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Abstract. Embedded devices are playing a major role in our way of
life. Similar to other computer systems embedded devices are vulnerable
to code-reuse attacks. Compromising these devices in a critical environ-
ment constitute a significant security and safety risk. In this paper, we
present µShield, a memory corruption exploitation mitigation system for
embedded COTS binaries with configurable protection policies that do
not rely on any hardware-specific feature. Our evaluation shows that
µShield provides its protection with a limited performance overhead.
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1 Introduction

From critical infrastructure to consumer electronics, embedded systems are all
around us and underpin the technological fabric of everyday life.

The rise of the Internet-of-Things has seen a widespread proliferation of so-
called ’smart devices’ with everything from fridges to smoke detectors and door
locks being fitted with a small computer communicating with its environment.

Just like any computer, these devices have vulnerabilities that can be
exploited by attackers. The sheer number of embedded devices and their perva-
siveness in our lives makes them an attractive target. Attackers are now starting
to focus on embedded devices is demonstrated by the recent attacks on DYN
network, and the release of the MIRAI botnet [14]. The result is that manufactur-
ers that historically did not have to worry about the security of their embedded
products now face a challenging situation: The security measures developed in
the last 20 years for general-purpose computers are hard to apply to embedded
systems. This is so for a number of reasons which include the fact embedded
systems are very diverse from each other in terms of computational resources.
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In this paper, we focus on protecting embedded devices from memory cor-
ruption and code-reuse attacks such as buffer overflow, heap exploitation, use-
after-free and Return Oriented Programming (ROP). These attacks exploit an
important class of vulnerabilities because of the fact that embedded software
development is dominated by the C language (around 66%) [8,18]. Indeed, in
the recent security literature, we find a number of approaches addressing memory
corruption attacks in embedded systems [11,19,27].

Here, we depart from the previous approaches because we want to take into
consideration from the start the following three constraints that we argue being
of crucial importance in the ecosystem of embedded systems:

Firstly, embedded systems are extremely heterogeneous in terms of process-
ing power (which can be very low), the available resource and responsiveness
requirements. This implies that a memory protection solution must address this
issue, by providing flexible protection based on the performance specification of
the embedded system.

Secondly, vendors of various embedded equipment tend to procure third party
software only available in Commercial Off-The-Shelf (COTS) binary form, with-
out access to source code of this software.

Thirdly, the hardware landscape of embedded systems is much more diverse
than that of general-purpose computers, and we cannot expect that embedded
systems already in production be retrofitted with upgraded hardware. In general,
one cannot rely on the presence of any particular hardware, hardware-facilitated
functionality or hardware-specific features for a memory corruption mitigation
approach in embedded systems.

In this paper, we introduce µShield an open source [2] code-reuse mitigation
system for embedded binaries. µShield addresses the performance and require-
ments diversity (the first constraint) by providing configurable protection poli-
cies, that can be tailored to the specific system. Also, µShield protects COTS
binaries without relying on the control-flow graph and can work with a hardware-
agnostic cryptographically secure shadow stack.

To the best of our knowledge, no memory corruption mitigation approach
for embedded systems addresses all limitations mentioned above. Finally, for
evaluation of µShield we choose ARM architecture due to its wide application
in the embedded world.

1.1 Our Contributions

The main contributions of our work are the followings:

– Configurable Policies: µShield provides configurable protection policies.
The user can specify different levels of protection (depending on an overhead-
security trade-off made by them).

– Hardware agnostic: µShield is not relying on the presence of any special
hardware, hardware-facilitated functionality or hardware-specific features.
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– Cryptographically secure parallel shadow stack: with our shadow stack
implementation we present the, to the best of our knowledge, first par-
allel shadow stack for ARM and the first hardware-agnostic adoption of
cryptographically-enforced protection for shadow-stacks in general.

– Stack frame integrity walker: we propose a new lightweight, coarse-
grained backward-edge CFI heuristic which works by walking stack frame
chains and checking all saved return addresses for control-flow integrity.
It imposes minimal overhead while being hardened against known attacks
against coarse-grained CFI techniques.

– Performance evaluation based on the worst-case scenario: we evaluate
µShields performance and memory overhead in several worst-case scenarios
instead of the average case scenario. We show that our basic level of protection
consistently manages to stay below the 1% overhead while our advanced level
of protection manages to stay below 15% overhead in most scenarios.

2 Background

In the last decade the research community suggested two different approaches to
address memory corruption vulnerabilities both in general-purpose computers
and embedded systems. The approaches are the followings:

– Behavior-based Heuristics: there have been various proposals to detect
control-flow hijacking, by leveraging execution behavior of exploit charac-
teristics, such as heap-spraying detection [16], detection of specific payload
behaviors such as external library loading or stack pivots.

– Control-flow Integrity: CFI is a technique placing restrictions on control-flow
transfers to make runtime control-flow conform (with various degrees of accu-
racy) to intended program control-flow. The seminal work by Abadi et al. [1]
proposed a fine-grained analysis and enforcement scheme which unfortunately
incurred high overhead. This has lead to the proliferation of CFI proposals
seeking to address performance overhead through various trade-offs. However
CFI systems also have their own limitations as we describe it in Sect. 2.1.

2.1 Applicability of Related Works for Our Constraints

Since one of the constraints we described for embedded systems protection was
COTS support, in Table 1 we list the initial selection of COTS binary sup-
porting solutions against several of the other criteria imposed by our environ-
ment as outlined in Sect. 1. In the table, the term hardware-agnostic indicates
whether a solution relies on features specific to particular hardware (e.g., Intel’s
LBR) or not. The term CFG reliance indicates whether a solution requires CFG
extraction from the protected binary in question in order to function. The term
bypassed shows that bypasses for the work have been constructed under attacker
models equal to or weaker than the one presented in Sect. 2.2 in either academic
work or practical exploitation. With regards to performance overhead, we rely
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Table 1. Platform applicability

Solution Hardware-agnostic CFG Reliance Bypassed Worst. overhead

kBouncer [24] No (LBR) No Yes 6%

ROPdefender [13] Yes No No 200%

DROP [9] Yes No Yes 530%

ROPstop [20] Yes Yes No 19.1%

PathArmor [33] No (LBR) Yes No 27.3%

BinCFI [35] Yes No Yes 42%

CFCI [36] Yes No No 83%

MoCFI [11] Yes Yes No 1106.8%

O-CFI [22] No (Intel MPX) Yes No 11%

Lockdown [26] Yes No No 273%

CET [25] No (Intel CET) No No Unreported

on the worst overhead reported by the authors of each work, or measured by
Burow et al. [6].

As can be seen in the Table 1, none of the surveyed solutions meets all the
criteria. One interesting conclusion that can be drawn is that there seems to be
a triangular trade-off between hardware-agnosticism, security and performance
overhead, with the best-performing solutions either being hardware-facilitated
or lacking in offered security.

2.2 Threat Model

Our attack scenario consists of control-flow hijacking memory corruption attacks
under a minimum system security baseline. Minimum system security base-
line consists of deploying existing readily available, exploit mitigation tech-
niques named as NX, ASLR, Stack canaries and Full RELRO to our protected
application.

We assume powerful attacker model in which the attacker has an arbitrary
info-leak primitive (i.e., can read from arbitrary locations in memory) and a
vulnerability allowing them to overwrite control-flow elements (e.g., return-
addresses, function pointers). While most modern security mechanisms assume
the attacker cannot (arbitrarily) read memory, under our attacker model the
attacker can bypass them (e.g., by using the info-leak to bypass stack cookies
and ASLR [3]) provided she can to construct a code reuse payload to bypass
Non eXecutable (NX) memory protection.

*-Oriented Programming (XOP). We use the term “*-Oriented Program-
ming” (XOP) to refer to exploitation techniques making use of code reuse in
general. Taxonomically, code reuse attacks can be divided into Return-Oriented
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Programming (ROP), Jump-Oriented Programming (JOP) [4], Call-Oriented
Programming (COP) [7]. Given our target architecture (ARM) (where there are
no dedicated call, return or jump instructions but rather direct and indirect
branching instructions) we can conflate ROP, JOP and COP into the single
category of XOP with little problems.

3 µShield Design

3.1 Design Overview

µShield offers two levels of security, basic and advanced, on a per-application
configurable basis. µShield consists of three core components:

1. Setup Module: The setup module checks whether the system meets mini-
mum baseline requirements and harvests instrumentation points from a given
application for the Runtime Protection Module (RPM) configuration file.

2. Kernel Protection Module (KPM): The KPM offers the basic protection
level in the form of behavior-based heuristics and coarse-grained backward-
edge CFI. It is implemented as a kernel module hooking a variety of security-
sensitive system calls. Upon hooks invocation the KPM execute its heuristic.

3. Runtime Protection Module (RPM): The RPM offers the advanced pro-
tection level in the form of fully-precise backward-edge CFI and coarse-
grained forward-edge CFI. It is implemented as an LD PRELOAD library
instrumenting function prologues and epilogues to implement a shadow stack
(for backward-edge CFI) and code pointer calls to implement dynamic func-
tion call validation (for relaxed forward-edge CFI).

Figure 1 illustrates the deployment of µShield on a target system.

Fig. 1. High-level illustration of a µShield deployment.
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3.2 Detection Mechanisms

The detection mechanisms of the KPM and RPM are based on behavior-based
heuristics and CFI policies. Generally speaking, the former offer inferior security
coverage but impose less overhead, while the latter offer better security coverage
with more overhead. For this reason, we adopt behavior-based heuristics in our
basic protection component (the KPM), to allow users to enable only the KPM
for the most lightweight variant of µShield. Given the strict overhead constraints
for embedded systems, the lack of access to target applications source-code (and
hence our limited ability to extract accurate CFGs), we choose coarse-grained
CFI in our advanced component (the RPM).

3.3 Kernel Protection Module

Minimum security baseline is essential for KPM. The restrictions imposed by the
minimum security baseline force the adversary to exploit vulnerabilities using a
limited set of patterns which is well known to the KPM. This allows us to employ
a lightweight monitoring approach, which triggers inspection only at specific
points during the execution of an application using a limited set of heuristics.

Stack Frame Integrity Walker. The coarse-grained backward-edge CFI in
the KPM is implemented in the form of a stack frame integrity walker. As part of
calling conventions, functions get allocated a local stack frame containing, among
other things, a return address to the caller. In order to facilitate debugging and
error reporting many applications require the ability to unwind stack frames,
that is, to walk a chain of nested function calls backwards from the current
frame all the way to the top of the stack. The most common and stable way
to facilitate this is through the presence of frame pointers, which are present
in every local stack frame and constitute a pointer to the previous stack frame,
resulting in a linked list that can be walked upwards. It is thus possible to inspect
a local stack frame, walk the chain upwards and inspect all return addresses along
the way. Our walker does just this and, for every return address encountered,
decides whether it is valid, meaning it is preceded by a Branch-with-Link (BL)
instruction (the ARM equivalent of a call). As per calling convention, every
function call has to return to an address preceded by such an instruction and
violation of this indicates CFI has been subverted. In this case, we raise an alert.
In addition, return-addresses are not allowed to point to stack or heap memory.
This principle is known as branch-precedence [15] and has been part of other
coarse-grained CFI solutions.

However our approach is completely different from the work in [15]. Firstly
existing branch-precedence heuristics only check the current stack frame for a
branch-preceded return address. µShield instead validates the return address of
the entire stack frame chain. Secondly, heuristics based on [15] can be bypassed
by means of so-called trampoline gadgets (also known as Call-Ret [12], Call-
Site [17] and Invocation gadgets [30]). To address this issue, some CFI solutions
use length-based heuristic gadget classifiers and raise an alert if more than N
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sequences of less than M instructions were spotted (i.e. N gadgets). But such
classifiers can be bypassed by using heuristic breakers such as long-NOP and ter-
mination gadgets [7,12]. Our work instead seeks to identify trampoline gadgets
by checking if a return address has a call/indirect-branch-with-link and return-
type instruction within N instructions from the gadget start. If so, we mark it as
a trampoline gadget. Once more than M trampoline gadgets have been detected
we raise an alert. We found N = 5 and M = 2 as ideal values that do not produce
false positives. Evading this heuristic would require attackers to use less than
M trampoline gadgets, exposing them to regular branch-precededness checks in
the process. Note that this heuristic constitutes only our lightweight protection
for devices which simply cannot afford fine-grained CFI.

3.4 Runtime Protection Module

Backward-Edge CFI Using Shadow Stack. µShield uses full parallel
shadow stack [10] for the program stack meaning that all stack operations of
the program is synchronized with our shadow stack. In µShield the function call
handler pushes the return address on the shadow stack while the function return
handler checks the top of the shadow stack against the return address.

Forward-Edge CFI. In addition to the backward-edge CFI offered by the
shadow stack, we include in the RPM a (relaxed) forward-edge CFI mecha-
nism for dynamic code pointer calls which uses a function prologue validation
heuristic. The heuristic validates whether the call destination is a valid function
prologue. The coarse-grained nature of this measure means that some degree
of security is traded for performance and applicability. Since forward-edge CFI
relies on precise approximation of the intended application CFG and our envi-
ronmental constrains impose a binary-only solution without reliance on CFG
extraction, we opt for a coarse-grained CFI that considers any function prologue
(but only valid function prologues) a valid control-flow destination for dynamic
code pointer calls.

3.5 Theoretical Analysis of CFI Mechanisms

Using the theoretical taxonomy provided by Burow et.al. [6] we obtain the fol-
lowing security qualifications for the CFI aspects of our solution:

– KPM: Backward-Edge (D), CF.1, SAP.F.0, SAP.B.1
– RPM: Backward and Forward-Edge (D), CF.1/CF.5, SAP.F.1a, SAP.B.2

The comparison provided by Burow et.al. [6] can give an overview of µShield
compared to other CFI solutions. We can conclude our KPM provides minimal-
istic backward-edge CFI while our RPM provides minimalistic forward-edge CFI
but highly precise backward-edge CFI (which, in addition, is not hampered by
hardware limitations).
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4 µShield Implementation Details

4.1 Setup Module

Setup module consists of the following sub-system:

– Harvesting function prologues and epilogues: We identify all functions in the
target binary. We search prologues and epilogues for the register-saving and
register-restoring instructions which respectively save and restore the return
address from the stack. These addresses are added to a configuration file for
use by the RPM.

– Harvesting code pointer call sites: We identify all functions in the target
binary. Within the function body, we search for register-relative Branch-with-
Link (i.e., BLX Rx) instructions, which is how ARM represents dynamic code
pointer calls. These addresses are added to a configuration file for use by the
RPM.

We implement the setup module in our prototype using two different under-
lying frameworks: IDAPython which is built on top of IDA Pro and the Angr [31]
framework. In both cases, identification of functions is done heuristically without
requiring reliable CFG extraction and both frameworks can work with COTS
binaries without debugging information.

4.2 Kernel Protection Module

Syscall Hooking. The KPM time of check is set to (a subset of) syscall invo-
cations. We do this by fetching the system call table address and replacing the
entries to be hooked with the addresses of our hook functions, while storing the
original addresses so they can be called by the hook functions.

Stack Frame Integrity Walker. The walker is illustrated in Fig. 2. It walks
the chain of stack frames from the current stack frame up to the topmost frame
and, along the way, checks whether the return addresses contained within them

Fig. 2. Stack frame integrity walker
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are valid. If it encounters an invalid return address, an alert is raised. Fur-
thermore, it counts the number of return addresses which qualify as trampoline
gadgets(comprising Call-Ret Pair [12] and Call-Site [17]) if the count exceeds
a certain threshold, it raises an alert. This part of our heuristic was specifi-
cally designed to address the attacks where attacker crafts payloads consisting
of gadgets which are branch-preceded, thus illegitimately qualifying as valid
return-sites [12,17]

We consider a return-address valid if and only if it does not point to the
stack or heap and is Branch-with-Link-preceded. Also, we consider an address a
trampoline gadget (or dispatcher/call-site gadget [17]) if and only if it contains,
within threshold of N instructions from its start, an indirect Branch-With-Link
instruction (or semantic equivalent) followed within M instruction by any indi-
rect branch.

Maximum walking depth. We walk the stack frame chain upward up until a
threshold depth of N (where N is larger than the deepest function nesting we
can reasonably expect) after which we terminate. We do this in order to pre-
vent attackers from executing a denial of service attack through crafting self-
referential stack frames which would cause an infinite loop in kernel space.

Chain-walking complications. Walking the chain of stack frames can be tricky
depending on system circumstances. The ideal scenario is one where binaries are
compiled with frame pointer support (what we name FP-compliance) in which
case we can simply take the Frame Pointer register (FP), look up the stack
frame, and walk a linked list backwards to the top.

Developers have argued against omission of frame pointers for decades [5]
since they are required for efficient stack trace calculations. FP-compliance
up to recently was also mandatory for compliance with the Embedded Applica-
tion Binary Interface (EABI). Alternatively µShield can use binary debugging
information or static backward data flow reconstruction using static analysis
(although suboptimal) to complete the chain-walking.

4.3 Runtime Protection Module

Instrumentation. Our instrumentation approach is done completely native to
the RPM and does not rely on any pre-existing frameworks, since these either do
not offer ARM support (e.g., static instrumenting like DynInst, PEBIL) or they
come with significant overhead (e.g., dynamic instrumentation like Valgrind,
DynamoRio, PIN).

Our approach consists of identifying the function’s main routine start point
and instrumenting it to set up the shadow stack and subsequently taking all
the instrumentation points identified by the setup module and instrumenting
them (with detour hooks) redirecting control flow to our shadow stack handler
and code pointer call handler routines. These routines are implemented in ARM
assembly and are designed to be as lightweight as possible to limit overhead.
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Shadow Stack. In order to provide fully-precise backward-edge CFI we imple-
ment a lightweight checking parallel shadow stack as illustrated in Fig. 3. We
instrument the first instruction of the program’s main routine to call a shadow
stack setup handler, which allocates a memory area which will serve as a ded-
icated shadow stack, located at a fixed offset from the stack-pointer. As the
program executes, the shadow stack synchronizes with the regular stack thus
avoiding the need to walk the entire shadow stack to check for valid return
addresses (as is the case with regular shadow stacks). This parallel approach
allows us to avoid problems plaguing implementations of traditional shadow
stacks [13,34]. While our current prototype does not support multi-threading,
there is no reason µShield cannot be extended to support multi-threading by
using multiple dedicated shadow stacks for each thread.

Fig. 3. Checking, parallel shadow stack

We instrument all function prologues and epilogues to detour to shadow stack
prologue and epilogue handlers (fully implemented in assembly). The prologue
handlers take the return address (stored in the Link Register (LR)) and write
them to the shadow stack (i.e., the memory address at fixed offset from the
current stack pointer).

Cryptographically-Enforced Shadow Stack Variant. Since most shadow
stack proposals and implementations do not deal with the issue of securing the
shadow stack itself, Mashtizadeh et.al. [21] have proposed Cryptographically-
enforced CFI (CCFI) which stores the keyed Message Authentication Code
(MAC) tag of a combination of the shadow stack address and original
return address to the shadow stack rather than the original return address
itself. The shadow stack prologue handler calculates the tag as *tag =
MAC(return address | shadow address | ..., secret key)* and stores it
to the shadow stack and the epilogue handler simply takes the intended return
address of a function, calculates the corresponding tag, compares it against the
stored tag on the shadow stack and raises an alert upon mismatch. The shadow
stack address is included with the return address in order to prevent attackers
from swapping two tags on the shadow stack (similarly to replay protection).
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With this approach, even an attacker capable of manipulating the shadow stack
itself cannot hijack control-flow without being able to forge a MAC entry, a
problem which is reducible to the cryptographic security of the MAC.

However, the CCFI approach in [21] does not meet our criteria since it is
neither hardware agnostic (it relies on the x86 AES-NI extension) nor binary
COTS compatible (it requires source-code access). We adapted CCFI to meet our
criteria by implementing a binary-COTS compatible version in our shadow stack
prologue and epilogue handlers using a customized software-only implementation
of the lightweight Chaskey-8 [23] MAC algorithm for ARM consisting of only 166
instructions. In addition, we omit any information beyond return address and
shadow stack address from the MAC to improve performance. Given that the
security of the MAC rests on the secrecy of the key it is important it does not
leak to the attacker. As such, the key is stored in a large register (eg. NEON or
VFP on ARM or XMM on x86) unused by the program or otherwise determined
to never leak to the program state.

Code Pointer Call Validation. To provide a form of forward-edge CFI we
instrument all code pointer calls that is, all indirect register-relative branches,
and check whether they point to a valid function prologue. This is a “relaxed”
form of CFI, since it does not restrict an attack in redirecting hijacked code
pointers but it does restrict them to target valid function prologues rather than
any XOP gadget.

We leverage the fact that our minimum security baseline guarantees all func-
tions are compiled with stack cookie support. This means that each function
prologue will contain a sequence of instructions setting up the stack cookie and
storing it on the stack which we will use as an instruction signature for validating
function prologues. Thus, given a target code pointer call destination address,
we can check whether we find the above instruction sequence within threshold
instruction bound N and, if not, raise an alert. The number of false negatives
here is minimal as the first instruction in the sequence consists of the loading of a
rarely referenced static address located in the program images .bss segment (the
stack cookie storage address) followed by a dereference and storing instruction.

In addition we impose that there are no branch instructions of any kind in
between the above instructions, to prevent attackers from targeting potential
gadgets that, for whatever reason, happen to conform to the above form or
gadgets located less than N instructions before a valid function prologue.

The Code pointer call validation restricts function calls to legitimate func-
tion prologues rather than only intended ones. As such it rules out targeting
of arbitrary gadgets but leaves room for an attacker to swap arbitrary function
calls. An attacker wishing to extend this ability into crafting an actual gadget
chain would need to use Entry-Point Gadgets (EP-Gadgets) [17] which con-
sist of a sequence of instructions starting at a legitimate function entry point
and end with an indirect branch. EP-Gadgets thus begin at allowable destina-
tions for control transfers. While an attacker could use EP-gadgets to bypass
our code pointer call validation heuristic they would need to craft an entire



µShield 705

chain consisting only of EP-gadgets since all code pointer calls are instrumented
with our forward-branch validation code. In addition, our instrumentation of
function prologues and epilogues means that within such an EP-gadget chain
any executed prologue needs to be matched with a corresponding epilogue in
order to prevent shadow-stack mismatches from raising an alert which implies
EP-gadgets can only be executed as chains of fully-executed functions rather
than the cobbled-together segments that usually constitute gadgets. As such we
consider practical exploitation of this weakness to be highly complicated if not
practically infeasible in most cases. Given the extremely low overhead impact of
this measure we consider the above weakness to be acceptable, especially in the
light of the security offered by our backward-edge CFI.

5 Evaluation and Discussions

5.1 Performance Evaluation

We performed the overhead evaluation on a Raspberry Pi 1 Model B+, which
features a 800 MHz single-core ARM1176JZF-S CPU and 512 MB RAM, running
the Raspbian Jessie Lite Linux distro with Linux kernel 4.1. In order to reduce
system noise which could interfere with benchmarking we ensured tests were run
on a “barebones” system with no services or applications apart from core system
processes running alongside the tests.

Due to historical reasons, most authors working on CFI tend to use the
SPEC [32] CPU benchmarking suite to measure performance overhead. However,
we cannot adopt this approach for evaluating µShield due to several reasons.

First, existing work in the area of memory corruption mitigation tends to
measure its overhead against applications representative of an average case usage
scenario. This is unsuitable for our purposes, since an overhead indication in
such average-case scenarios tends to wildly vary from the overhead experienced
in worst-case outliers scenarios.

Secondly, our hardware (a Raspberry Pi) does not satisfy the minimum hard-
ware requirement of SPEC. SPEC requires 1 GB of RAM in a 32bit CPU while
our Raspberry Pi does provide only 512 MB or memory. As alternative to SPEC
benchmarks, in addition to the applications we selected to represent worst-case
scenarios, we choose the SciMark2 [29] scientific computing benchmarking suite,
since its functionality was integrated as part of SPEC but did (unlike the full
SPEC suite) meet the requirements of our platform.

Constrained Overhead Test. We refer to our overhead testing suite as the
Constrained Overhead Test (COT). The COT consists of the following compo-
nents.

– SciMark2 [29]. A benchmark for scientific and numerical computing designed
by NIST. SciMark has been integrated as part of SPEC.
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– lshw. A linux tool that gathers information about the hardware present in
the system. lshw executes a series of syscalls in order to obtain low-level
information about hardware capabilities which makes it suitable as a test for
the frequent invocation of our KPM heuristics.

– primes. A demonstration program shipped with GMP (GNU Multiple Preci-
sion arithmetic library), that computes a list of all primes between two given
numbers using a prime number sieve, with a large number of function calls
in every execution.

– nqueens. A simple program recursively solving the n-queens problem com-
monly used as part of CPU performance benchmarking suites such as the
Phoronix Test Suite [28].

Overhead Figures. Each component of the COT was tested with four different
configurations of µShield to get insights into the performance overhead imposed
by individual and combined components.

Per configuration, each benchmark was run 50 times so as to minimize ran-
dom bias. Memory overhead was measured for the RPM in all applicable config-
urations but not for the KPM (due to technical complications). However, since
the KPM does not allocate any memory on the heap nor allocates any stack
variables of significant size, we can consider its imposed memory overhead negli-
gible. Table 2 reports an overview of CPU overhead measurements for the entire
COT, while Table 3 reports memory overheads.

The results show that for the benchmarking suite SciMark2 we remain below
4.7% performance overhead at all times. The results also show that for the
selected worst-case scenarios the imposed CPU overhead tends to stay below
14.4%. When only basic level security is enabled (in the form of the KPM) CPU
overhead always stays equal to or below 0.5% with the bulk of the overhead
of full protection being due to the RPM backward-edge CFI (in the form of its

Table 2. Worst case CPU overhead overview for KPM, KPM plus RPM Forward-Edge
(FE), KPM plus RPM Backward-Edge (BE) and KPM plus full RPM protections.

Benchmark No protection KPM KPM + KPM + KPM +

RPM FE RPM BE Full RPM

SciMark2 overhead 27.105 27.240 27.089 28.359 28.199

- 0.50% 0.06% 4.63% 4.04%

lshw overhead 16.946 16.955 17.009 19.260 19.373

- 0.06% 0.38% 13.65% 14.33%

primes overhead 10.126 10.139 10.169 10.698 10.835

- 0.13% 0.42% 5.65% 7.00%

nqueens overhead 4.105 4.106 4.105 4.112 4.112

- 0.02% 0.00% 0.16% 0.17%
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Table 3. Memory overhead for KPM, KPM plus RPM Forward-Edge (FE), KPM plus
RPM Backward-Edge (BE) and KPM plus full RPM protections.

Benchmark No protection KPM KPM + KPM + KPM +

RPM FE RPM BE Full RPM

SciMark2 overhead 10791 10799 10810 10859 10830

- 0.07% 0.17% 0.63% 0.36%

lshw overhead 26547 26475 26729 27475 27382

- −0.27% 0.68% 3.49% 3.14%

primes overhead 10835 10860 10858 10872 10858

- 0.23% 0.21% 0.35% 0.22%

nqueens overhead 10833 10826 10858 10806 10795

- −0.06% 0.24% −0.24% −0.35

shadow stack). This result does, however, strengthen our argument for a modular
solution design, in which vendors using applications closer to such a scenario of
extreme recursion could decide to opt for dropping the RPM backward-edge
CFI which, as shown in Table 2, results in dropping virtually all of the imposed
overhead. Measured memory overheads, as outlined in Table 3, is negligible in
all cases with an observed maximum of 3.49%.

6 Conclusions and Future Work

In this paper, we presented a new code-reuse mitigation system for resource
constrained embedded devices named as µShield. µShield considers the general
constraints imposed by embedded systems such as performance limitations, lack
of fully featured hardware or COTS binaries. Our evaluation shows that µShield
can detect memory corruption attacks defined in our scope and have acceptable
performance overhead under worth case scenarios. Based on our evaluation, we
can argue that despite the limitations in embedded systems, it feasible to have
a protection mechanism for devices with a different level of resources.

Finally, the configurable protection policies and non-intrusive detection app-
roach of µShield paves the way for addressing stricter availability requirements
such as hard real-time for the embedded systems in the future.
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