Skip to main content

Re(con)volution: Accurate Response Prediction for Broad-Band Evoked Potentials-Based Brain Computer Interfaces

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Broad-band evoked potentials (BBEPs) are responses to non-periodic stimuli, evoked in reponse to carefully chosen pseudo-random noise-sequences (PRNS). In this chapter, a generative method called reconvolution is discussed. Reconvolution is a method that decomposes BBEPs in response to PRNS into transient responses to the individual events. With reconvolution, one can then generate responses to any other novel PRNS. In this chapter, we discuss three approaches to reconvolution: (1) a sequential approach, (2) an integrated approach, and (3) a zero-training approach. Reconvolution enables Brain Computer Interfaces to be trained with little or even no data, and provides a generative model to accurately predict responses to novel stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sutter EE. (1984) The visual evoked response as a communication channel. In: Proceedings of the IEEE Symposium on Biosensors. pp 95–100

    Google Scholar 

  2. Sutter EE (1992) The brain response interface: communication through visually-induced electrical brain responses. J Microcomput Appl 15(1):31–45. doi:10.1016/0745-7138(92)90045-7

    Article  Google Scholar 

  3. Bin G, Gao X, Wang Y, Hong B, Gao S (2009) VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier]. Comput Intell Mag IEEE 4(4):22–26. doi:10.1109/MCI.2009.934562

    Article  Google Scholar 

  4. Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP. J Neural Eng 8(2):025015. doi:10.1088/1741-2560/8/2/025015 PMID: 21436527

    Article  Google Scholar 

  5. Spüler M, Rosenstiel W, Bogdan M (2012) One class SVM and canonical correlation analysis increase performance in a c-VEP based brain-computer interface (BCI). In: Proceedings of 20th European Symposium on Artificial Neural Networks (ESANN 2012). Bruges, Belgium, pp 103–108

    Google Scholar 

  6. Spüler M, Rosenstiel W, Bogdan M (2012) Online adaptation of a c-VEP brain-computer interface (BCI) based on error-related potentials and unsupervised learning. PLoS ONE 7(12):e51077. doi:10.1371/journal.pone.0051077 PMID: 23236433

    Article  Google Scholar 

  7. Thielen J, van den Broek P, Farquhar J, Desain P (2015) Broad-band visually evoked potentials: re(con)volution in brain-computer interfacing. PLoS ONE 10(7):e0133797. doi:10.1371/journal.pone.0133797

    Article  Google Scholar 

  8. Golomb SW, Welch LR, Goldstein RM, Hales AW (1982) Shift register sequences. Aegean Park Press, Laguna Hills, CA, p 78

    Google Scholar 

  9. Capilla A, Pazo-Alvarez P, Darriba A, Campo P, Gross J (2011) Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses. PLoS ONE 6(1):e14543. doi:10.1371/journal.pone.0014543 PMID: 21267081

    Article  Google Scholar 

  10. Farquhar J, Blankespoor J, Vlek R, Desain P (2008) Towards a noise-tagging auditory BCI-paradigm. In: Proceedings of the 4th Int BCI Workshop and Training Course 2008. Graz, Austria, pp 50–55

    Google Scholar 

  11. Gold R (1967) Optimal binary sequences for spread spectrum multi-plexing. IEEE Trans Inf Theory 13:619–621. doi:10.1109/TIT.1967.1054048

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Desain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Thielen, J., Marsman, P., Farquhar, J., Desain, P. (2017). Re(con)volution: Accurate Response Prediction for Broad-Band Evoked Potentials-Based Brain Computer Interfaces. In: Guger, C., Allison, B., Lebedev, M. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-64373-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64373-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64372-4

  • Online ISBN: 978-3-319-64373-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics