Skip to main content

Towards Online Functional Brain Mapping and Monitoring During Awake Craniotomy Surgery Using ECoG-Based Brain-Surgeon Interface (BSI)

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

During brain surgery, functional brain mapping is critical, and the time needed for the procedure should be reduced to the minimum in order to avoid risks for the patient. In this project, we extend the traditional concept of BCI for communication and control between brain and external devices, to the concept of Brain-Surgeon Interface (BSI) in order to establish an interactive channel between the patient’s brain and the surgeon, with the ultimate goal of a high quality and precise brain surgery. Compared with “intraoperative fMRI”, which is expensive and time-consuming, or cortical electrical stimulation, which may cause epilepsy and brain swelling during the surgery, the proposed ECoG-based BSI system works in an online scenario, and the mapping time can be significantly reduced to a half minute for both motor and sensory cortex. Three signal modalities were used for functional brain mapping: movement related cortical potential, steady-state somatosensory evoked potential, event-related (de)synchronization. The proposed BSI system may provide a considerable advantage for clinical brain surgery applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Google Scholar 

  2. Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U. S. A. 101(51):17849–17854

    Article  Google Scholar 

  3. Daly JJ, Wolpaw JR (2008) Brain–computer interfaces in neurological rehabilitation. Lancet Neurol 7(11):1032–1043

    Article  Google Scholar 

  4. Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, Mcfarland DJ, Birbaumer N, Wolpaw JR (2005) Patients with ALS can use sensorimotor rhythms to operate a brain

    Google Scholar 

  5. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D (2015) Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77(5):851–865

    Article  Google Scholar 

  6. Xu R, Jiang N, Mrachacz-Kersting N, Lin C (2014) A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity 61(7):2092–2101

    Google Scholar 

  7. Jiang N, Gizzi L, Mrachacz-Kersting N, Dremstrup K, Farina D (2014) A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin Neurophysiol

    Google Scholar 

  8. Mrachacz-Kersting N, Jiang N, Stevenson AJT, Niazi IK, Kostic V, Pavlovic A, Radovanovic S, Djuric-Jovicic M, Agosta F, Dremstrup K, Farina D (2015) Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J Neurophysiol. doi: 10.1152/jn.00918.2015

  9. Behrens E, Schramm J, Zentner J, König R (1997) Surgical and neurological complications in a series of 708 epilepsy surgery procedures. Neurosurgery 41(1):1–9

    Article  Google Scholar 

  10. Jacobs J, Zijlmans M, Zelmann R, Chatillon C-É, Hall J, Olivier A, Dubeau F, Gotman J (2010) High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 67(2):209–220

    Article  Google Scholar 

  11. Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Lüders H (2007) Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain 130(2):574–584

    Article  Google Scholar 

  12. Salanova V, Markand O, Worth R (2002) Temporal lobe epilepsy surgery: outcome, complications, and late mortality rate in 215 patients. Epilepsia 43(2):170–174

    Article  Google Scholar 

  13. Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69(3):581–589

    Article  Google Scholar 

  14. Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4(8):476–486

    Article  Google Scholar 

  15. Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TPL (2002) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg 97(6):1333–1342

    Article  Google Scholar 

  16. Shinoura N, Yamada R, Kodama T, Suzuki Y, Takahashi M, Yagi K (2005) Preoperative fMRI, tractography and continuous task during awake surgery for maintenance of motor function following surgical resection of metastatic tumor spread to the primary motor area. min-Minimally Invasive Neurosurg 48(2):85–90

    Google Scholar 

  17. Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM (2003) Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 18(2):423–438

    Article  Google Scholar 

  18. Szelényi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, Neuloh G, Signorelli F, Sala F (2010) Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus 28(2):E7

    Article  Google Scholar 

  19. Lu J-F, Zhang H, Wu J-S, Yao C-J, Zhuang D-X, Qiu T-M, Jia W-B, Mao Y, Zhou L-F (2013) Awake intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: is it possible in awake craniotomy? NeuroImage Clin 2:132–142

    Article  Google Scholar 

  20. Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D (2011) Detection of movement intention from single-trial movement-related cortical potentials. J Neural Eng 8(6):66009

    Article  Google Scholar 

  21. Xu R, Jiang N, Lin C, Mrachacz-kersting N, Dremstrup K, Farina D (2014) Enhanced low-latency detection of motor intention interface applications 61(2):288–296

    Google Scholar 

  22. Pfurtscheller G, da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  Google Scholar 

  23. Neuper C, Wörtz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222

    Article  Google Scholar 

  24. Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G (2006) Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng 14(1):30–37

    Article  Google Scholar 

  25. Breitwieser C, Kaiser V, Neuper C, Müller-Putz GR (2012) Stability and distribution of steady-state somatosensory evoked potentials elicited by vibro-tactile stimulation. Med Biol Eng Comput 50(4):347–357

    Article  Google Scholar 

  26. Houdayer E, Labyt E, Cassim F, Bourriez JL, Derambure P (2006) Relationship between event-related beta synchronization and afferent inputs: Analysis of finger movement and peripheral nerve stimulations. Clin Neurophysiol 117(3):628–636

    Article  Google Scholar 

  27. Houdayer E, Degardin A, Salleron J, Bourriez JL, Defebvre L, Cassim F, Derambure P (2012) Movement preparation and cortical processing of afferent inputs in cortical tremor: an event-related (de)synchronization (ERD/ERS) study. Clin Neurophysiol 123(6):1207–1215

    Google Scholar 

  28. Yao L, Meng J, Zhang D, Sheng X, Zhu X (2013) Selective sensation based brain-computer interface via mechanical vibrotactile stimulation. PLoS One 8(6)

    Google Scholar 

  29. Yao L, Meng J, Zhang D, Sheng X, Zhu X (2014) Combining motor imagery with selective sensation toward a hybrid-modality BCI. IEEE Trans Biomed Eng 61(8):2304–2312

    Article  Google Scholar 

  30. Yao L, Meng J, Sheng X, Zhang D, Zhu X (2015) A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion. J Neural Eng 12(1):16005

    Article  Google Scholar 

  31. Yao L, Sheng X, Zhang D, Jiang N, Farina D, Zhu X (2016) A BCI system based on somatosensory attentional orientation. IEEE Trans Neural Syst Rehabil Eng 4320(c):1–1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Farina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Yao, L. et al. (2017). Towards Online Functional Brain Mapping and Monitoring During Awake Craniotomy Surgery Using ECoG-Based Brain-Surgeon Interface (BSI). In: Guger, C., Allison, B., Lebedev, M. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-64373-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64373-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64372-4

  • Online ISBN: 978-3-319-64373-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics