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Preface

An understanding of probability and statistics is an essential tool for a modern computer scientist. If your tastes run to
theory, then you need to know a lot of probability (e.g., to understand randomized algorithms, to understand the probabilistic
method in graph theory, to understand a lot of work on approximation, and so on) and at least enough statistics to bluff
successfully on occasion. If your tastes run to the practical, you will find yourself constantly raiding the larder of statistical
techniques (particularly classification, clustering, and regression). For example, much of modern artificial intelligence is built
on clever pirating of statistical ideas. As another example, thinking about statistical inference for gigantic datasets has had a
tremendous influence on how people build modern computer systems.

Computer science undergraduates traditionally are required to take either a course in probability, typically taught by
the math department, or a course in statistics, typically taught by the statistics department. A curriculum committee in my
department decided that the curricula of these courses could do with some revision. So I taught a trial version of a course, for
which I wrote notes; these notes became this book. There is no new fact about probability or statistics here, but the selection
of topics is my own; I think it’s quite different from what one sees in other books.

The key principle in choosing what to write about was to cover the ideas in probability and statistics that I thought every
computer science undergraduate student should have seen, whatever their chosen specialty or career. This means the book is
broad and coverage of many areas is shallow. I think that’s fine, because my purpose is to ensure that all have seen enough
to know that, say, firing up a classification package will make many problems go away. So I've covered enough to get you
started and to get you to realize that it’s worth knowing more.

The notes I wrote have been useful to graduate students as well. In my experience, many learned some or all of this
material without realizing how useful it was and then forgot it. If this happened to you, I hope the book is a stimulus to your
memory. You really should have a grasp of all of this material. You might need to know more, but you certainly shouldn’t
know less.

Reading and Teaching This Book

I wrote this book to be taught, or read, by starting at the beginning and proceeding to the end. Different instructors or readers
may have different needs, and so I sketch some pointers to what can be omitted below.

Describing Datasets

This part covers:

e Various descriptive statistics (mean, standard deviation, variance) and visualization methods for 1D datasets
* Scatter plots, correlation, and prediction for 2D datasets

Most people will have seen some, but not all, of this material. In my experience, it takes some time for people to really

internalize just how useful it is to make pictures of datasets. I've tried to emphasize this point strongly by investigating a
variety of datasets in worked examples. When I teach this material, I move through these chapters slowly and carefully.
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Probability
This part covers:

» Discrete probability, developed fairly formally

* Conditional probability, with a particular emphasis on examples, because people find this topic counterintuitive
* Random variables and expectations

» Just a little continuous probability (probability density functions and how to interpret them)

e Markov’s inequality, Chebyshev’s inequality, and the weak law of large numbers

* A selection of facts about an assortment of useful probability distributions

¢ The normal approximation to a binomial distribution with large N

I’ve been quite careful developing discrete probability fairly formally. Most people find conditional probability counterintu-
itive (or, at least, behave as if they do—you can still start a fight with the Monty Hall problem), and so I’ve used a number
of (sometimes startling) examples to emphasize how useful it is to tread carefully here. In my experience, worked examples
help learning, but I found that too many worked examples in any one section could become distracting, so there’s an entire
section of extra worked examples. You can’t omit anything here, except perhaps the extra worked examples.

The chapter on random variables largely contains routine material, but there I've covered Markov’s inequality,
Chebyshev’s inequality, and the weak law of large numbers. In my experience, computer science undergraduates find
simulation absolutely natural (why do sums when you can write a program?) and enjoy the weak law as a license to do
what they would do anyway. You could omit the inequalities and just describe the weak law, though most students run into
the inequalities in later theory courses; the experience is usually happier if they’ve seen them once before.

The chapter on useful probability distributions again largely contains routine material. When I teach this course, I skim
through the chapter fairly fast and rely on students reading the chapter. However, there is a detailed discussion of a normal
approximation to a binomial distribution with large N. In my experience, no one enjoys the derivation, but you should know
the approximation is available, and roughly how it works. I lecture this topic in some detail, mainly by giving examples.

Inference
This part covers:

* Samples and populations

* Confidence intervals for sampled estimates of population means

+ Statistical significance, including t-tests, F-tests, and y>-tests

e Very simple experimental design, including one-way and two-way experiments
* ANOVA for experiments

* Maximum likelihood inference

* Simple Bayesian inference

* A very brief discussion of filtering

The material on samples covers only sampling with replacement; if you need something more complicated, this will get you
started. Confidence intervals are not much liked by students, I think because the true definition is quite delicate; but getting
a grasp of the general idea is useful. You really shouldn’t omit these topics.

You shouldn’t omit statistical significance either, though you might feel the impulse. I have never dealt with anyone who
found their first encounter with statistical significance pleasurable (such a person might exist, the population being very
large). But the idea is so useful and so valuable that you just have to take your medicine. Statistical significance is often seen
and sometimes taught as a powerful but fundamentally mysterious apotropaic ritual. I try very hard not to do this.

I have often omitted teaching simple experimental design and ANOVA, but in retrospect this was a mistake. The ideas are
straightforward and useful. There’s a bit of hypocrisy involved in teaching experimental design using other people’s datasets.
The (correct) alternative is to force students to plan and execute experiments; there just isn’t enough time in a usual course
to fit this in.

Finally, you shouldn’t omit maximum likelihood inference or Bayesian inference. Many people don’t need to know about
filtering, though.
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Tools
This part covers:

* Principal component analysis

* Simple multidimensional scaling with principal coordinate analysis;
¢ Basic ideas in classification;

* Nearest neighbors classification;

* Naive Bayes classification;

* C(Classifying with a linear SVM trained with stochastic gradient descent;
¢ C(Classifying with a random forest;

¢ The curse of dimension;

* Agglomerative and divisive clustering;

* K-means clustering;

e Vector quantization;

* A superficial mention of the multivariate normal distribution;

* Linear regression;

e A variety of tricks to analyze and improve regressions;

* Nearest neighbors regression;

* Simple Markov chains;

* Hidden Markov models.

Most students in my institution take this course at the same time they take a linear algebra course. When I teach the
course, I try and time things so they hit PCA shortly after hitting eigenvalues and eigenvectors. You shouldn’t omit PCA. I
lecture principal coordinate analysis very superficially, just describing what it does and why it’s useful.

I’ve been told, often quite forcefully, you can’t teach classification to undergraduates. I think you have to, and in my
experience, they like it a lot. Students really respond to being taught something that is extremely useful and really easy to
do. Please, please, don’t omit any of this stuff.

The clustering material is quite simple and easy to teach. In my experience, the topic is a little baffling without an
application. I always set a programming exercise where one must build a classifier using features derived from vector
quantization. This is a great way of identifying situations where people think they understand something, but don’t really.
Most students find the exercise challenging, because they must use several concepts together. But most students overcome
the challenges and are pleased to see the pieces intermeshing well. The discussion of the multivariate normal distribution is
not much more than a mention. I don’t think you could omit anything in this chapter.

The regression material is also quite simple and is also easy to teach. The main obstacle here is that students feel something
more complicated must necessarily work better (and they’re not the only ones). I also don’t think you could omit anything in
this chapter.

In my experience, computer science students find simple Markov chains natural (though they might find the notation
annoying) and will suggest simulating a chain before the instructor does. The examples of using Markov chains to produce
natural language (particularly Garkov and wine reviews) are wonderful fun and you really should show them in lectures. You
could omit the discussion of ranking the Web. About half of each class I've dealt with has found hidden Markov models easy
and natural, and the other half has been wishing the end of the semester was closer. You could omit this topic if you sense
likely resistance, and have those who might find it interesting read it.

Mathematical Bits and Pieces

This is a chapter of collected mathematical facts some readers might find useful, together with some slightly deeper
information on decision tree construction. Not necessary to lecture this.

Urbana, IL, USA David Forsyth
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Notation and Conventions

A dataset is a collection of d-tuples (a d-tuple is an ordered list of d elements). Tuples differ from vectors, because we can
always add and subtract vectors, but we cannot necessarily add or subtract tuples. There are always N items in any dataset.
There are always d elements in each tuple in a dataset. The number of elements will be the same for every tuple in any given
tuple. Sometimes we may not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will be vectors. We write a vector in bold, so x
could represent a vector or a tuple (the context will make it obvious which is intended).

The entire dataset is {x}. When we need to refer to the ith data item, we write x;. Assume we have N data items, and we
wish to make a new dataset out of them; we write the dataset made out of these items as {x;} (the i is to suggest you are
taking a set of items and making a dataset out of them). If we need to refer to the jth component of a vector x;, we will write

(’ (notice this isn’t in bold, because it is a component, not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

When I write {kx}, I mean the dataset created by taking each element of the dataset {x} and multiplying by k; and when I

write {x + ¢}, I mean the dataset created by taking each element of the dataset {x} and adding c.

Terms

¢ mean ({x}) is the mean of the dataset {x} (Definition 1.1, page 7).

¢ std ({x}) is the standard deviation of the dataset {x} (Definition 1.2, page 10).

e var ({x}) is the standard deviation of the dataset {x} (Definition 1.3, page 13).

¢ median ({x}) is the standard deviation of the dataset {x} (Definition 1.4, page 13).

« percentile({x}, k) is the k% percentile of the dataset {x} (Definition 1.5, page 14).

 igr{x} is the interquartile range of the dataset {x} (Definition 1.7, page 15).

e {x} is the dataset {x}, transformed to standard coordinates (Definition 1.8, page 18).

* Standard normal data is defined in Definition 18 (page 19).

* Normal data is defined in Definition 1.10 (page 19).

e corr({(x,y)}) is the correlation between two components x and y of a dataset (Definition 2.1, page 39).

e () is the empty set.

e Q is the set of all possible outcomes of an experiment.

* Sets are written as A.

e A°is the complement of the set A (i.e., 2 — A).

e & is an event (page 341).

o P({&}) is the probability of event £ (page 341).

e P({E}|{F}) is the probability of event £, conditioned on event F (page 341).

e p(x) is the probability that random variable X will take the value x, also written as P({X = x}) (page 341).

e p(x,y) is the probability that random variable X will take the value x and random variable Y will take the value y, also
written as P({X = x} N {Y = y}) (page 341).

argmax f(x) means the value of x that maximizes f(x).

argmm f(x) means the value of x that minimizes f(x).

. max,(f (x;)) means the largest value that f takes on different elements of the dataset {x;}.
¢ 0 is an estimated value of a parameter 6.
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XXiv Notation and Conventions

Background Information

Cards: A standard deck of playing cards contains 52 cards. These cards are divided into four suits. The suits are spades and
clubs (which are black) and hearts and diamonds (which are red). Each suit contains 13 cards: ace, 2, 3,4, 5,6, 7,8, 9, 10,
jack (sometimes called knave), queen, and king. It is common to call jack, queen, and king court cards.

Dice: If you look hard enough, you can obtain dice with many different numbers of sides (though I’ve never seen a three-
sided die). We adopt the convention that the sides of an N-sided die are labeled with numbers 1...N and that no number is
used twice. Most dice are like this.

Fairness: Each face of a fair coin or die has the same probability of landing upmost in a flip or roll.

Roulette: A roulette wheel has a collection of slots. There are 36 slots numbered with digits 1 ... 36, and then one, two, or
even three slots numbered with zero. There are no other slots. Odd-numbered slots are colored red, and even-numbered slots
are colored black. Zeros are green. A ball is thrown at the wheel when it is spinning, and it bounces around and eventually
falls into a slot. If the wheel is properly balanced, the ball has the same probability of falling into each slot. The number of
the slot the ball falls into is said to “come up.”
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