

Edinburgh Research Explorer

Towards a holistic discovery of decisions in process-aware
information systems
Citation for published version:
De Smedt, J, Hasic, F, vanden Broucke, S & Vanthienen, J 2017, Towards a holistic discovery of decisions
in process-aware information systems. in J Carmona, G Engels & A Kumar (eds), Business Process
Management: 15th International Conference, BPM 2017 Barcelona, Spain, September 10–15, 2017
Proceedings. 1 edn, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, Cham, pp.
183-199. https://doi.org/10.1007/978-3-319-65000-5

Digital Object Identifier (DOI):
10.1007/978-3-319-65000-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Business Process Management

Publisher Rights Statement:
This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science.
The final authenticated version is available online at: https://link.springer.com/book/10.1007%2F978-3-319-
65000-5.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-319-65000-5
https://doi.org/10.1007/978-3-319-65000-5
https://www.research.ed.ac.uk/en/publications/10a836c5-eeb0-4570-8929-c82062e4acca

Towards a Holistic Discovery of Decisions in
Process-Aware Information Systems

Johannes De Smedt?1,2, Faruk Hasić1, Seppe K.L.M. vanden Broucke1, and
Jan Vanthienen1

1 KU Leuven Faculty of Economics and Business Department of Decision Sciences
and Information Management firstname.lastname@kuleuven.be

2 University of Edinburgh Business School Management Science and Business
Economics Group johannes.desmedt@ed.ac.uk

Abstract. The interest of integrating decision analysis approaches with
the automated discovery of processes from data has seen a vast surge over
the past few years. Most notably the introduction of the Decision Model
and Notation (DMN) standard by the Object Management Group has
provided a suitable solution for filling the void of decision representation
in business process modeling languages. Process discovery has already
embraced DMN for so-called decision mining, however, the efforts are
still limited to a control flow point of view, i.e., explaining routing (con-
structs) or decision points. This work, however, introduces an integrated
way of capturing the decisions that are embedded in the process, which
is not limited to local characteristics, but provides a decision model in
the form of a decision diagram which encompasses the full process ex-
ecution span. Therefore, a typology is proposed for classifying different
activities that contribute to the decision dimension of the process. This
enables the possibility for an in-depth analysis of every activity, deciding
whether it entails a decision, and what its relation is to other activities.
The findings are implemented and illustrated on the 2013 BPI Challenge
log, an exemplary dataset originating from a decision-driven process.

Keywords. Decision Mining, Decision Model and Notation, Process
Mining

1 Introduction

The prevalence of new works on decision modeling and mining, as witnessed
by the vast amount of new works on Decision Model and Notation [1], shows
an increasing interest in documenting, modeling, and analyzing the decision
dimension of processes. Many research efforts have pursued the discovery of
the decision layer of processes already, including the seminal work on decision
mining [2], and its extensions and improved versions [3–6]. Nevertheless, this
form of decision mining is focusing on decision point analysis, i.e., the discovery of
split-operators in the control flow which are dependent on certain data variables

? Corresponding author.

tied to the activities that need to be performed subsequently. Hence, the focus
still lies with the extraction of control flow information, rather than decision
information. Furthermore, issues arise when dealing with loops and non-local
dependencies, i.e., decision variables that are not only affecting its subsequent
routing construct(s), but also other variables processed by activities further down
the process. This work complements the typical decision point analysis by rather
constituting the different types of activities that are present in a process model
and establishing how they contribute to the decision layer of the whole model.
It proposes a framework for connecting decision variables which can be linked
according to any control flow representation and any data mining algorithm by
constructing decision requirement diagrams. It consists of a four step approach
that decides how activities are influencing variables, classifying whether they
form decisions, building a decision requirement diagram, and finally, building
the control flow of the process by taking into account the decisions, rather than
solely the routing of activities.

This paper is structured as follows. In Section 2, an overview of decision
modeling and mining is constituted to frame the problem. In Section 3, the
necessities for an integrated technique are introduced and illustrated, followed
by Section 4, which introduces the approach for doing so. Section 5 outlines the
implementation, as well as the application of the proposed technique to the 2013
BPI Challenge log. Finally, Section 6 concludes and discusses future work.

2 Decision Modeling and Mining

This section introduces and situates the concepts used for decision modeling and
mining subsequently, i.e., first decision models are elaborated and formalized,
next decision mining is discussed in more detail.

2.1 Decision Models and Related Work

The decision modeling approaches present in process management literature of-
ten breach the separation of concerns between control and data flow, hence
negatively influencing maintenance and reusability. They do this by hard-coding
and fixing the decisions in business processes [7]. Consequently, splits and joins
in business processes are misused to represent typical decision artifacts such as
decision tables. Recently, the separation of processes and decision logic has be-
come an evident trend. Such an approach is supported by the DMN standard [1],
since it has the clear intention to be used in conjunction with the Business Pro-
cess Model and Notation (BPMN) [8]. Decoupling decisions and processes to
stimulate flexibility, maintenance, and reusability, yet integrating decision and
process models is therefore of paramount importance [9]. The DMN standard
allows to model and describe decisions in a declarative way on two levels, the
requirements level and decision logic level. For the first level decisions require-
ment diagrams (DRD) are used to represent the information requirements of the
decisions in the model. These diagrams can consist of several types of elements,

decisions, input data, business knowledge models, and knowledge sources. In-
formation requirements in the DRDs represent the requirements of decisions in
terms of subdecisions and input data, depicted using arrows going from the re-
quirement to the decision. The second level uses the FEEL expression language
to describe the decision logic behind every decision. The FEEL language allows
to write executable decisions in a declarative language.

Besides DMN, also the Product Data Model (PDM) [10] is a well-known lan-
guage to capture the dependencies that exist between decisions and their input
in workflows. DMN, however, is more driven by the decision and its rationale
compared to PDM, which rather focuses on the data and its impact on the
workflow.

To support our approach we introduce a formal basis for decisions and re-
quirements in DMN models. We take abstraction from the use of Business Knowl-
edge Models and Knowledge Sources, as defined in the DMN standard. However,
all definitions and theorems provided can be readily extended to include the use
of these concepts.

2.1.1 Formal Definition A DMN model can be represented as follows. We
adopt the definition of decisions and decision requirement diagrams from [9].

Definition 1. A decision requirement diagram DRD is a tuple (Ddm, ID, IR)
consisting of a finite non-empty set of decision nodes Ddm, a finite non-empty
set of input data nodes ID, and a finite non-empty set of directed edges IR
representing the information requirements such that IR ⊆ Ddm ∪ ID × Ddm,
and (Ddm ∪ ID, IR) is a directed acyclic graph (DAG).

The DMN specification allows a DRD to be an incomplete or partial repre-
sentation of the decision requirements in a decision model. The complete set of
requirements is derived from the set of all DRDs in the decision model.

Definition 2. The decision requirements level RDM of a decision model DM is
the set of all decisions requirement diagrams in the model.

The information contained in this set can be combined into a single DRD
representing the entire decision requirements level. The DMN standard calls such
a DRD a decision requirement graph (DRG). We extend the notion of a DRG, in
such a way that a DRG is a DRD which is self-contained, i.e. for every decision
in the diagram all its requirements are also represented in the diagram.

Definition 3. A decision requirement diagram DRD ∈ RDM is a decision re-
quirement graph DRG if and only if for every decision in the diagram all its
modeled requirements, present in at least one diagram in RDM , are also repre-
sented in the diagram.

According to the DMN standard a decision is the logic used to determine
an output from a given input. In BPMN a decision is an activity, i.e. the act
of using the decision logic. Another common meaning is that a decision is the
actual result, which we call the output of a decision. We define a decision using
its essential elements.

Definition 4. A decision d ∈ Ddm is a tuple (Id, Od, L), where Id ⊆ ID is a
set of input symbols, Od a set of output symbols and L the decision logic defining
the relation between symbols in Id and symbols in Od.

In case of decision tables, a commonly used reasoning construct in decision
models, Id and Od contain the names of the input and output elements, respec-
tively, and L is the table itself, i.e. the set of decision rules present in the table.
Note that, since a DRD is a DAG, Id ∩Od = ∅.

2.2 Decision Mining and Related Work

In recent business process management literature, decision mining arises as a
frequent term. It was first introduced in process literature in the work of [2].
The work derives and describes the routing in so-called decision points in Petri
nets [11] through a decision tree algorithm. The main idea is to use the control
flow data to determine the overall structure of the process first, and consequently
use the instances’ attributes to define where the data had an impact on the work
flow. Following this seminal work, numerous other studies have been dedicated to
refining decision point analysis and assessing variations of the problem [3,5,6,12].
The most holistic outcomes are provided by [13] and [4]. The former mines for
read and write operations on the variables and relates them to the guards of the
different activities present in a Petri net, obtaining a data-aware Petri net. The
latter incorporates XOR-splits in the decision model which also consists of data
attributes, which are either considered inputs or decisions themselves. This way,
a combination of attributes and control flow elements is found in the form of a
DMN model. A different approach is to mine for the mental actions performed
by decision makers [14], captured in a Product Data Model [10].

Contrary to focusing on the control flow, other works exist that rather start
from the data perspective while either incorporating control flow for clarifica-
tion, or by structuring the results. In [15] a general framework for correlating
business activity variables and process variables is proposed, and in [12], the re-
source perspective is mixed with the control flow for recommendations of future
executions. In [16], Guard Stage Milestone models [17] are mined by extracting
business objects and enriching them with their lifecycle information. Neverthe-
less, these approaches do not focus on deriving the decision rationale that is
present in the process.

In [18], a framework to position all these works was proposed. This frame-
work, depicted in Figure 1, consists of two dimensions, i.e., the decision control
flow dimension and the decision model maturity dimension, to classify each ap-
proach into four quadrants. The presence of an elaborate decision control flow
dimension is depicted along the vertical axis. Typical data mining approaches
belong in Q1, as they do not incorporate dynamic data aspects. On the other
hand, Q2 represents an approach where the primary objective is to derive the
control flow of activities by fitting process models such as Petri nets [19]. Along
the horizontal axis, the decision model maturity dimension is pictured. This di-
mension evaluates the presence of a decision model. In Q1 and Q2, no such model

is available, while a decision model is present in Q3 and Q4. Quadrants Q3 and
Q4 differ in prioritisation, as in Q3 the decision model is not orthogonally con-
nected to the process, but rather parts of the decision model are incorporated in
segments of the control flow. Hence, a holistic decision model is absent in Q3. On
the contrary, Q4 approaches provide a holistic decision model that incorporates
all the decisions made and that can be reused throughout the process.

Clearly, the approaches building on [2] display strong abilities to extract the
control flow and relating data variables to its routing elements. Other approaches
provide a strong decision model output, but do not focus on how the decision
was established throughout the process. Hence, there is a gap between strong
control flow-driven and decision model-driven approaches, as the challenge is to
develop a decision mining approach that is driven by the decision model, rather
than by the control flow containing decision points. In [20] both event labels
and data attributes are considered, as dependency conditions are discovered
using classification and embedded in process discovery. The information on the
discovered rules annote the resulting process models. Hence, this method hovers
between Q3 and Q4. The approach in [16] constructs artifacts by correlating the
data of the events. The control flow over these artifacts is mined as well and the
outcome is presented in a holistic model containing both layers. Consequently,
this is the only approach to the authors’ knowledge that truly belongs in Q4,
as it both handles the complexity of the data and the dynamic behavior of its
activity generators.

In this paper, we will address the research gap in Q4 by introducing the
Process Mining Integrating Decisions (P-MInD) framework by focusing on
constructing DRDs which are compatible with process models that are activity
diagram-based (e.g. Petri nets and BPMN).

≥

≥

≥

Fig. 1: The Decision Mining Quadrant.

2.2.1 Event Logs Process mining and its related techniques employ the no-
tion of the event log to define the structure of data suitable for activity- and
case-based discovery.

Definition 5. An event log is a tuple (E, A, λ, V, var, V al, L), where:

– E is a set of events.
– A is a set of activities (event types).
– λ : E → A is a labelling function mapping events to activities.
– V is a set of variables.
– var : E → 2V is a function mapping events to the subset of variables used

in this event.
– For each v ∈ V a partial function valv : E → domv mapping events to values

in the domain of v. We denote the set of these partial functions as V al.
– L ⊆

⋃
n∈NE

n the set of event tuples in the log.

For brevity we use var(a) = {v ∈ var(E)|λ(E) = a}, i.e. var(a) for a ∈ A
denotes the variables for the event label with a.

Typically, special variables include the timestamp (t ∈ V) and resource (res ∈
V). The timestamp is denoted T (e) = valt(e).

Consider for example the set of events E = {e1, e2, e3, e4, e5}, a set of vari-
ables V = {res, time, docid}, and a set of activity labelsA = {register, send, receive}.
Then L = {(e1, e2), (e3, e4, e5)}, with λ(e1) = register, λ(e2) = send, λ(e3) =
receive, λ(e4) = send, λ(e5) = receive, var(e1) = {res, time}, var(e2, e3) =
{res, time, docid}, var(receive) = {res, time, docid}, and valres(e1) = john,
valres(e2, e3) = ann, T (e1) = 1, T (e2) = 4, T (e3) = 9.

3 Business Process Activities and Their Relation to
Decisions

In this section, a typology for different activities used for making decisions in
processes is proposed, as well as a running example of a decision model inter-
twined with a process model.

3.1 Business Activities

Decisions do not surface solely as the driver of control flow. Rather, they both
encompass the routing of cases, i.e., because of decision outcomes that steer
toward a certain activity tailored towards supporting its output, and the changes
in the data layer of the process as well. The latter introduces numerous types of
activities that are representatives of the decision model in the process model:

Definition 6. The input and output data variables of business activities are
defined as follows:

– I : A → V , function assigning activities which receive input of a certain
variable,

– O : A → V , function assigning activities which deliver output for a certain
variable.

This enables the construction of the following activity types:

1. Operational activities ((no) inputs, no outputs): do not have any
influence on the process’ decision dimension and only act as a performer of
a specific action that is tied to that specific place in the control flow. They
might serve as the end of a decision. They are provided with the decision
inputs needed, which are not used further in the process,
Ao = {a ∈ A | O(a) = ∅, }.

2. Administrative activities (no inputs, outputs): have the purpose to
introduce decision inputs into the process,
Aa = {a ∈ A | I(a) = ∅ ∧ O(a) 6= ∅}.

3. Decision activities (inputs, outputs): serve a true autonomous decision
purpose as they transform decision inputs into a decision outcome,
Ad = {a ∈ A | I(a) 6= ∅ ∧O(a) 6= ∅}.

It holds that Aa ∪ Ao ∪ Ad = A. Typically, the decision points that are used
for decision mining in processes are of the decision activity type, but tailored
towards deciding which activity should be performed next based on the event
labels. Note that these are not included in V .

We can now make the connection with decisions and decision models.

Definition 7. A decision in a business process can be defined as follows:

– A decision in a process model, da ∈ Ddm is a tuple (Ida
, Oda

, Lda
), where

a ⊆ Ad, Ida
⊆ I(a), Oda

⊆ O(a), and Lda
⊆ L.

This last definition connects a decision activity with a decision and it shows
than one decision activity can be tied with multiple decisions. The latter implies
that, within an event log, the same activity can make different decisions, i.e.,
changes in variable values, and can be represented as different decision nodes
within a decision model, as well as different activity types. This interpretation
of how activities are present in process models is the main difference with other
decision mining techniques, who keep the one-to-one mapping of activities and
decisions.

3.2 Running Example

Consider the example BPMN model in Figure 2 and the corresponding decision
model, which illustrates the different activity types elaborated earlier, in Figure
3. The process model contains a simple control flow with an AND-split and -
join, as well as an XOR-split and -join that gets repeated later on. In the first
part of the model, two variables are set, i.e., Retrieve liability (RL) and Retrieve
category (RC) set the liability score and risk category respectively. Since they
do not contain any inputs, they are administrative activities. Determine risk
(DR) uses those variables to set the risk score, hence it is a decision activity

Review

claim

Retrieve

liability

Retrieve

category

Print

category

Determine

risk

Evaluate

risk level

and case

Subscribe

policy A

Subscribe

policy B

Case undefined

or risk score=A

Else

Archive

claim

Liability score

Risk category

Risk score

Case characteristics

Fig. 2: BPMN model representing a liability claim process based on different
decisions throughout.

with ID = {liability score, risk category}, OD = {risk score}. The risk score
serves as an input for Evaluate risk level and case (ERLC), which also uses the
Case characteristics (CC) as an input (they are undefined by default). It does
not have output variables, however, it decides which activity is performed next.
Notice that this is the typical example of a decision point [2]. The label of the
subsequent activities is not part of V , hence ERLC is not a decision activity,
but an operational activity. Subscribe policy B (SPB) uses the CC, but has no
output, hence it is an operational activity. Notice that Subscribe policy A (SPA)
is the most convoluted activity. It serves both as a decision activity, as it sets
the CC based on the liability score, as well as an administrative activity when it
sets CC. Note that this is because there can exist no overlap between the inputs
and outputs of decisions, hence there exist two instantiations of the activity and
the model is capable of revealing how the activity contributes to the decision-
making over the different iterations of the loop. Finally, Print category (PC) and
Archive claim (AC) are two operational activities.

In Figure 3 the corresponding DRDs are provided. In DMN, decision activi-
ties are the typical nodes present in the model. Only a conjunction of inputs and
a rationale to make decisions based on them is incorporated. Nevertheless, in this
representation the administrative (indicated with 3) and operational (indicated
with �) activities are added in gray to illustrate how the input data and all the
activities in the process are related. Only DR and SPA fully process their inputs
into a Risk score (RS). ERLC has inputs, but has the label of the subsequent
activities as an output. This is the typical decision point analysis approach.
However, decision point analysis techniques would not be able to discover the
long-distance decision dependencies of Liability score (LS) and Risk category
(RiC) with their respective administrative and decision activities, as they only
resolve calculations in areas of a process model that introduce XOR-gates.

Determine risk

Liability score Risk category

Retrieve liability

Evaluate risk

level and case

Subscribe policy A
J
u
s
t

s
e
l
e
c
t

a
n
d

t
y
p
e

t
e
x
t
.
U
s
e

c
o

Subscribe policy A

J
u
s
t
s
e
l
e
c
t
a
n
d
t
y
p
e
t
e
x
t.
U
s
e
c
o
n
t
r
o
l
h
a
n
d
l
e
t
o
a
d
j
u
s
t
li
n
e
s
p
a
c
i
n
g
.

Retrieve category

Liability score

Retrieve liability

Fig. 3: The corresponding DMN model based on the process in Figure 2.

4 Discovering Decision Models

In this section, an approach is introduced to mine DRDs from event logs. The
main driver of the approach is the classification of activities into the different
types that were discussed previously, which are matched afterwards with how
they influence the different data variables in the log.

4.1 P-MInD Approach

In order to obtain a decision model from an event log, the decisions need to be
derived from the activity information in the event log first. The exact steps the
approach follows are outlined in Algorithm 1.

4.1.1 Step 1: Evaluate Activity Involvement Every event is scrutinized
and information regarding its variables is stored. In order to get a grasp on the
effect a particular event type, i.e., activity, has on a certain variable, it is checked
whether the value of a particular variable is changed. Note that the approach
assumes that this data is fully and correctly recorded in the event log. This
is done by comparing the previous value of the variable in the previous event
(et−1 = l : T (l) < T (e), T (l) > T (f) ,∀f, T (f) < T (e)) and the current event
(line 6) in case the event in question is not the start point of the particular
execution trace. This is done for every event, and populates the shift metric for
a certain activity. This shift is defined as S : (V,A) → N, i.e., the number of
shifts in value of a variable v ∈ V for an activity a ∈ A. A shift threshold, st,
is offered to the user to adjust the sensitivity of the algorithm to take a certain
variable under scrutiny. The user can also opt to exclude variables, Vu, in order
to avoid the inclusion of, e.g., exogenous variables such as time stamps of events.

4.1.2 Step 2: Classify the Activities Once the influence of activities over
variables is extracted, it can be used to determine whether a rationale between
input and output of an activity exists. The shift metric is used to determine
whether an activity actually altered the value of the variable, as outlined in Al-
gorithm 2. If this is the case, i.e., the variable a is believed to have changed,

Algorithm 1 Mining a DMN model from an event log

1: procedure Mine DMN mod(L, st, Vu,minsup) . Input: Log and parameters
2: Ddm, ID ← ∅, S(V,A)← 0 . Initialize variables
3: for e ∈ L do
4: if et−1 6= ∅ then . Skip first event to avoid non-existing et−1

5: for v ∈ var(e) \ Vu do . Vu excludes user-set variables
6: if valv(et−1) 6= valv(e) then
7: S(v, a) + + . Raise the variable’s shift counter

8: for a ∈ A do (Ddm, ID) ∪ buildModels(a, st,minsup)

9: return buildDMNmodel(Ddm, ID)

then a predictive model is built which takes a as the target variable. Note that
any type of predictive model can be used, e.g., decision trees, neural networks,
SVMs, and so on. All other variables, i.e., var(a) \ a, are used as independent
variables to determine the value of a. The downside of doing this, however, is that
variables which are set together should not serve each other’s predictive model
as they are completely dependent of each other. This is somewhat remedied in
step 3, however, cannot be fully avoided in the current approach. The evaluation
of the model L is then considered to justify whether there was a causal link
between the newly-set variable (v), and the other ones (var(a) \ v). For this,
the Area Under Receiver Operating Curve (AUROC) value is evaluated. In case
the value L.AUROC is high enough, determined by the adjustable parameter
minsup, the value is considered to be determined by the activity, which gets
saved as a decision node da = (vL, v, L) in Ddm with vL the significant indepen-
dent variables of the predictive model and L the decision logic (e.g. a decision
table). Note that only a singleton is considered for output, and the decisions
are not multi-objective due to the nature of the predictive models used. If an
activity is considered not to be a decision activity, but the event witnessed a
shift nonetheless, the activity is considered to be an administrative activity, for
it introduces a new value to a variable. It is stored in ID. If no shifts are made
by the activity, it is considered to be an operational activity and out of scope
for the decision model. Note that at any time, the corresponding decision logic
is stored in L.

Algorithm 2 Constructing relations between variables of an activity

1: procedure buildModels(a, st,minsup) . Input: event log and parameters
2: for v ∈ var(a) do
3: if S(v, a) > st then
4: L← buildPredictiveModel(a, var(a) \ v)
5: if L.AUROC > minsup then . Check if the model is explanatory
6: Ddm ← da = (vL, v, L) . Save decision as decision node
7: else ID ← (a, v) . Save variable as input node set by a

8: return (Ddm, ID)

4.1.3 Step 3: Build the Decision Model(s) Next, the elements from Ddm

and ID need to be connected by IR to obtain a DMN model. To do so, all the
inputs from ID that correspond with the inputs of the decisions in Ddm are con-
nected, as well as the outputs of decisions in Ddm that also correspond with the
inputs of other decisions. This is shown in Algorithm 3. For every relation be-
tween two decisions, it is checked whether the sequence of the relation is correct,
i.e., the decision input is indeed decided before the decision is used as an input,
as shown as a1 < a2 on lines 4 and 6. This can be done in numerous ways, ac-
cording to, e.g., the number of times the decision delivering the input is followed
by the decision using the input. This somewhat counters the effect of correlating
variables that are set together, as discussed in step 2, because although they are
related the check identifies whether there has been a previous value on which
the shift might have been based. This can also indicate that a variable is influ-
encing its own future value, such as is the case for CC in the running example.
The number of DRDs depends on whether all components are connected, or not.
Noteworthy is that multiple decisions can happen simultaneously, as an activity
can set multiple variables at the same time. Control flow-based approaches do
not incorporate this possibility.

Algorithm 3 Constructing the output DMN model

1: procedure buildDMNmodel(Ddm, ID)
2: for da1 = (I1, o1, L) ∈ Ddm do
3: for da2(I1, o1, L) ∈ Ddm do
4: if o1 ∈ I2 ∧ a1 < a2 then IR← (a1, a2)
5: else if o2 ∈ I1 ∧ a1 > a2 then IR← (a2, a1)

6: add all i ∈ I1 that were not added by other decisions

7: return (Ddm, ID, IR) . The DMN model as DRD

4.1.4 Step 4: Mine the Control Flow of the Decisions The final step
from the P-MInD approach exists in substituting all the occurrences of the ac-
tivities, once classified, with the corresponding decision nodes from the DRD in
the event log. I.e., According to which values are set in a certain instantiation
of the activity in the event log, the appropriate decision variant of that activity
setting that value replaces the generic activity label. If multiple variables are
set at the same time, they are merged in one label. This way, the control flow
over the decisions can be mined directly as well. It can also be used to verify the
relations between the decisions, i.e., lines 4 and 6 in Algorithm 3. Any process
mining technique that mines control flow, e.g., Inductive Miner [21] can be used
towards this outcome. Hence, the event log forms the source for both the decision
and the process model, which gets extended with decision information.

The P-MInD approach can be considered a framework for integrated decision
and process mining as numerous placeholders are present in the steps. Both the
inference of connections between the different inputs and outputs of decisions,
as well as the control flow perspective can be adjusted according to the most
appropriate algorithms. However, the 4-step approach provides a fundamental

basis for obtaining an integrated model that contains a decision model that spans
the whole control flow and in which long distance dependencies and loops in the
control flow do not clutter the decision model.

4.2 Application to Running Example

Consider the running example in the case of it being recorded in an event log
L. The algorithm will first evaluate all events (e ∈ L) and classify the activities.
There are shifts (S(v, a) > 0) of variable values for activities RL, RC, DR, and
SPA. In step 2, predictive models are built for all the variables for which the
values shifted (S(v, a) > st). Models with a significant AUROC can be trained,
i.e., Ddm gets dDR = ({LS,RiC}, RS, LDR→RS) and dSPA(LS,CC,LSPA→CC),
in case no noise is present. The other activities with shifts are administrative
activities and are considered as input nodes, i.e., ID gets {(RL,LS), (RC,RiC)}.
In step 3, the models are constructed by connecting the input and output nodes
of the different decision models where RL and RC serve as inputs for DR and
LS serves as input for SPA. This way, the same DRD as in Figure 3 is obtained,
without the operational activities. Finally in step 4, all the decision activities in
Ddm replace the activity instances of DR and SPA. Note that in this case, there
are no multiple variants of the activities as they only decide on one variable.

5 Implementation and Empirical Evaluation

In this section, an overview of the implementation and empirical evaluation is
given. Additionally, a concise comparison with existing techniques is provided.

5.1 Implementation

The concepts of Section 4 are implemented in Java and can be used with any
XES file [22]. A working prototype can be found at http://processmining.

be/PMInD. The current models are built using the decision table plugin of the
Weka data mining toolbench3, however, any inference technique can be used to
build the decision model. The output is displayed as a (set of) DRDs and can
be set to display the decision logic layer in form of a decision table as well.

5.2 Evaluation

The approach was applied to the event logs made available for the 2013 BPI
Challenge4. No extra pre-processing was performed, i.e., the unaltered files were
used to create the output. The contents pertain to an incident management log
at Volvo IT Belgium, in which cases are assigned a certain status according to

3 http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/

DecisionTable.html
4 http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

http://processmining.be/PMInD
http://processmining.be/PMInD
http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/DecisionTable.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/DecisionTable.html
http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

their nature and urgency. This type of process is typically very decision-driven
and provides a suitable example to illustrate how the decision model surrounding
the process can be constructed. The log is used to evaluate the first three steps
of the P-MInD framework and the output can be found in Figure 4. A Petri
net representing the control flow model for the closed problems log, mined with
Inductive Miner (noise threshold 0.2) [21] and annotated with read and write
operations (standard settings) [13] is depicted in Figure 5.

The results for the incident and closed problems logs are shown. Small, two
node-DRDs are excluded from the results (hence also the DRD for the open
problems variant). In the DRDs, it can be seen how the variables are actually
used to decide on other variables. Furthermore, it creates a picture of how the
loops should be interpreted. Many decisions in the DRDs are re-initiated many
times, and it might be that, e.g., the resource’s country that deals with a certain
case is determined, and later redetermined, as is the case for Queued Awaiting
Assignment and Accepted Assigned. Finally, multiple decisions can occur at the
same time. The downside of relating dependent variables, e.g., resource country
and org resource are frequently set together and therefore should not be included
in each other’s predictive model, is present. However, the DRD still explains
how the re-occurrence of the decision activity Queued awaiting assignment does
influence the decisions regarding the variables’ values over time. This is invisible
to control flow-based approaches.

Queued_Awaiting_Assignment___org_resource

Accepted_Assigned___resource_country

organization_involved resource_country

org_resource

(a) Closed problems log.

Completed_Closed___org_resource

Queued_Awaiting_Assignment___org_group

org_role product organization_involved

(b) Incident log.

Fig. 4: DRDs mined from the 2013 BPI challenge logs with st = 0.1 and
minsup = 0.8..

Other techniques for decision (point) analysis have a hard time to capture
the intrinsics of the relations between the activities as their results are still
intertwined with the specific areas of a process model that contain XOR-gates.
Indeed, the control flow needs many invisible activities and extra places (which
constitute decision points) to tailor for the convoluted control flow, while the
data, and hence the decisions, are driving the process. In Figure 5, it is illustrated
that the technique of [13] has a hard time deriving interesting guards from the
control flow. In Figure 4, the result of applying the approach from [4] shows
that, as a result of the unclear interplay of control flow constructs, only a single
DRD can be constructed because of the presence of loops and convoluted decision
dependencies, as well as nominal data variables. They prevent the algorithm from
finding relations between data decisions (attributes), and control flow decisions.

In this respect, P-MInD is better capable of giving insights into how the process
actually evolved. By applying step 4 and replacing activities by their decision
variants, no clearer control flow could be retrieved than in 5, confirming that
the process is decision-driven.

Fig. 5: Petri net mined with Inductive Miner to visualize the control flow and
annotated with read and write operations.

Fig. 6: DRD mined with the approach proposed in [4].

5.3 Comparison with Existing Techniques and Limitations

Contrary to [2–4], P-MInD considers the activities as the main contributors of
the decision model, i.e., the decisions are made by the activities, rather than
focusing on how the control flow has decided on how and where the decisions
are made. Unlike P-MInD, techniques based on decision point analysis are not
able to discover long-distance decision dependencies (with the exception of [4]),
as they only focus on the XOR-gates of a process model. Besides, P-MInD also
supports the occurrence of multiple decisions at the same time, as activities are
able to set multiple variables simultaneously. Furthermore, the interplay between
the minsup and st threshold provides a way to deal with noise, rather than only
incorporating results of a perfectly fitting decision tree inference. The retrieval
of reading and writing operations as in [13] is similar, however, the way in which
they are related to the activities is different. In P-MInD, the variables are incor-
porated into the activities to form decisions. The focus is on the relation between
the attributes through the activities, rather than towards determining the guards
of the activities. While the approach of [4] is also capable of finding long dis-
tance dependencies and mining DRDs, it suffers from incorporating control flow,
which can clutter up DRDs and is incapable of displaying loops. Furthermore,
attributes are considered decisions, while P-MInD considers the activities as the
drivers of decisions. Overall, P-MInD does not heavily rely on control flow in-
formation, although it is incorporated in steps 3 and 4 (by the < relations). It
adheres to the separation of concerns between decisions and processes. Hence,

P-MInD can be categorised in the fourth decision mining quadrant of Figure 1.
Nevertheless, decision point analysis is compatible with P-MInD. By mining for
the exact locations where certain decisions are made, the DRDs can be refined,
or augmented with routing information.

The major limitation of the technique, however, stems from its independence
of control flow. As illustrated before, it requires a more profound explanation of
loops to avoid correlating dependent variables that are set at the same time, and
does not use a strong way to incorporate sequence information in the DRD.

6 Conclusion and Future Work

This work revised the way in which a holistic decision model for process-driven
environments can be retrieved. First of all, a classification of process activities
was made to bridge the gap with decision model constructs. Next, an approach
for retrieving DRDs based on the concept of operational, administrative, and
decision activities was proposed. The approach was evaluated on the 2013 BPI
Challenge log to illustrate the empirical usefulness of the framework. The results
show that it is better capable of representing the decision layer of a process than
existing techniques, as it does not solely rely on control flow, hence allowing for
different insights into how data variables and decisions are related to activities,
over long distance dependencies and loops as well.

