 (1998)

    Google Scholar 

  10. Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotics molecule. In: IEEE International Conference on Robotics and Automation (ICRA 1998), pp. 424–431 (1998)

    Google Scholar 

  11. Suh, J.W., Homans, S.B., Yim, M.: Telecubes: mechanical design of a module for self-reconfigurable robotics. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, no. 5, pp. 4095–4101 (2002)

    Google Scholar 

  12. Støy, K., Shen, W.-M., Will, P.: On the use of sensors in self reconfigurable robots. In: Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer, J.-A. (eds.) Proceedings of the Seventh International Conference on the Simulation of Adaptive Behavior, pp. 48–57 (2002)

    Google Scholar 

  13. Castano, A., Behan, A., Will, P.: The CONRO modules for self reconfigurable robots. IEEE Trans. Mechatron. 7(4), 403–409 (2002)

    Article  Google Scholar 

  14. Zykov, V., Chan, A., Lipson, H.: Molecubes: an open-source modular robotic kit. In: IROS-2007 Self-Reconfigurable Robotics Workshop (2007)

    Google Scholar 

  15. Zykov, V., Phelps, W., Lassabe, N., Lipson, H.: Molecubes extended: diversifying capabilities of open-source modular robotics. In: IROS-2008 Self-Reconfigurable Robotics Workshop (2008)

    Google Scholar 

  16. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: a demonstration of the grammatical approach to self-organization. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3684–3691 (2005)

    Google Scholar 

  17. Jones,C., Mataric, M.J.: From local to global behavior in intelligent self-assembly. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 721–726 (2003)

    Google Scholar 

  18. Kelly, J., Zhang, H.: Combinatorial optimization of sensing for rule based planar distributed assembly. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 3728–3734 (2006)

    Google Scholar 

  19. Werfel, J.: Anthills built to order: automating construction with artificial swarms. Ph.D. dissertation, MIT (2006)

    Google Scholar 

  20. White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings of IEEE Conference on Robotics and Automation, April 2004, pp. 2888–2893 (2004)

    Google Scholar 

  21. Tolley, M., Hiller, J., Lipson, H.: Evolutionary design and assembly planning for stochastic modular robots. In: Proceedings of IEEE Conference on Intelligent Robotics and Systems (IROS), October 2009, pp. 73–78 (2009)

    Google Scholar 

  22. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: a demonstration of the grammatical approach to self-organization. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), August 2005, pp. 3684–3691 (2005)

    Google Scholar 

  23. Napp, N., Burden, S., Klavins, E.: The statistical dynamics of programmed self-assembly. In: Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), pp. 1469–1476 (2006)

    Google Scholar 

  24. Wei, H., Cai, Y., Li, H., Li, D., Wang, T.: Sambot: a self-assembly modular robot for swarm robot. In: Robotics and Automation (ICRA), pp. 66–71 (2010)

    Google Scholar 

  25. Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. 39(2), 30–34 (2002)

    Article  Google Scholar 

  26. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Chirikjian, G.S.: Modular self-reconfigurable robot systems (grand challenges of robotics). Robot. Autom. Magaz. 14(1), 43–52 (2007)

    Article  Google Scholar 

  27. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

    Article  Google Scholar 

  28. Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.: M-TRAN II: metamorphosis from a four-legged walker to a caterpillar. In: Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2454–2459 (2003)

    Google Scholar 

  29. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distributed self-reconfiguration of M-TRAN III modular robotic system. Int. J. Robot. Res. 2(3–4), 373–386 (2008)

    Article  Google Scholar 

  30. Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Intelligent Robots and Systems, pp. 3636–3641 (2006)

    Google Scholar 

  31. Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the ATRON lattice-based self-reconfigurable robot. Auton. Robots 21(2), 165–183 (2006)

    Article  Google Scholar 

  32. Wieser, S.: Locomotion in Modular Robotics: Roombot Module. Semester project, Biologically Inspired Robotic Group (2008)

    Google Scholar 

  33. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego (1994)

    Google Scholar 

  34. Yoshida, E., Murata, S., Tomita, K., Kurokawa, H., Kokaji, S.: An experimental study on a self-repairing modular machine. Robot. Auton. Syst. 29, 79–89 (1999)

    Article  Google Scholar 

  35. Fitch, R., Rus, D., Vona, M.: A basis for self-repair robots using self-reconfiguring crystal modules. Intell. Auton. Syst. 6, 903–910 (2000)

    Google Scholar 

  36. Lackner, S., Wendt, C.H.: Exponential growth of large self-reproducing machine systems. Math. Comput. Model. 21(10), 55–81 (1995)

    Article  MATH  Google Scholar 

  37. Ulam, S.: Random presses and transformations. In: Proceedings of the International Congress of Mathematicians, vol. II, Cambridge, MA (1950)

    Google Scholar 

  38. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966). Edited and completed by A.W. Burks

    Google Scholar 

  39. Griffith, S., Goldwater, D., Jacobson, J.M.: Robotics: self-replication from random parts. Nature 437, 636 (2005)

    Article  Google Scholar 

  40. Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H.: Evolved and designed self-reproducing modular robotics. IEEE Trans. Robot. 23(2), 308–319 (2007)

    Article  Google Scholar 

  41. Nolfi, S., Floreano, D.: Evolutionary Robotics – The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  42. Lipson, H.: Evolutionary robotics and open-ended design automation. Biomimetics 17(9), 129–155 (2005)

    Article  Google Scholar 

  43. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 1423–1451. Springer, Heidelberg (2007)

    Google Scholar 

  44. Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-Functional Machines: The New Species, pp. 237–258. Springer, Tokyo (2003)

    Chapter  Google Scholar 

  45. Zykov, V., Bongard, J.C., Lipson, H.: Evolving dynamic gaits on a physical robot. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2004) (2004)

    Google Scholar 

  46. Paul, C., Bongard, J.C.: The road less traveled: morphology in the optimization of biped robot locomotion. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001), Hawaii, USA (2001)

    Google Scholar 

  47. Sims, K.: Evolving 3D morphology and behavior by competition. In: Artificial Life IV, pp. 28–39 (1994)

    Google Scholar 

  48. Onal, C.D., Tolley, M.T., Wood, R.J., Rus, D.: Origami-Inspired Printed Robots (2011)

    Google Scholar 

  49. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reem Alattas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Alattas, R. (2018). Analyzing Modular Robotic Systems. In: Auer, M., Zutin, D. (eds) Online Engineering & Internet of Things. Lecture Notes in Networks and Systems, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-64352-6_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64352-6_94

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64351-9

  • Online ISBN: 978-3-319-64352-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics