Skip to main content

An NC Code Based Machining Movement Simulation Method for a Parallel Robotic Machine

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10463))

Included in the following conference series:

Abstract

The virtual machine tool and Computer-Aided Manufacturing (CAM) simulation are widely adopted nowadays to lower the cost and save time. Although parallel robotic machines are becoming popular in industry due to its unique advantages in manufacturing application, few methods are available for its simulation. This paper presents a work achieved by combining conventional CAM analysis tool HSMWorks, Computer-Aided Design (CAD) software SolidWorks, and programming tools such as Python and MATLAB to realize the machining movement simulation of a parallel robotic machine. Firstly, an original NC code interpreter is compiled in Python that interprets G-code generated by HSMWorks. Then, necessary coordinate transformation and kinematic calculation are done by using MATLAB. Finally, driving data are imported into virtual machine tool in SolidWorks, and a complete motion simulation environment is then developed. The proposed method is a general approach, which can be upgraded and modified for the simulation of parallel robotic machines with any structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pollard, V., Willard, L.: Position-controlling apparatus. US, US2286571 (1942)

    Google Scholar 

  2. Fichter, E.F.: A Stewart platform-based manipulator: general theory and practical construction. Int. J. Robot. Res. 5(2), 157–182 (1986)

    Article  Google Scholar 

  3. Waldron, K.J., Hunt, K.H.: Series-parallel dualities in actively coordinated mechanisms. Int. J. Robot. Res. 10(5), 473–480 (1991)

    Article  Google Scholar 

  4. Hunt, K.H.: Structural kinematics of in-parallel-actuated robot-arms. ASME J. Mech. Trans. Autom. Des. 105(4), 705–712 (1983)

    Article  Google Scholar 

  5. Nanua, P., Waldron, K.J., Murthy, V.: Direct kinematic solution of a Stewart platform. IEEE Trans. Robot. Autom. 6(4), 438–444 (1990)

    Article  Google Scholar 

  6. Sugimoto, K.: Kinematic and dynamic analysis of parallel manipulators by means of motor algebra. ASME J. Mech. Trans. Autom. Des. 109(1), 3–7 (1987)

    Article  Google Scholar 

  7. Nguyen, C.C., Pooran, F.J.: Kinematic analysis and workspace determination of a 6 DOF CKCM robot end-effector. J. Mech. Work. Technol. 20, 283–294 (1989)

    Article  Google Scholar 

  8. Gosselin, C.: Determination of the workspace of 6-DOF parallel manipulators. ASME J. Mech. Des. 112(3), 331–336 (1990)

    Article  Google Scholar 

  9. Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 6(3), 281–290 (1990)

    Article  Google Scholar 

  10. Huang, Z., Kong, L.F., Fang, Y.F.: Theory and Control Mechanism for Parallel Robotics (1997)

    Google Scholar 

  11. Wang, Z., Wang, Z., Liu, W., Lei, Y.: A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools. Mech. Mach. Theory 36(5), 605–622 (2001)

    Article  MATH  Google Scholar 

  12. Stewart, D.: A platform with six degrees of freedom. ARCHIVE Proc. Inst. Mech. Eng. 1847–1982 (vols. 1–196) 180(1965), 371–386 (2013)

    Google Scholar 

  13. Kim, J., et al.: Performance analysis of parallel manipulator architectures for CNC machining applications. In: Proceedings of the IMECE Symposium on Machine Tools, Dallas (1997)

    Google Scholar 

  14. Ryu, S.-J., et al.: Eclipse: an overactuated parallel mechanism for rapid machining. In: Boër, C.R., Molinari-Tosatti, L., Smith, K.S. (eds.) Parallel Kinematic Machines. Springer, London (1999). doi:10.1007/978-1-4471-0885-6_32

    Google Scholar 

  15. Qingke, Y., Rujia, Z.: Virtual manufacturing system. China Mech. Eng. 4, 10–12 (1995)

    Google Scholar 

  16. Iwata, K., et al.: Virtual manufacturing systems as advanced information infrastructure for integrating manufacturing resources and activities. CIRP Ann.-Manuf. Technol. 46(1), 335–338 (1997)

    Article  Google Scholar 

  17. Altintas, Y., et al.: Virtual machine tool. CIRP Ann. Manuf. Technol. 54(2), 115–138 (2005)

    Article  Google Scholar 

  18. Lin, W., Fu, J.: Modeling and application of virtual machine tool. In: International Conference on Artificial Reality and Telexistence–Workshops IEEE, pp. 16–19 (2006)

    Google Scholar 

  19. Carpenter, I.D., et al.: Virtual manufacturing. Manuf. Eng. 76(S1), 113–116 (1997)

    Article  Google Scholar 

  20. Ahmad, R., Plapper, P.: Safe and automated assembly process using vision assisted robot manipulator. Procedia CIRP 41, 771–776 (2016)

    Article  Google Scholar 

  21. Ahmad, R., Tichadou, S., Hascoet, J.-Y.: Generation of safe and intelligent tool-paths for multi-axis machine-tools in a dynamic 2D virtual environment. Int. J. Comput. Integr. Manuf. 29(9), 982–995 (2016)

    Article  Google Scholar 

  22. Xie, F., et al.: Mobility, singularity, and kinematics analyses of a novel spatial parallel mechanism. J. Mech. Robot. 8(6), 061022 (2016)

    Article  Google Scholar 

  23. Siemens Ltd.: Programming Manual of SINUMERIK 840D sl/840Di sl/840D/840Di/810D Fundamentals, 6FC5398-1BP10-2BA0, November 2006

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 51425501 and 51675290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Jun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shen, X., Xie, F., Liu, XJ., Ahmad, R. (2017). An NC Code Based Machining Movement Simulation Method for a Parallel Robotic Machine. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65292-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65291-7

  • Online ISBN: 978-3-319-65292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics