Skip to main content

A Model of Electrokinetic Platform for Separation of Different Sizes of Biological Particles

  • Conference paper
  • First Online:
  • 2794 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 639))

Abstract

The dielectrophoresis (DEP) phenomena is a motion of uncharged polarizable particles in the direction of most field strength site within a non-uniform electric field. Unlike various techniques, the DEP is an effective technique for particles manipulation and separation of biological particles. The manipulation and separation of biological cells are necessary to various biomedical applications such as cell biology analysis, diagnostics, and therapeutics. The traveling-wave dielectrophoresis (twDEP) and levitation are major subcategories of electro-kinetic motions that are generated as a result of the interaction between a non-uniform electric field and polarizable particles. This article presents a model of an electrokinetic platform that has a working principle of dielectrophoresis phenomena and Printed Circuit Board (PCB) technology for separation of different sizes of biological particles such as microbeads (simulated biological cells) and the blood formed elements (platelets and red blood cells (RBCs)) using two configurations of microelectrodes (traveling and levitation).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pohl, H.A.: Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, vol. 80. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  2. Crane, J.S., Pohl, H.A.: A study of living and dead yeast cells using dielectrophoresis. J. Electrochem. Soc. 115(6), 584–586 (1968)

    Article  Google Scholar 

  3. Ghallab, Y.H., Badawy, W.: Lab-on-a-Chip: Techniques, Circuits, and Biomedical Applications. Artech House, Norwood (2010)

    Google Scholar 

  4. Çetin, B., Li, D.: Dielectrophoresis in microfluidics technology. Electrophoresis 32(18), 2410–2427 (2011)

    Article  Google Scholar 

  5. Washizu, M., Kurosawa, O.: Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans. Ind. Appl. 26(6), 1165–1172 (1990)

    Article  Google Scholar 

  6. Ghallab, Y., Badawy, W.: Sensing methods for dielectrophoresis phenomenon: from bulky instruments to lab-on-a-chip. IEEE Circ. Syst. Mag. 4(3), 5–15 (2004)

    Article  Google Scholar 

  7. Schmitz, A., Wagner, S., Hahn, R., Uzun, H., Hebling, C.: Stability of planar PEMFC in printed circuit board technology. J. Power Sources 127(1), 197–205 (2004)

    Article  Google Scholar 

  8. Spherotech - Technical - Characteristics of Polystyrene Particles. http://www.spherotech.com/particle.html

  9. Hartley, L., Kaler, K.V.I.S., Luo, J., Paul, R.: Discrete planar electrode dielectrophoresis systems. In: IEEE 1997 Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery, vol. 1, pp. 185–192, May 1997

    Google Scholar 

  10. Jones, T.B.: Basic theory of dielectrophoresis and electrorotation. IEEE Eng. Med. Biol. Mag. 22(6), 33–42 (2003)

    Article  Google Scholar 

  11. Piacentini, N., Mernier, G., Tornay, R., Renaud, P.: Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3), 034122 (2011)

    Article  Google Scholar 

  12. Egger, M., Donath, E.: Electrorotation measurements of diamide-induced platelet activation changes. Biophys. J. 68(1), 364–372 (1995)

    Article  Google Scholar 

  13. Park, S., Zhang, Y., Wang, T.H., Yang, S.: Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11(17), 2893–2900 (2011)

    Article  Google Scholar 

  14. Cen, E.G., Dalton, C., Li, Y., Adamia, S., Pilarski, L.M., Kaler, K.V.: A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells. J. Microbiol. Methods 58(3), 387–401 (2004)

    Article  Google Scholar 

  15. Fu, L.M., Lee, G.B., Lin, Y.H., Yang, R.J.: Manipulation of microparticles using new modes of traveling-wave-dielectrophoretic forces: numerical simulation and experiments. IEEE/ASME Trans. Mechatron. 9(2), 377–383 (2004)

    Article  Google Scholar 

  16. Abdelbaset, R., Ghallab, Y.H., Abdelhamid, H., Ismail, Y.: A 2D model of different electrode shapes for traveling wave dielectrophoresis. In: 28th International Conference on Microelectronics (ICM), pp. 257–260, December 2016

    Google Scholar 

  17. Leys, D., Schaefer, S.P., Lake Success, N.Y.: PWB dielectric substrates for lead-free electronics manufacturing. CIRCUITREE-CAMPBELL- 16, 22–27 (2003)

    Google Scholar 

  18. Boughriet, A., Wu, Z., McCann, H., Davis, L.E.: The measurement of dielectric properties of liquids at microwave frequencies using open-ended coaxial probes. In: Proceedings of 1st World Congress on Industrial Process Tomography, pp. 318–322, April 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda Abdelbaset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Abdelbaset, R., Ghallab, Y.H., Abdelhamid, H., Ismail, Y. (2018). A Model of Electrokinetic Platform for Separation of Different Sizes of Biological Particles. In: Hassanien, A., Shaalan, K., Gaber, T., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017. AISI 2017. Advances in Intelligent Systems and Computing, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-64861-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64861-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64860-6

  • Online ISBN: 978-3-319-64861-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics