Undergraduate Topics in Computer Science

Series Editor
Ian Mackie

Advisory Board

Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK

Dexter C. Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA

ITain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

Neil Walkinshaw

Software Quality Assurance

Consistency in the Face of Complexity and
Change

@ Springer

Neil Walkinshaw
Department of Computer Science
University of Leicester

Leicester

UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science

ISBN 978-3-319-64821-7 ISBN 978-3-319-64822-4 (eBook)

DOI 10.1007/978-3-319-64822-4
Library of Congress Control Number: 2017947829

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Emma, Iona, and Dougie.

Preface

“Let’s think the unthinkable, let’s do the undoable. Let us prepare to grapple with the inef-
fable itself, and see if we may not eff it after all.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency

This book is an introduction for students to the main principles and some of
the most popular techniques that constitute ‘software quality assurance’. It is worth
emphasising from the outset that this book is not a reference book. There are already
plenty of excellent comprehensive Software Engineering reference books in print.

Instead, this book seeks to provide a focus on Quality Assurance that typical,
more generic Software Engineering reference books do not. The goal is to to do so
in such a way that the book can be read from cover to cover throughout the course
of a typical university module. Specifically, this book aims to be:

e Concise: It aims to be small enough to be readable in its entirety over the course
of a typical software engineering module.

e Explanatory: When topics are covered, it is important not merely to describe
what they are, but also why they are the way they are — describing what events,
technologies, and individuals or organisations helped to shape them into what
they are now.

e Applied: Topics will be covered with a view to giving the reader a good idea of
how they can be applied in practice, and by pointing where possible to evidence
about their efficacy.

Quality Assurance is often presented and discussed in somewhat utilitarian terms,
as a set of necessary, occasionally tedious, techniques; required reading for anybody
who aspires to become a capable, reliable Software Engineer. This brings us to the
final, slightly more nebulous objective of this book: To convince the reader that there
is much, much more to Quality Assurance than that.

We inhabit a world in which software is increasingly pervasive — controlling ev-
erything from light bulbs in homes to smart phones, cars, planes, power stations, and

vii

viii Preface

voting machines. Failures in software quality can have and have had disastrous con-
sequences. There is an urgent need for a widespread appreciation of how precarious
software quality can be, and how it can improved and ensured.

Although the application of Quality Assurance techniques can become ‘tedious’,
this misses what are (for the author at least) the real attractions. The subject is not
only necessary, but academically fascinating too. There is no way of guaranteeing
that a software system will ‘succeed’ - that it will not contain bugs, satisfy the cus-
tomer, and be delivered on time and at cost. The task of building complex systems
according to complex, continuously changing requirements, in a limited amount of
time, within a limited budget, whilst managing large teams of developers, is enor-
mously challenging. There is no single ‘best’ solution, and there are so many open
(often surprising) problems.

Acknowledgements

This book is an extension of the course notes for the “Software Quality Assurance
and Metrics” course at the University of Leicester, jointly taught to under- and post-
graduate students. The course was originally taught by Helge Janicke (now at De
Montfort University) until I took over as convenor in 2013. Although the course has
changed in several respects, I am very grateful to Helge for developing the initial
structure, and thus setting the direction for a large portion of the subject-matter
covered in this book.

Throughout the writing of the book, several undergraduate and postgraduate stu-
dents have been kind enough to provide valuable feedback on its contents. Many
thanks especially to Cara Bateman, Anita Lad, Shriya Malhotra, and Sylvester
Saracevas.

Finally, I owe a debt of gratitude to the editorial team at Springer, and Ralf Ger-
stner in particular, for their valuable support, feedback, and patience.

Contents

1 Introduction.......... 1
1.1 Consistency, Complexity, and Change 1

L2 SYNOPSIS o vttt e 2

2 What Is Software Quality, and Why Does it Matter? 7
2.1 Why Care about Software Quality?............................ 7

2.2 What Drives Software Quality Assurance? 14

2.3 Defining “Software Quality” 16
2.3.1 The Challenge of Defining Quality...................... 16

2.3.2 Quality Models - a Historical Perspective 18

24 KeyPoints ... 21

3 Software Development Processes and Process Improvement. 23
3.1 Process and Process Improvement in Manufacturing 24
3.1.1 The Industrial Revolution 24

3.1.2 PlanDoCheck Act......... ..o, 26

3.1.3 Quality-Driven Manufacturing in Japan.................. 27

3.14 Total Quality Management 30

3.2 The Software Development Process 31
3.2.1 The WaterfallModel 33

3.2.2 Tterative and Incremental Software Development 35

3.3 Agile Software Development i, 38
3.3.1 The Principles of Agile Software Development 38

332 AnExample: SCRUM 39

3.3.3 Relation to Total Quality Management 42

3.34 Why Not Always Go Agile? 44

3.4 Software Process Improvement - The Capability Maturity Model ... 45

35 KeyPoints 48

ix

Contents

Managing Requirementsand Code 51
4.1 Managing Requirements. iiiiiiiinenn... 51
4.1.1 WhatisaRequirement?............................... 52
4.1.2 Requirements Elicitation 53
4.1.3 Requirements Documentsoiiiinn.... 56
4.1.4 Security Requirementscooiviiiii... 59
4.1.5 Tracing Requirements 60
4.1.6 Prioritisationt 62
4.1.7 Oversight with Kanbanboards 64
4.2 Writing Maintainable Source Code and Handling Change 64
4.2.1 Coding Conventions and Design / Architecture Patterns 65
4.2.2 Collaborative Development and Version Repositories 69
43 KeyPoints 74
Planning Activities and Predicting Costs 77
5.1 Planning 78
5.1.1 Program Evaluation and Review Technique (PERT) 78
51.2 GanttChartsoouti 81
5.2 Predicting CoStS. v v vttt et e 82
52.1 BaseModels ... 82
5.2.2 Parameter Fitting by Linear Regression.................. 83
523 COCOMO ... ittt 84
524 PlanningPoker 90
5.2.5 Uncertainty and Predictive Accuracy 91
5.2.6 Keeping Track of Progressc.ciiivinn... 92
5.3 KeyPoints 94
TeSting 95
6.1 The Foundations of Software Testing 95
6.2 White-Box Testingc.uiiiniiinii i 99
6.2.1 CodeCOVErageuiurniiiieeineineiaea 99
6.2.2 White Box Test Generationooouo... 101
6.2.3 The Case(s) Against Code Coverage 106
6.2.4 Goto Fail: A Case For Code Coverage 108
6.2.5 An Alternative: Mutation Testing 109
6.3 Black-Box Testing..........o i 110
6.3.1 Specification-Based Testing 111
6.3.2 Random Testingcoouuuuiiiieiiinnennnnn. 116
6.3.3 Exposing Security Flaws with Fuzz-Testing 123
6.4 KeyPointsot e 124
Software Inspections, Code Reviews, and Safety Arguments 127
7.1 Formal Inspectionsuuuiiiiiiinneiinnnnneann 128

7.2 Modern Code Reviews - Reviewing Code During Development 128
7.2.1 Tool-Driven Code Review 129

Contents xi

7.2.2 Pull-Based Development 130

7.2.3 The Impact of MCR on Software Development and Quality . 131

7.3 Code Reviewing Techniques iiiiiiia.. 132
7.3.1 Tool-Driven Code Reviewooiia... 133

7.3.2 Developer-driven Code Reviews........................ 134

7.4 Safety Arguments and Inspections of Safety Requirements 136
741 Checklistsuuue e 136

7.4.2 Safety Argumentation and the Goal Structure Notation 138

7.5 KeyPoints ... 139

8 Measurement 141
8.1 Measurement Basics i 142

8.2 MEIIICS ..o ottt 147
8.2.1 Sizeand Complexitycoiiiiniiinnennnnnn.. 148

8.2.2 Modularity Metrics.ovetrn et 153

8.2.3 Maintainability Metrics and the Maintainability Index 158

8.3 Validity and the Use of Goal Question Metric 159
8.3.1 Problemsof Validity.............. ... it 159

8.3.2 GoalQuestion Metric.............coouiiiniiiaen.... 160

84 KeyPoints ... 162

9 Conclusions 165
9.1 Topical and Emerging Quality Concerns 165
9.1.1 Autonomy in Socio-Technical Systems 165

9.1.2 Data-Intensive, Untestable Systems 167

9.2 Concluding Remarks.......... ..o, 169
References. 171

	Preface
	Acknowledgements

	Contents

