Skip to main content

Abstract

The connection of physical objects to the Internet makes it feasible to access remote sensor data and to control the physical world remotely. The Internet of Things (IoT) is based on this concept. A smart object, which is the main element of the Internet of Things, is just another name for an embedded system that is connected to the Internet. Locating smart objects in the indoor environment is an imperative task because the GPS signal is easily corrupted. Pedestrian Dead Reckoning (PDR), is a relative positioning approach using step length and heading estimation. A new approach is presented using the quaternion-based extended Kalman filter (EKF) for heading estimation based on inputs from Accelerometer, Gyroscope and Magnetometer sensors found in smart watches. The proposed approach shows an error of 0.07% for the total traveled distance. It is the best accuracy achieved compared with other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  2. Ashton, K.: That ‘internet of things’ thing. RFiD J. 22(7), 97–114 (2009)

    Google Scholar 

  3. Hofmann-Wellenhof, B., Legat, K., Wieser, M.: Navigation: principles of positioning and guidance, pp. 130–136. Springer, Secaucus (2003)

    Google Scholar 

  4. Wang, S., Min, J., Yi, B.K.: Location based services for mobiles: technologies and standards. In: IEEE International Conference on Communication (ICC) (2008)

    Google Scholar 

  5. Xiang, Z., et al.: A wireless LAN-based indoor positioning technology. IBM J. Res. Dev. 48(5), 617–626 (2004)

    Article  Google Scholar 

  6. Meng, W., et al.: Secure and robust Wi-Fi fingerprinting indoor localization. In: 2011 International Conference on Indoor Positioning and Indoor Navigation. Institute of Electrical & Electronics Engineers (IEEE) (2011)

    Google Scholar 

  7. Mikov, A., et al.: A localization system using inertial measurement units from wireless commercial hand-held devices. In: International Conference on Indoor Positioning and Indoor Navigation. Institute of Electrical & Electronics Engineers (IEEE) (2013)

    Google Scholar 

  8. Chen, Y., et al.: FM-based indoor localization. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services - MobiSys 2012. Association for Computing Machinery (ACM) (2012)

    Google Scholar 

  9. Ni, L.M., et al.: LANDMARC: indoor location sensing using active RFID. Wireless Netw. 10(6), 701–710 (2004)

    Article  Google Scholar 

  10. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings. IEEE (2000)

    Google Scholar 

  11. Li, F., et al.: A reliable and accurate indoor localization method using phone inertial sensors. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing - UbiComp 2012. Association for Computing Machinery (ACM) (2012)

    Google Scholar 

  12. Kyung, S., Ryuh, Y.-S.: Heading measurements for indoor mobile robots with minimized drift using a MEMS gyroscopes. In: Robot Localization and Map Building. InTech (2010)

    Google Scholar 

  13. Titterton, D., Weston, J.L.: Strapdown inertial navigation technology, pp. 454–456. IET (2004)

    Google Scholar 

  14. Shin, D., et al.: Precision improvement of MEMS gyros for indoor mobile robots with horizontal motion inspired by methods of TRIZ. In: The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Institute of Electrical & Electronics Engineers (IEEE) (2014)

    Google Scholar 

  15. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35 (1960)

    Article  Google Scholar 

  16. Ali, A., El-Sheimy, N.: Low-Cost MEMS-based pedestrian navigation technique for GPS-denied areas. J. Sens. 2013, 1–10 (2013)

    Article  Google Scholar 

  17. Renaudin, V., Combettes, C., Peyret, F.: Quaternion based heading estimation with handheld MEMS in indoor environments. In: 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014. Institute of Electrical & Electronics Engineers (IEEE) (2014)

    Google Scholar 

  18. Jimenez, A.R., et al.: Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In: 2010 7th Workshop on Positioning, Navigation and Communication. Institute of Electrical & Electronics Engineers (IEEE) (2010)

    Google Scholar 

  19. Pratama, A.R., Widyawan, Hidayat, R.: Smartphone-based pedestrian dead reckoning as an indoor positioning system. In: 2012 International Conference on System Engineering and Technology (ICSET). Institute of Electrical & Electronics Engineers (IEEE) (2012)

    Google Scholar 

  20. Jin, Y., et al.: A robust dead-reckoning pedestrian tracking system with low cost sensors. In: 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom). Institute of Electrical & Electronics Engineers (IEEE) (2011)

    Google Scholar 

  21. Qinglin, T., et al.: An enhanced pedestrian dead reckoning approach for pedestrian tracking using smartphones. In: IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (2015)

    Google Scholar 

  22. Nabil, M., Abdelhalim, M.B., AbdelRaouf, A.: A new Kalman filter-based algorithm to improve the indoor positioning. In: 2016 5th International Conference on Multimedia Computing and Systems (ICMCS) (2016)

    Google Scholar 

  23. Suh, Y.S.: Orientation estimation using a quaternion-based indirect kalman filter with adaptive estimation of external acceleration. IEEE Trans. Instrum. Meas. 59(12), 3296–3305 (2010)

    Article  Google Scholar 

  24. Official OnePlus features page. [cited 2017 3/24]. https://oneplus.net/one

  25. Samsung Gear S2 Official Website. [cited 24 3 2017]. http://www.samsung.com/global/galaxy/gear-s2/

  26. Llorca, D.F., et al.: Error analysis in a stereo vision-based pedestrian detection sensor for collision avoidance applications. Sensors 10(4), 3741–3758 (2010)

    Article  Google Scholar 

  27. Parnian, N., Golnaraghi, F.: Integration of a multi-camera vision system and strapdown inertial navigation system (SDINS) with a modified kalman filter. Sensors 10(6), 5378–5394 (2010)

    Article  Google Scholar 

  28. Samsung Gear S3 Official Website. [cited 3 24 2017]. http://www.samsung.com/global/galaxy/gear-s3/

  29. Fitbit surge. [cited 3 24 2017]. https://www.fitbit.com/surge

  30. GARMIN fēnix® 5 full Specifications. [cited 1 5 2017]. https://buy.garmin.com/en-US/US/p/552982#specs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nabil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Nabil, M., Abdelhalim, M.B., AbdelRaouf, A. (2018). Enhancing Indoor Localization Using IoT Techniques. In: Hassanien, A., Shaalan, K., Gaber, T., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017. AISI 2017. Advances in Intelligent Systems and Computing, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-64861-3_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64861-3_83

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64860-6

  • Online ISBN: 978-3-319-64861-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics