Skip to main content

Design and Modeling of a Compact Rotary Series Elastic Actuator for an Elbow Rehabilitation Robot

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Abstract

Rehabilitation robot has direct physical interaction with human body, in which the adaptability to interaction, safety and robustness is of great significance. In this paper, a compact rotary series elastic actuator (SEA) is proposed to develop an elbow rehabilitation robot for assisting stroke victims with upper limb impairments perform activities of daily living (ADLs). The compliant SEA ensures inherent safety and improves torque control at the elbow joint of this rehabilitation robot. After modeling of the rotary stiffness and dynamics of the SEA, a PD feedback plus feedforward control architecture is introduced. A test bench has been designed to experimentally characterize the performance of the proposed compliant actuator with controller. It shows an excellent torque tracking performance at low motion frequency, which can satisfy the elbow rehabilitation training requirement. These preliminary results can be readily extended to a full upper limb exoskeleton-type rehabilitation robot actuated by SEA without much difficulty.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mackay, J., Mensah, G.A., Mendis, S., et al.: The Atlas of Heart Disease and Stroke. World Health Organization, Geneva (2004)

    Google Scholar 

  2. Suin, K., Bae, J.: Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using model-inverse time delay control (MiTDC). In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3836–3841. IEEE, Daejeon, Korea (2016)

    Google Scholar 

  3. Ham, R., Sugar, T.G., Vanderborght, B., et al.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  4. Zhang, Q., Teng, L., Wang, Y., Xie, T., Xiao, X.: A study of flexible energy-saving joint for biped robots considering sagittal plane motion. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds.) ICIRA 2015. LNCS, vol. 9245, pp. 333–344. Springer, Cham (2015). doi:10.1007/978-3-319-22876-1_29

    Chapter  Google Scholar 

  5. Pratt, G., Williamson, M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 399–406. IEEE, Pittsburgh, USA (1995)

    Google Scholar 

  6. Arumugom, S., Muthuraman, S., Ponselvan, V.: Modeling and application of series elastic actuators for force control multi legged robots. J. Comput. 1(1), 26–33 (2009)

    Google Scholar 

  7. Zhang, Q., Xiao, X., Wang, Y.: Compliant joint for biped robot considering energy consumption optimization. J. Cent. South Univ. 46(11), 4070–4076 (2015). (In Chinese)

    Google Scholar 

  8. Ragonesi, D., Agrawal, S., Sample, W., et al.: Series elastic actuator control of a powered exoskeleton. In: IEEE International Conference on Engineering in Medicine and Biology, pp. 3515–3518. IEEE, Boston, USA (2011)

    Google Scholar 

  9. Hutter, M., Remy, C., Hoepflinger, M., et al.: ScarlETH: design and control of a planar running robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 562–567. IEEE, San Francisco, USA (2011)

    Google Scholar 

  10. Robinson, D.W., Pratt, J.E., Paluska, D.J., et al.: Series elastic actuator development for a biomimetic walking robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 561–568. IEEE, Atlanta, USA (1999)

    Google Scholar 

  11. Pratt, J.E., Krupp, B.T., Morse, C.J., et al.: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In: IEEE International Conference on Robotics and Automation, pp. 2430–2435. IEEE, New Orleans, USA (2004)

    Google Scholar 

  12. Veneman, J.F., Ekkelenkamp, R., Kruidhof, R., et al.: A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res. 25(3), 261–281 (2006)

    Article  Google Scholar 

  13. Kong, K., Bae, J., Tomizuka, M.: A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Trans. Mechatron. 17(2), 288–297 (2012)

    Article  Google Scholar 

  14. Taylor, M.D.: A compact series elastic actuator for bipedal robots with human-like dynamic performance. Master’s thesis, Robotics Institute of Carnegie Mellon University, Pittsburgh, USA (2011)

    Google Scholar 

  15. Yu, H., Huang, S., Chen, G., et al.: Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23(8), 1072–1083 (2013)

    Article  Google Scholar 

  16. Kong, K., Bae, J., Tomizuka, M.: A compact rotary series elastic actuator for knee joint assistive system. In: IEEE International Conference on Robotics and Automation, pp. 2940–2945. IEEE, Anchorage, USA (2010)

    Google Scholar 

  17. Guo, Z., Yu, H., Pang, Y., et al.: Design and control of a novel compliant differential shape memory alloy actuator. Sens. Actuators, A 225(3), 71–80 (2015)

    Article  Google Scholar 

  18. Yu, H., Chen, G., Huang, S., et al.: Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Rob. 31(5), 1089–1100 (2015)

    Article  Google Scholar 

  19. Pratt, G., Willisson, P., Bolton, C., et al.: Late motor processing in low-impedance robots: impedance control of series-elastic actuators. In: America Control Conference, pp. 3245–3251. IEEE, Boston, USA (2004)

    Google Scholar 

  20. Hurst, J., Chestnutt, J., Rizzi, A.: The actuator with mechanically adjustable series compliance. IEEE Trans. Rob. 26(4), 597–606 (2010)

    Article  Google Scholar 

  21. Pan, Y., Guo, Z., Li, X., et al.: Output feedback adaptive neural control of a compliant differential SMA actuator. IEEE Trans. Control Syst. Technol. PP(99), 1–9 (2017)

    Google Scholar 

  22. Zhang, Q., Xiao, X., Guo, Z.: Power efficiency-based stiffness optimization of a compliant actuator for underactuated bipedal robot. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016. LNCS, vol. 9834, pp. 186–197. Springer, Cham (2016). doi:10.1007/978-3-319-43506-0_16

    Chapter  Google Scholar 

  23. Wang, Y., Zhang, Q., Xiao, X.: Trajectory tracking control of the bionic joint actuated by pneumatic artificial muscle based on robust modeling. ROBOT 38(2), 248–256 (2016). (In Chinese)

    Google Scholar 

Download references

Acknowledgment

This research is sponsored by National Natural Science Foundation of China (NSFC, Grant No. 51605339).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Guo or Xiaohui Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, Q., Xu, B., Guo, Z., Xiao, X. (2017). Design and Modeling of a Compact Rotary Series Elastic Actuator for an Elbow Rehabilitation Robot. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics