Skip to main content

A Neural Network Approach for Predicting the Diameters of Electrospun Polyvinylacetate (PVAc) Nanofibers

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2017)

Abstract

This study focuses on the design of a Neural Network (NN) model for the prediction of interpolated values of polyvinylacetate (PVAc) nanofiber diameters produced by the electrospinning process and it supposes to be a preliminary work for future and industrial applications. The experimental data gathered from the literature form the basis for generating a more consistent sample through standard interpolation. The inputs of the NN are the polymer concentration, the applied voltage, the nozzle-collector distance and the flow rate parameters of the process, whereas the average diameter acts as the unique output of the network. The generated model is able to approximate the mapping between process parameters and fiber morphology, which is of practical importance to help prepare homogeneous nano-fibers. The reliability of the model was tested by 7-fold cross validation as well as leave-one-out method, showing good performance in terms of both average RMSE (0.109, corresponding to 138.51 nm) and correlation coefficient (0.905) between the desired and the predicted diameters when a White Gaussian Noise with 2% power (WGN2%) is applied to the interpolations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, Z.-M., et al.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  Google Scholar 

  2. Persano, L., et al.: Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol. Mater. Eng. 298(5), 504–520 (2013)

    Article  MathSciNet  Google Scholar 

  3. Pantò, F., Fan, Y., Frontera, P., Stelitano, S., Fazio, E., Patanè, S., Santangelo, S.: Are electrospun carbon/metal oxide composite fibers relevant electrodematerials for li-ion batteries? J. Electrochem. Soc. 163(14), A2930–A2937 (2016)

    Article  Google Scholar 

  4. Haykin, S.: Neural networks: a comprehensive foundation. Neural Netw. 2(2004), 41 (2004)

    Google Scholar 

  5. Carrera, D., et al.: Defect detection in SEM images of nanofibrous materials. IEEE Trans. Ind. Inform. 13(2), 551–561 (2017)

    Article  Google Scholar 

  6. Borrotti, M., et al.: Defect minimization and feature control in electrospinning through design of experiments. J. Appl. Polym. Sci. 134(17), 44740(1 of 10), 44740(2 of 10), .., 44740(10 of 10) (2017)

    Google Scholar 

  7. Sarkar, K., et al.: A neural network model for the numerical prediction of the diameter of electro-spun polyethylene oxide nanofibers. J. Mater. Process. Technol. 209(7), 3156–3165 (2009)

    Article  Google Scholar 

  8. Mirzaei, E., et al.: Artificial neural networks modeling of electrospinning of polyethylene oxide from aqueous acid acetic solution. J. Appl. Polym. Sci. 125(3), 1910–1921 (2012)

    Article  Google Scholar 

  9. Faridi-Majidi, R., et al.: Use of artificial neural networks to determine parameters controlling the nanofibers diameter in electrospinning of nylon-6, 6. J. Appl. Polym. Sci. 124(2), 1589–1597 (2012)

    Article  Google Scholar 

  10. Naghibzadeh, M., Adabi, M.: Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers Polym. 15(4), 767–777 (2014)

    Article  Google Scholar 

  11. Vatankhah, E., et al.: Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta biomaterialia 10(2), 709–721 (2014)

    Article  MathSciNet  Google Scholar 

  12. Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)

    Article  Google Scholar 

  13. Karimi, M.A., et al.: Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. e-Polym. 15(2), 127–138 (2015)

    Google Scholar 

  14. Ketabchi, N., et al.: Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Comput. Appl. 1–13 (2016). https://link.springer.com/article/10.1007/s00521-016-2212-0

  15. Brooks, H., Tucker, N.: Electrospinning predictions using artificial neural networks. Polymer 58, 22–29 (2015)

    Article  Google Scholar 

  16. Nasouri, K., Shoushtari, A.M., Khamforoush, M.: Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fibers Polym. 14(11), 1849–1856 (2013)

    Article  Google Scholar 

  17. Nasouri, K., et al.: Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J. Appl. Polym. Sci. 126(1), 127–135 (2012)

    Article  Google Scholar 

  18. Khanlou, H.M., et al.: Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput. Appl. 25(3–4), 767–777 (2014)

    Article  Google Scholar 

  19. Rabbi, A., et al.: RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers Polym. 13(8), 1007–1014 (2012)

    Article  Google Scholar 

  20. Nateri, A.S., Hasanzadeh, M.: Using fuzzy-logic and neural network techniques to evaluating polyacrylonitrile nanofiber diameter. J. Comput. Theor. Nanosci. 6(7), 1542–1545 (2009)

    Article  Google Scholar 

  21. Son, W.K., et al.: The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer 45(9), 2959–2966 (2004)

    Article  Google Scholar 

  22. Yördem, O.S., Papila, M., Menceloğlu, Y.Z.: Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater. Des. 29(1), 34–44 (2008)

    Article  Google Scholar 

  23. Ojha, S.S., et al.: Morphology of electrospun nylon-6 nanofibers as a function of molecular weight and processing parameters. J. Appl. Polym. Sci. 108(1), 308–319 (2008)

    Article  MathSciNet  Google Scholar 

  24. Park, J.Y., Lee, I.H., Bea, G.N.: Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J. Ind. Eng. Chem. 14(6), 707–713 (2008)

    Article  Google Scholar 

  25. Garg, K., Bowlin, G.L.: Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1), 013403 (2011)

    Article  Google Scholar 

  26. Ramakrishna, S.: An Introduction to Electrospinning and Nanofibers. World Scientific, Singapore (2005)

    Book  Google Scholar 

  27. Chattopadhyay, R., Guha, A.: Artificialneural networks: applications to textiles. Textile Progress 35(1), 1–46 (2004)

    Article  Google Scholar 

  28. Morabito, F.C.: Independent component analysis and feature extraction techniques for NDT data. Mater. Eval. 58(1), 85–92 (2000)

    Google Scholar 

  29. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 532–538. Springer, Heidelberg (2009). doi:10.1007/978-0-387-39940-9_565

    Google Scholar 

  30. Steyerberg, E.W., et al.: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 54(8), 774–781 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Ieracitano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ieracitano, C., Pantò, F., Frontera, P., Morabito, F.C. (2017). A Neural Network Approach for Predicting the Diameters of Electrospun Polyvinylacetate (PVAc) Nanofibers. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds) Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65172-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65171-2

  • Online ISBN: 978-3-319-65172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics