Skip to main content

On-Board Visual SLAM on a UGV Using a RGB-D Camera

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Abstract

We present a approach to real-time localization and mapping using a RGB-D camera, such as Microsoft Kinect, and a small and powerful computer Intel Stick Core M3 Processor. Our system can run the computation and sensing required for SLAM on-board the UGV, removing the dependence on unreliable wireless communication. We make use of visual odometry, loop closure and graph optimization to achieve this purpose. Our approach is able to perform accurate and efficient on-board SLAM, and we evaluate its performance thoroughly with varying environments and illumination conditions. The experiments demonstrate that our system can robustly deal with difficult data in indoor and outdoor scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)

    Article  Google Scholar 

  2. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017). doi:10.1007/978-3-319-59147-6_49

    Chapter  Google Scholar 

  3. Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance for low-cost UAVs. In: IEEE 11th International Conference on Semantic Computing (ICSC), San Diego (2017)

    Google Scholar 

  4. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR) (2011)

    Google Scholar 

  5. Mur-Artal, R., Montiel, J., Tardo, J.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  6. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). doi:10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  7. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). doi:10.1007/978-3-319-10605-2_54

    Google Scholar 

  8. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (2011)

    Google Scholar 

  9. Whelan, T., Kaess, M., Leonard, J., McDonald, J.: Deformation based loop closure for large scale dense RGB-D SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  10. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Computer Vision and Pattern Recognition, pp. 652–659 (2004)

    Google Scholar 

  11. Konolige, K., Agrawal, M., Sola, J.: Large-scale visual odometry for rough terrain. In: International Symposium Robotics Research (2007)

    Google Scholar 

  12. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2013)

    Google Scholar 

  13. Michaud, M., Labbe, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Robot. 29(3), 734–745 (2013)

    Article  Google Scholar 

  14. Michaud, M., Labbe, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2661–2666 (2014)

    Google Scholar 

  15. Aguilar, W.G., Luna, M.A., Moya, J.F., Abad, V., Ruiz, H., Parra, H., Angulo, C.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017). doi:10.1007/978-3-319-59147-6_48

    Chapter  Google Scholar 

  16. Aguilar, W.G., Luna, M., Moya, J., Abad, V., Parra, H., Ruiz, H.: Pedestrian detection for UAVs using cascade classifiers with meanshift. In: IEEE 11th International Conference on Semantic Computing (ICSC), San Diego (2017)

    Google Scholar 

  17. Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15986-2_2

    Chapter  Google Scholar 

  18. Thrun, S.: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millennium (2003)

    Google Scholar 

  19. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3D. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2007)

    Google Scholar 

  20. Dellaert, F.: Square root SAM. In: Proceedings of the Robotics: Science and Systems (RSS), pp. 177–184 (2005)

    Google Scholar 

  21. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  22. Jin, H., Favaro, P., Soatto, S.: Real-time 3-D motion and structure of point features: front-end system for vision-based control and interaction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2000)

    Google Scholar 

  23. Murray, G., Klein, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR) (2007)

    Google Scholar 

  24. Strasdat, H., Montiel, J.M., Davison, A.: Scale drift-aware large scale monocular SLAM. In: Proceedings of Robotics: Science and Systems (2010)

    Google Scholar 

  25. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  26. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

    Google Scholar 

  27. Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain (2014)

    Google Scholar 

  28. Zisserman, J., Sivic, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the 9th International Conference on Computer Vision, pp. 1470–1478 (2003)

    Google Scholar 

  29. Botterill, T., Mills, S., Green, R.: Bag-of-words-driven, single-camera simultaneous localization and mapping. J. Field Robot. 28(2), 204–226 (2011)

    Article  Google Scholar 

  30. Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., Fua, P.: View-based maps. Int. J. Robot. Res. 29(8), 941–957 (2010)

    Article  Google Scholar 

  31. Christensen, H.I., Folkesson, J.: Closing the loop with graphical SLAM. IEEE Trans. Robot. 23(4), 731–741 (2007)

    Article  Google Scholar 

  32. Johannsson, H., Kaess, M., Fallon, M., Leonard, J.J.: Temporally scalable visual SLAM using a reduced pose graph. In: RSS Workshop on Long-term Operation of Autonomous Robotic Systems in Changing Environments (2012)

    Google Scholar 

  33. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2012)

    Google Scholar 

  34. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. (T-RO) 23, 34–46 (2007)

    Article  Google Scholar 

  35. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  36. Tardos, R., Mur-Artal, J.D.: Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2, 796–803 (2016)

    Google Scholar 

  37. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Realtime 3D visual SLAM with a hand-held RGB-D camera. In: RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum (2011)

    Google Scholar 

  38. Kohlbrecher, S., Meyer, J., Von Stryk, O., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto (2011)

    Google Scholar 

  39. Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: Intelligent Robots and Systems (IROS) (2012)

    Google Scholar 

  40. Aguilar, W.G., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  41. Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). doi:10.1007/978-3-319-59147-6_50

    Chapter  Google Scholar 

  42. Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy

    Google Scholar 

  43. Audras, C., Comport, A., Meilland, M., Rives, P.: Real-time dense appearance-based SLAM for RGB-D sensors. In: Australasian Conference on Robotics and Automation (2011)

    Google Scholar 

  44. Bolles, M.A., Fischler, R.C.: Random sample consensus: a paradigm for model fitting with Apphcatlons to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  Google Scholar 

Download references

Acknowledgement

This work is part of the projects 2016-PIC-024 and 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A. (2017). On-Board Visual SLAM on a UGV Using a RGB-D Camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics