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1 Abstract

Baby cry sound detection allows parents to be automatically alerted when their
baby is crying. Current solutions in home environment ask for a client-server
architecture where an end-node device streams the audio to a centralized server
in charge of the detection. Even providing the best performances, these solu-
tions raise power consumption and privacy issues. For these reasons, interest has
recently grown in the community for methods which can run locally on battery-
powered devices. This work presents a new set of features tailored to baby cry
sound recognition, called hand crafted baby cry (HCBC) features. The proposed
method is compared with a baseline using mel-frequency cepstrum coefficients
(MFCCs) and a state-of-the-art convolutional neural network (CNN) system.
HCBC features result to be on par with CNN, while requiring less computation
effort and memory space at the cost of being application specific.

Keywords: baby cry detection, hand crafted baby cry features, support vector
data description, convolutional neural networks

2 Introduction

Audio event detection (AED) has recently gained attention in the audio commu-
nity [1–3]. AED is therefore pertinent to smart-home market where the presence
of connected devices enables sounds to be detected through consumer micro-
phones.

Thus, this work has focused on the detection of baby cry sounds specifically
for home environment. This choice has been driven by the practical use case
consisting of capturing the baby crying and automatically alerting his parents.
AED based technologies are smarter than standard baby monitors or walkie
talkies: in the former, monitoring is usually energy-based with the counterpart
of being easily deceived by high energy sounds; in the latter, parents have to
constantly listen to the receiver during their activities.

Existing approaches in baby cry detection literature consist of extracting
meaningful features from audio signal frames. Most of them use spectral features



such as mel-frequency cepstrum coefficients (MFCCs), combined with binary
classifiers such as support vector machines (SVMs) [4]. Recent researches have
explored the use of convolutional neural networks (CNNs) tailored to baby cry
detection [5].

Whereas showing the most promising results, CNN computation and memory
requirements render it more compliant with a client-server solution, where an
end-node client (i.e. low-power device equipped with a microphone) streams the
audio to a central server in charge of the entire process. Some works in AED have
started to question this client-server approach by focusing on battery-powered
devices [6, 7] with a significant reduction of band-width and power. Moreover,
moving the complexity towards the end-node has the advantage of respecting
user privacy, since audio is analyzed locally in the device.

Thus, the need for an always-active baby cry detector calls for algorithm effi-
ciency, essential to minimize battery consumption, and for classifier robustness,
able to detect a baby cry sounds within a broad set of unknown conditions. As
expressed in [8, 9], the detection in real conditions requires new types of clas-
sifiers more robust to unknown classes. In that sense the support vector data
description (SVDD) is a good candidate for modeling baby cry features without
being influenced by the number and the type of classes in the training set.

We herein present three methods for the baby cry detection task: the first
baseline employs MFCCs and SVDD as a classifier; the second is based on CNN
applied on mel-spectrogram; the third proposes a novel set of features tailored
to baby cry detection.

The contributions of this work can be summarized in: i) hand crafted baby
cry (HCBC) features; ii) the adoption of SVDD classifier for both MFCC and
HCBC features; iii) improvements in terms of normalization and regularization
of state-of-the-art CNN; iv) the comparison between hand-crafted features and
deep learning approaches.

The remainder of the paper is organized as follows: Section 3 describes in
details the three methods; Section 4 presents the experimental set-up, database
description and results; conclusions and future works are discussed in Section 5.

3 Methods

This section describes the aforementioned methods for baby cry sound detection.

3.1 One-class classifier - SVDD

Whereas baby cry sounds can be easily collected and modeled, non-baby cry
samples are more difficult to identify and categorize. In domestic environment,
many sounds may resemble a baby cry sound provoking false alarms during the
detection. Standard binary classifiers may fail to learn both baby cry (target)
and non-baby cry (non-target) samples when these latter represent a subset of
those encountered during testing. This problem has been identified as open-set
and specific classifiers have therefore been employed [8, 9].



Instead of separating target from non-target, SVDD models only target sam-
ples with a hypersphere [10]. Once the radius R and the center of the hypersphere
a have been found during training, the decision function f to determine if a new
sample z belongs to the target class depends upon R and a:

f(z, R, a) = sign(R2 − ||z − a||2). (1)

Drawing upon the SVM theory, SVDD finds the support vectors (SVs) using
Lagrangian procedure to optimize a and R. These SVs are training samples
which are selected to represent the boundary between the two classes.

Differently from prior works on SVDD, the grid-search for finding the best
classifier parameters has been modified. This routine points at the presence of
non-target samples in the training set to automatically select the best pair of
parameters by minimizing the following function:

λ =

√
(
#SV s

T
)2 + (1−AUC)2 (2)

where #SV s corresponds to the number of SVs, T is the cardinality of the
target class samples and AUC stands for the area under the receiver operating
characteristic curve, used to evaluate the performance of SVDD on a validation
set made of target and non-target samples. The function in Eq. 2 defines a trade-
off between an estimation of the classifier complexity (#SV s

T term) and the global
performance of the system expressed with AUC metric.

3.2 Baseline system - MFCC

A baby cry sound is generated by an excitation of the vocal cords producing
a sequence of periodic impulses. In healthy babies the fundamental frequency
(F0) reaches values between 250Hz - 600Hz, which has a higher range than that
of adult females and males. Hence, a higher F0 characterizes most of the baby
cry sounds, as depicted in Fig. 1.

Given these spectral properties, MFCCs have been proven in the litera-
ture [16] to be a good candidate for baby cry detection task since it represents
each signal as rate of change in the frequency bands. Due to baby cry harmon-
ics, MFCCs represent this information with higher MFCCs coefficients. This
phenomenon is observable in Fig. 1. As a consequence of representing the en-
tire spectral information, MFCCs are very dependent on overlapping sounds or
additional noise which are mixed with the baby cry signal.

3.3 State-of-art system - CNN

Although primarily designed for image classification tasks, CNNs have proven
to be successful in speech and music recognition [11]. Recently, these techniques
have attracted interest also in AED [12] showing promising results. Inspired by
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Fig. 1. The log-mel power spectrum on the top and the MFCC without the first coeffi-
cient C0 on the bottom for a sequence of baby cry sounds. The sound produced by the
baby creates periodic harmonics in the log-mel power spectrogram that are captured
in the MFCCs domain. In this example, each harmonic sequence is preceded by an
unvoiced breath of the baby which produces noisy-like sounds in the lower frequency.
This phenomenon is represented by a peak in the first MFCCs coefficients, while baby
cry is captured by higher coefficients.

the architecture in [5], CNN performances are enhanced by introducing normal-
ization and regularization layers. These modifications report a better general-
ization and they are even applicable on datasets of modest size.

A standard CNN is a deep architecture of successive layers, which are con-
nected in different ways from the input data until the output layer. The global
architecture is shown in Fig. 2. Differently from MFCCs which decorrelate the
data with the discrete cosine transform (DCT), CNN takes as input the log
mel-filtered spectrogram mimicking an image processing behavior. In the convo-
lutional layer, each hidden unit is not connected to all the inputs from previous
layer, but only to an area of the original input space, capturing local correla-
tion. These small parts of the whole input space are connected to the hidden
units through the weights. This operation is equivalent to a convolutional filter
processing.

The pooling consists of merging close units according to some criteria (such
as mean or max). This effectively performs a downsampling which smooths the
resulting outputs of each convolutional layer, making the system more robust to
small variations or translations. In the case of spectrograms as input, these local
variations have to be attenuated in order to better recognize global patterns.

The main differences between the proposed CNN and the one in [5] are listed
below:

1. convolutional filters of the first layer are 10 × 10 blocks, to capture both
frequency and temporal resolution;

2. regularization techniques avoid overfitting of the network on a relatively
small dataset. One of the most adopted is the so called dropout, which con-



sists of literally dropping out hidden units with a certain probability. At
each training iteration, a random subset of hidden units is temporary dis-
abled by multiplying the input to these units by 0. This forces the network to
find robust features that do not depend on the presence of particular other
neurons [13];

3. scaling inputs to zero mean and unit standard deviation is a common pre-
processing step to uniform values across heterogeneous features. When they
pass through a deep architecture, data progressively loose this normalization
resulting in too big or too small values. Instead of computing the normaliza-
tion only on the input data, the batch normalization is applied to the hidden
layers so to avoid this effect [14].

In
p
u
t 
la

y
e
r:

 4
0
x
5
0

C
o
n
v
 l
a
y
e
r:

 1
0
x
1
0
, 
s
tr

id
e
 1

B
a
tc

h
 n

o
rm

a
liz

a
ti
o
n
 l
a
y
e
r

M
a
x
 p

o
o
lin

g
: 
2
x
1
. 
s
tr

id
e
 2

D
ro

p
o
u
t,
 p

=
0
.1

C
o
n

v
 l
a
y
e
r:

 6
x
2
, 
s
tr

id
e
 1

B
a
tc

h
 n

o
rm

a
liz

a
ti
o
n
 l
a
y
e
r

M
a
x
 p

o
o
lin

g
: 
2
x
2
, 
s
tr

id
e
 2

D
ro

p
o
u
t,
  
p
=

0
.2

C
o
n
v
 l
a
y
e
r:

 3
x
2
, 
s
tr

id
e

 1

B
a
tc

h
 N

o
rm

a
liz

a
ti
o
n

 l
a
y
e
r

D
ro

p
o
u
t,
 p

=
0
.3

F
u
lly

 c
o
n
n

e
c
te

d
 l
a
y
e
r

D
ro

p
o
u
t,
 p

=
0
.5

S
o
ft
m

a
x

la
y
e
r,

 2
 o

u
tp

u
ts

Fig. 2. The global architecture of the proposed CNN. More details of each layer are
provided in Subs. 4.3.

3.4 Proposed approach - HCBC with SVDD classifier

As explained in Subs. 3.2 and Fig. 1, baby cry sounds are characterized by spe-
cific acoustic properties. Whereas the spectral content can be represented with
MFCCs, there exists no standard features exploiting voiced-unvoiced recurrence
in a baby cry signal. In the proposed algorithm, hand crafted features are specif-
ically designed to characterize these temporal patterns.

HCBC features consist of frame-based descriptors which are then aggregated
over longer audio-clips. For each frame, the fundamental frequency F̂0 is esti-
mated using an autocorrelation method. These features are composed of voiced
unvoiced counter, consecutive F0 and harmonic ratio accumulation which create
a 3-D feature vector used by SVDD classifier to model the target baby-cry class.
The explanation of each feature is described below:

Voiced unvoiced counter (VUVC) counts all frames having a significant pe-
riodic content. This is obtained by looking at the harmonic strength, called
R0, defined in Boersma’s work [15]. For each frame, the local maximum of
the frame normalized autocorrelation R0 must be greater than a predefined
threshold tvuvc.



Consecutive F0 (CF0) acts as an accumulator, which tracks the temporal
continuity of the estimated F̂0. Let us define Fref as the most occurring
F̂0 learned from the training set (see Fig. 4). First, the distance between F̂0
of each frame and Fref is calculated. As long as this distance is smaller than
a tolerance parameter ε, a score is computed and accumulated in CF0 with
a weight that follows a square law. The longer a sequence of consecutive F̂0,
the greater the weight is. The corresponding method is given in Algorithm 1.

input : An array of F̂0i=1···M for a given audio-clip
Frequency sampling Fs
Tolerance parameter ε
Reference fundamental frequency Fref

output: CF0

begin
CF0 = 0
counter = 1

for i = 1 to M do

if | ˆF0i − Fref | < ε then

score = Fs−| ˆF0i−Fref |
Fs

CF0 = CF0 + sqrt(counter)× score
counter = counter + 1

else
CF0 not updated and counter = 1

end

end

end

Algorithm 1: Consecutive F0 (CF0) algorithm.

Harmonic ratio accumulation (HRA) is defined similarly to [16] as the ratio
between the energy in harmonics and the overall frame energy. Let us define
x as the microphone signal, X its discrete N points Fourier transform and
ni the closest bin of the ith harmonic with i from 1 to Ny the last harmonic
before Nyquist frequency. Note that the first harmonic n1 corresponds to
2× F0. For a given frame, the harmonic ratio is defined as follows:

HR =

∑Ny
i=1 |X[ni]|2∑N
j=1 |X[j]|2

. (3)

Thus, HRA of a given audio-clip is the sum of all its frames harmonic ratios.
Considering M the number of frames in an audio-clip:

HRA =

M∑
1

HR. (4)

The three presented features (VUVC, CF0 and HRA) capture correlated,
mono-tonal and harmonic patterns. A baby cry sound has a specific pitch, dura-
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Fig. 3. Example of HCBC features behavior for a baby cry sample in solid blue line and
a male cry sample in red dashed line with (A) voiced unvoiced counter, (B) consecutive
F0 and (C) harmonic ratio accumulation.

tion and spectral distribution that requires fine tuning for optimal class differen-
tiation as illustrated in Fig. 3. It must be also emphasized that HCBC features
are energy independent. Differently from previous works, HCBC are self-content
low-dimensional descriptors that are not concatenated with other features (such
as MFCC) resulting in a better memory and computation efficiency.

4 Experimental results

This section describes the datasets used for training together with testing pro-
tocols, metrics, implementation details and results.

4.1 Dataset

Due to its recent development in AED field, no public standardized dataset has
yet been released for baby cry sound detection task.

However, collaborative databases may offer a good alternative. One major
advantage is the diversity of the signals in terms of device audio path and signal
to noise ratio (SNR) levels. This heterogeneity covers many possible scenarios
with a more robust on-field evaluation.

The database employed in this work comes from a set of available on-line
resources3. For training, it includes 102 baby cry sound events (1h07m) and 93

3 http://www.audiomicro.com

https://www.freesound.org



non-baby cry (1h24m) i.e tv, toy, adult cry, baby talk/play, music, fan, vacuum
cleaner which are used for modeling target and non-target class.

The testing set is composed of 10 files that are created by mixing 26 baby cry
events (0h16m) separated from each other by 30s with 10 different 5m looped
background recordings at a SNR level of 18dB. These background recordings are
repeated to avoid a significant noise variation along the baby cry sequence that
may unfairly affect the detection.

Hence, the testing set is composed of a 4h recordings which sparsely contain
target sounds and additional 2h of whole non-target sounds. This non-target
noise library is made up of home environment recordings from CHiMe-Home
(more details are available in [17]). All signals are 16kHz mono wave files.

4.2 Evaluation protocols & metrics

The three methods output a continuous score every second. For this type of
application, it has been identified as a good trade-off between detection rate,
computation cost and latency. According to that, the groundtruth of each file
has been manually annotated.

Performance is evaluated by a receiver operating characteristic (ROC) curve
and a prediction-recall (PR) curve. These two curves provide complementary
information: the ROC curve presents how the number of correctly classified sam-
ples varies with the number of negative incorrectly classified samples. Positive
and negative samples are however separately counted and normalized.

When the absolute number of positive samples (i.e. baby cry) is significantly
less than the possible number of negative samples (i.e. non-baby cry), ROC curve
may give a too optimistic view of the algorithm performance. The precision of the
PR curve, instead, directly compares absolute number of positive and negative
samples. In the case of an highly unbalanced set, the precision will be affected
by the number of false positive providing a view closer to real performances [18].

4.3 Implementation details

Baseline MFCC features are extracted from a frame length of 32ms overlapped
by 16ms. The filter-bank is built of 40 Mel-scaled filters up to 8kHz, resulting in
13 MFCCs for each frame. The mean and standard deviation are then computed
over the 3s audio-clip overlapped by 2s, resulting in a 24 dimensional feature
vector (without C0). For the remaining parameters, the default ones of rastamat
library4 have been selected.

The SVDD classifier in the implementation of libsvm [19] uses the radial basis
function (RBF) kernel while the best pair of parameters C, γ are selected by min-
imizing the function in Eq. 2 on the validation set. In our experiments, in order
to adjust classifier and features parameters, a validation set is randomly selected

https://www.pond5.com

https://www.soundsnap.com
4 http://www.ee.columbia.edu/ln/rosa/matlab/rastamat/
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Fig. 4. Normalized histogram of the baby cry frame F̂0 distribution of the training
database with a bar width of 40Hz. The maximum is reached at 430-468Hz with a ratio
of 24.7%. This is previously referenced as Fref .

from a 30% of the training set. Once the parameters have been estimated, the
final model is trained using the entire training set.

The same strategy is then used to choose the CNN parameters and architec-
ture, based on the lowest classification error on the validation set. Also in this
case, the final model is then trained using the whole training set with a network
in the order to 1 million trainable parameters. CNN structure is depicted in
Fig. 2. The input layer takes a log mel-filtered spectrograms of 40 filters and
50 frames (corresponding to 1s). The activation function is the standard recti-
fier (ReLU), except for the last layer where the softmax returns the probability
for the two outputs (baby cry or non-baby cry). During the training phase, a
stochastic gradient descent is evaluated over a mini-batch of 256 shuffled input
spectrograms. The random shuffling of the inputs is important to represent the
data not in their temporal order. The momentum is set to 0.9, over 50 training
iterations with a learning rate of 0.001.

Details of filters are displayed in Fig. 2. The number of filters is set to 32.
The stride term refers to the amount by which each convolutional filter shifts
horizontally and vertically. There are 4 dropout layers in this architecture, with
an increasing probability of dropping off units (from 0.1 to 0.5). This prevents to
prune too many units in the first layers where features are being built. Thus an
higher dropout probability is applied to the fully connected layer, particularly
prone to overfit.

The library employed to implement the CNN is the lasagne5 library, a wrap-
per of Theano6. Experiments have been run on a Nvidia Quadro M4000 GPU.

5 http://lasagne.readthedocs.io/en/latest/
6 http://deeplearning.net/software/theano/



The frame length used in HCBC features is 32ms overlapped by 16ms. All
frames are then aggregated over bigger audio-clips of 3s with an overlap of 2s.
For each frame, F̂0 is computed in a restricted range of 250Hz-1000Hz. VUVC
threshold is set at tvuvc = 0.85. CF0 standard fundamental frequency Fref
is estimated at 449Hz with a tolerance ε = 20Hz. These values are set during
training phase based on the overall F̂0 distribution (see Fig. 4) and validation
results.

4.4 Results

Reported in Fig. 5 are experimental results for the three methods: MFCC in
dotted black line, CNN in dashed red line and HCBC in solid blue line. The area
under the curve (AUC) metric is also reported in the legend of the ROC curve.
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Fig. 5. The ROC on the left and the precision-recall curve on the right.

Concerning the ROC curve, CNN and HCBC outperform the baseline MFCC
system, passing from an AUC of 86% to more than 90%. CNN classifier is slightly
better than HCBC, with 1% improvement in AUC. The precision-recall curve
is more related to the type of application, where we can choose the trade-off
between an high precision (therefore less false positive) or an higher recall (with
less false negative).

Let us consider that a baby statistically cries 2h per day. An acceptable
metric for a baby cry detector would be a recall of 80% with a maximum of 5m
per week of false positives. These numbers result in a precision of 99,3% and a
recall of 80%. CNN and HCBC are the closest algorithms to this requirement,
while the baseline MFCC has a drop of 20% in precision compared to them.

Albeit showing similar performance, systems must be compared also in terms
of computational and memory cost. From a feature computation point of view,
not using the mel spectrogram as for MFCC or CNN is a clear advantage. Re-
ferring to [20], HCBC features employ only FFT and autocorrelation as ba-
sic processing, resulting in 20 times lower computational cost than standard



MFCCs with no additional memory cost. From a classifier point of view, it has
been demonstrated in [21] that CNNs may reach the highest performance at
the expense of high computation complexity. This mainly prohibits their use on
low-power devices. Finally, the proposed approach shows advantage over the 24
dimensional MFCC features used in the baseline system: knowing that complex-
ity of SVDD is proportional to the number of SVs and feature vector dimen-
sionality [22], HCBC outperforms the baseline system with only 3 dimensional
feature vector.

5 Conclusions

In this work three methods were proposed for detecting baby crying in every day
domestic environment: a baseline based of MFCC and SVDD classifier; a state-
of-the-art CNN system and a new set of features specifically designed for this
task. These 3 dimensional features capture repetition of voice-unvoiced pattern
during time and therefore outperform the MFCC baseline, reaching the same
level of performance of CNN. CNN is able to automatically extract meaningful
patterns from log mel-filtered spectrograms, achieving the best results. Never-
theless, depending on the computational and memory resources available, the
choice of CNN may not be compatible with low-power devices. The proposed
method HCBC has the same level of performance and it is less computational
and memory demanding. The drawback of this approach is to be suited uniquely
for baby cry sound detection, with an high cost in designing specific baby cry
features.

Further research should investigate ways of reducing complexity of CNN, by
decreasing the number of filters and their size. Another track may encode the
temporal patterns directly in the deep learning architecture.
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