Skip to main content

A Real-Time Intent Recognition System Based on SoC-FPGA for Robotic Transtibial Prosthesis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Abstract

This paper presents the design and implementation of a real-time intent recognition hardware system for robotic transtibial prosthesis, based on system-on-chip and field-programmable gate array (SoC-FPGA). The proposed system integrates the software programmability of an ARM-based processor with the hardware programmability of an FPGA. A hardware prototype was developed and a SVM-based pattern recognition algorithm was implemented with high-level synthesis technology. Experiments on a transtibial amputee subject demonstrated that the proposed system costs shorter decision time in identifying four lower-limb movement phases (sitting, standing, sit-to-stand and stand-to-sit).

This is a preview of subscription content, log in via an institution.

References

  1. Winter, D.A., Sienko, S.E.: Biomechanics of below-knee amputee gait. J. Biomech. 21(5), 361–367 (1988)

    Article  Google Scholar 

  2. Au, S.K., Weber, J., Herr, H.: Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans. Robot. 25(1), 51–66 (2009)

    Article  Google Scholar 

  3. Sinitski, E.H., Hansen, A.H., Wilken, J.M.: Biomechanics of the anklefoot system during stair ambulation: implications for design of advanced anklefoot prostheses. J. Biomech. 45(3), 588–594 (2012)

    Article  Google Scholar 

  4. Zhu, J., Wang, Q., Wang, L.: On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints. IEEE Trans. Ind. Electron. 61(9), 4797–4807 (2014)

    Article  Google Scholar 

  5. Cherelle, P., Grosu, V., Matthys, A., Vanderborght, B.: Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 138–148 (2014)

    Article  Google Scholar 

  6. Varol, H.A., Sup, F., Goldfarb, M.: Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. BioMed. Eng. 57(3), 542–551 (2010)

    Article  Google Scholar 

  7. Chen, B., Wang, Q., Wang, L.: Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control. IEEE/ASME Trans. Mech. 20(5), 2146–2157 (2015)

    Article  Google Scholar 

  8. Young, A.J., Simon, A.M., Fey, N.P., Hargrove, L.J.: Intent recognition in a powered lower limb prosthesis using time history information. Ann. Biomed. Eng. 42(3), 631–641 (2014)

    Article  Google Scholar 

  9. Tian, X., Benkrid, K.: High-performance quasi-Monte Carlo financial simulation: FPGA vs. GPP vs. GPU. ACM Trans. Reconfigurable Technol. Syst. 3(7), 1–22 (2010)

    Article  Google Scholar 

  10. Zhang, X., Huang, H., Yang, Q.: Implementing an FPGA system for real-time intent recognition for prosthetic legs. In: DAC Design Automation Conference, pp. 169–175 (2012)

    Google Scholar 

  11. Groleat, T., Arzel, M., Vaton, S.: Hardware acceleration of SVM-based traffic classification on FPGA. In: International Workshop on Traffic Analysis and Classification, pp. 443–449 (2012)

    Google Scholar 

  12. Chang, A.X.M., Martini, B., Culurciello, E.: Recurrent neural networks hardware implementation on FPGA. Comput. Sci. (2015)

    Google Scholar 

  13. Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26(2), 203–215 (2007)

    Article  Google Scholar 

  14. Feng, Y., Zhu, J., Wang, Q.: Metabolic cost of level-ground walking with a robotic transtibial prosthesis combining push-off power and nonlinear damping behaviors: preliminary results. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5063–5066 (2016)

    Google Scholar 

  15. Coussy, P., Morawiec, A.: High-Level Synthesis: From Algorithm to Digital Circuit. Springer, Heidelberg (2008)

    Book  Google Scholar 

  16. Gajski, D.D., Dutt, N.D., Wu, A.C.-H., Lin, S.Y.-L.: High-Level Synthesis: Introduction to Chip and System Design. Kluwer Academic Publishers, Boston (1992)

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 91648207), the Beijing Municipal Science and Technology Project (No. Z151100000915073), and the Beijing Nova Program (No. Z141101001814001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qining Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mai, J., Zhang, Z., Wang, Q. (2017). A Real-Time Intent Recognition System Based on SoC-FPGA for Robotic Transtibial Prosthesis. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics