Skip to main content

Motion-Coherent Affinities for Hypergraph Based Motion Segmentation

  • Conference paper
  • First Online:
Book cover Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10424))

Included in the following conference series:

  • 1403 Accesses

Abstract

Motion segmentation is the task of classifying the feature trajectories in an image sequence to different motions. Hypergraph based approaches use a specific graph to incorporate higher order similarities for the estimation of motion clusters. They follow the concept of hypothesis generation and validation. For the sampling of hypotheses, a high probability of selecting clean samples, i.e. samples consisting of points from the same cluster, is desired. Many approaches use spatial proximity to build an auxiliary graph for the sampling. But, spatial proximity is often not sufficient to capture the main affinities for motion segmentation. Thus, we introduce a simple but effective model for incorporating motion-coherent affinities into the auxiliary graph. The evaluation on two state of the art benchmarks shows that the hypotheses generated from the resulting hypergraphs lead to a significant decrease of the segmentation error. Additionally, less computation time is required due to a reduced hypergraph complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33(3), 500–513 (2011)

    Article  Google Scholar 

  2. Brox, T.: Higher order motion models and spectral clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 614–621. IEEE Computer Society (2012)

    Google Scholar 

  3. Chen, G., Lerman, G.: Spectral curvature clustering (SCC). Int. J. Comput. Vision (IJCV) 81(3), 317–330 (2008)

    Article  Google Scholar 

  4. Chin, T.J., Yu, J., Suter, D.: Accelerated hypothesis generation for multistructure data via preference analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 34(4), 625–638 (2012)

    Article  Google Scholar 

  5. Cordes, K., Hockner, M., Ackermann, H., Rosenhahn, B., Ostermann, J.: WM-SBA: weighted multibody sparse bundle adjustment. In: 14th IAPR International Conference on Machine Vision Applications (MVA), pp. 162–165 (2015)

    Google Scholar 

  6. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vision (IJCV) 96(1), 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 23(6), 643–660 (2001)

    Article  Google Scholar 

  8. Li, Z., Guo, J., Cheong, L.F., Zhou, S.: Perspective motion segmentation via collaborative clustering. In: IEEE International Conference on Computer Vision (ICCV), pp. 1369–1376 (2013)

    Google Scholar 

  9. Li, Z., Cheong, L.-F., Yang, S., Toh, K.C.: Simultaneous clustering and model selection for tensor affinities. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Liu, H., Yan, S.: Efficient structure detection via random consensus graph. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 574–581 (2012)

    Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision (IJCV) 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. MacKay, D.J.: The Swendson-Wang method. In: Information Theory, Inference and Learning Algorithms. Cambridge University Press (2003)

    Google Scholar 

  13. Ozden, K., Schindler, K., Van Gool, L.: Simultaneous segmentation and 3D reconstruction of monocular image sequences. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)

    Google Scholar 

  14. Pham, T.T., Chin, T.J., Yu, J., Suter, D.: The random cluster model for robust geometric fitting. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 36(8), 1658–1671 (2014)

    Article  Google Scholar 

  15. Poling, B., Lerman, G.: A new approach to two-view motion segmentation using global dimension minimization. Int. J. Comput. Vision (IJCV) 108(3), 165–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Purkait, P., Chin, T.-J., Ackermann, H., Suter, D.: Clustering with hypergraphs: the case for large hyperedges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 672–687. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_44

    Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 22(8), 888–905 (2000)

    Article  Google Scholar 

  18. Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987)

    Article  Google Scholar 

  19. Tron, R., Vidal, R.: A benchmark for the comparison of 3D motion segmentation algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  20. Vidal, R., Ma, Y., Soatto, S., Sastry, S.: Two-view multibody structure from motion. Int. J. Comput. Vision (IJCV) 68(1), 7–25 (2006)

    Article  Google Scholar 

  21. Wang, H., Xiao, G., Yan, Y., Suter, D.: Mode-seeking on hypergraphs for robust geometric model fitting. In: The IEEE International Conference on Computer Vision (ICCV), pp. 2902–2910 (2015)

    Google Scholar 

  22. Xiao, G., Wang, H., Lai, T., Suter, D.: Hypergraph modelling for geometric model fitting. Pattern Recogn. 60, 748–760 (2016)

    Article  Google Scholar 

  23. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems (NIPS), vol. 19. MIT Press (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Cordes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cordes, K., Ray’onaldo, C., Broszio, H. (2017). Motion-Coherent Affinities for Hypergraph Based Motion Segmentation. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10424. Springer, Cham. https://doi.org/10.1007/978-3-319-64689-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64689-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64688-6

  • Online ISBN: 978-3-319-64689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics