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Preface

“Let’s think the unthinkable, let’s do the undoable. Let us prepare to grapple with the inef-
fable itself, and see if we may not eff it after all.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency

This book is an introduction for students to the main principles and some of
the most popular techniques that constitute ‘software quality assurance’. It is worth
emphasising from the outset that this book is not a reference book. There are already
plenty of excellent comprehensive Software Engineering reference books in print.

Instead, this book seeks to provide a focus on Quality Assurance that typical,
more generic Software Engineering reference books do not. The goal is to to do so
in such a way that the book can be read from cover to cover throughout the course
of a typical university module. Specifically, this book aims to be:

e Concise: It aims to be small enough to be readable in its entirety over the course
of a typical software engineering module.

e Explanatory: When topics are covered, it is important not merely to describe
what they are, but also why they are the way they are — describing what events,
technologies, and individuals or organisations helped to shape them into what
they are now.

e Applied: Topics will be covered with a view to giving the reader a good idea of
how they can be applied in practice, and by pointing where possible to evidence
about their efficacy.

Quality Assurance is often presented and discussed in somewhat utilitarian terms,
as a set of necessary, occasionally tedious, techniques; required reading for anybody
who aspires to become a capable, reliable Software Engineer. This brings us to the
final, slightly more nebulous objective of this book: To convince the reader that there
is much, much more to Quality Assurance than that.

We inhabit a world in which software is increasingly pervasive — controlling ev-
erything from light bulbs in homes to smart phones, cars, planes, power stations, and
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voting machines. Failures in software quality can have and have had disastrous con-
sequences. There is an urgent need for a widespread appreciation of how precarious
software quality can be, and how it can improved and ensured.

Although the application of Quality Assurance techniques can become ‘tedious’,
this misses what are (for the author at least) the real attractions. The subject is not
only necessary, but academically fascinating too. There is no way of guaranteeing
that a software system will ‘succeed’ - that it will not contain bugs, satisfy the cus-
tomer, and be delivered on time and at cost. The task of building complex systems
according to complex, continuously changing requirements, in a limited amount of
time, within a limited budget, whilst managing large teams of developers, is enor-
mously challenging. There is no single ‘best’ solution, and there are so many open
(often surprising) problems.
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