In future endeavors, it will be investigated in what way the decision model
can aid in refactoring the process model, according to the findings of [9]. This
way, redesign can be suggested automatically. Furthermore, it will be tested
which inference techniques are the most suitable to refine the retrieval of decision
models, as P-MInD was only tested with decision table learning. Finally, while it
is now assumed that the shifts hold over the whole model and can be conjoined
for a global decision model, it will be investigated how an event log can be broken
down according to the shifts, and the models that correspond to the particular
decisions they are tied to.

References

1. OMG: Decision Model and Notation (2015)

2. Rozinat, A., van der Aalst, W.M.P.: Decision mining in prom. In: Business Process
Management. Lecture Notes in Computer Science, Springer (2006) 420–425

3. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision
logic from process models. In: CAiSE. Volume 9097 of Lecture Notes in Computer
Science., Springer (2015) 349–366

4. Bazhenova, E., Bülow, S., Weske, M.: Discovering decision models from event logs.
In: BIS. Volume 255 of Lecture Notes in Business Information Processing., Springer
(2016) 237–251

5. de Leoni, M., Dumas, M., Garćıa-Bañuelos, L.: Discovering branching conditions
from business process execution logs. In: FASE. Volume 7793 of Lecture Notes in
Computer Science. Springer (2013) 114–129

6. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining
revisited - discovering overlapping rules. In: CAiSE. Volume 9694 of Lecture Notes
in Computer Science., Springer (2016) 377–392

7. Vanthienen, J., Caron, F., De Smedt, J.: Business rules, decisions and processes:
five reflections upon living apart together. In: Proceedings SIGBPS Workshop on
Business Processes and Services (BPS’13). (2013) 76–81

8. OMG: Business process model and notation (BPMN) 2.0 (2011)
9. Janssens, L., Bazhenova, E., Smedt, J.D., Vanthienen, J., Denecker, M.: Consistent

integration of decision (DMN) and process (BPMN) models. In: CAiSE Forum.
Volume 1612 of CEUR Workshop Proceedings., CEUR-WS.org (2016) 121–128

10. Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Product based work-
flow support: Dynamic workflow execution. In: CAiSE. Volume 5074 of Lecture
Notes in Computer Science., Springer (2008) 571–574

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

12. Kim, A., Obregon, J., Jung, J.: Constructing decision trees from process logs for
performer recommendation. In: Business Process Management Workshops. Volume
171 of Lecture Notes in Business Information Processing., Springer (2013) 224–236

13. de Leoni, M., van der Aalst, W.M.: Data-aware process mining: discovering de-
cisions in processes using alignments. In: Proceedings of the 28th annual ACM
symposium on applied computing, ACM (2013) 1454–1461

14. Petrusel, R., Vanderfeesten, I., Dolean, C.C., Mican, D.: Making decision pro-
cess knowledge explicit using the product data model. Lecture Notes in Business
Information Processing (2011) 172–184

15. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for corre-
lating business process characteristics. In: BPM. Volume 8659 of Lecture Notes in
Computer Science. Springer (2014) 250–266

16. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. International
Journal of Cooperative Information Systems 24(01) (2015) 1550001

17. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F.T., Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., et al.: Introducing the
guard-stage-milestone approach for specifying business entity lifecycles. In: Web
services and formal methods. Springer (2011) 1–24

18. De Smedt, J., vanden Broucke, S.K., Obregon, J., Aekyung, K., Jung, J.Y., Van-
thienen, J.: Decision mining in a broader context: an overview of the current
landscape and future directions. In: Business Process Management Workshops.
Lecture Notes in Business Information Processing, Springer (2016)

19. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. Knowledge and Data Engineering, IEEE Transactions
on 16(9) (2004) 1128–1142

20. Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W.: Data-driven process
discovery: revealing conditional infrequent behavior from event logs. In: Advanced
Information Systems Engineering (CAiSE), Springer (2017)

21. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from incomplete event logs. In: Petri Nets. Volume 8489 of Lecture
Notes in Computer Science., Springer (2014) 91–110

22. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Xes,
xesame, and prom 6. In: CAiSE Forum. Volume 72 of Lecture Notes in Business
Information Processing. Springer (2010) 60–75

	Towards a Holistic Discovery of Decisions in Process-Aware Information Systems
	Introduction
	Decision Modeling and Mining
	Decision Models and Related Work
	Formal Definition

	Decision Mining and Related Work
	Event Logs

	Business Process Activities and Their Relation to Decisions
	Business Activities
	Running Example

	Discovering Decision Models
	P-MInD Approach
	Step 1: Evaluate Activity Involvement
	Step 2: Classify the Activities
	Step 3: Build the Decision Model(s)
	Step 4: Mine the Control Flow of the Decisions

	Application to Running Example

	Implementation and Empirical Evaluation
	Implementation
	Evaluation
	Comparison with Existing Techniques and Limitations

	Conclusion and Future Work

