Skip to main content

HADAMARD Transform Sample Matrix Used in Compressed Sensing Super-Resolution Imaging

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Included in the following conference series:

Abstract

To realize super-resolution optical and terahertz imaging by the sub-wavelength hole arrays with extraordinary optical transmission (EOT) performance, the related sampling template structure is studied. In this paper, Hadamard matrix, cyclic S matrix and matrix chosen by random matrix selector are defined as a small probability matrix. The sub-wavelength coding imaging template based on the structure of this small probability matrix have extraordinary optical transmission (EOT) performance, which is the basis for achieving super-resolution imaging. It is showed that, in the case of array detector, high signal-to-noise ratio (SNR) improvement (exceeded 22) can be obtained only by sampling one frame using the imaging template designed by 3 order cyclic S matrix. For single detector, the SNR improvement using various order of cyclic S matrix designed imaging template is higher than N a quadratic root obtained by Hadamard matrix in classical Hadamard transform optical imaging method, and much higher than half a quadratic root of N by classical cyclic S matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candes, E.J.: The restricted isometry and its implication for compressed sensing. Comtes Rendus Math. 346(9/10), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Monajemi, H., Jafarpour, S., Gavish, M., Collaboration, S.C., Donoho, D.L.: Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices. Proc. Nat. Acad. Sci. USA 110(4), 1181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zeng, L., Zhang, X., Chen, L., et al.: Deterministic construction of Toeplitzed structurally chaotic matrix for compressed sensing. Circ. Syst. Sign. Process. 34(3), 797–813 (2015)

    Article  Google Scholar 

  4. Nam, Y.Y., Na, Z.: Deterministic construction of real-valued ternary sensing matrices using optical orthogonal codes. IEEE Sign. Process. Lett. 20(11), 1106–1109 (2013)

    Article  Google Scholar 

  5. Calde, R.B.R., Howa, R.D.S., Jafa, R.P.S.: Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE J. Sel. Top. Sign. Process. 4(2), 358–374 (2010)

    Article  Google Scholar 

  6. Amini, A., Montaze, R.H.V., Ma, R.V.F.: Matrices with small coherence using parry block codes. IEEE Trans. Sign. Process. 60(1), 172–181 (2012)

    Article  Google Scholar 

  7. Applebaum, L., Howa, R.D.S., Sea, R.L.S., et al.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmonic Anal. 26(2), 283–290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, S.X., Gao, F., Ge, G.N., et al.: Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inf. Theor. 58(8), 5035–5041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, X., Xia, S.T.: LDPC codes based on Berlekamp-Justesen codes with large stopping distances In: Proceedings of the 2006 IEEE Information Theory Workshop, Piscataway, NJ, pp. 214–218 (2006)

    Google Scholar 

  10. Dimakis, A.G., Smarandache, R., Vontobel, P.O.: LDPC codes for compressed sensing. IEEE Trans. Inf. Theor. 58(5), 3093–3114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gottlieb, P.: A television scanning scheme for a detector-noise-limited system. IEEE Trans. Inf. Theor. IT 14(3), 428–433 (1968)

    Article  Google Scholar 

  12. Ye, H., Ye, M., Yang, X.: Hadamard Transform Optical Imaging. HUST Publisher, Wuhan (2012). (in Chinese)

    Google Scholar 

  13. Genet, C., Ebbesen, T.W.: Light in tiny holes. Nature 445(4), 39–46 (2007)

    Article  Google Scholar 

  14. Ebbesen, T.W., Lezec, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668), 667–669 (1998)

    Article  Google Scholar 

  15. Lalanne, P., Rodier, J.C., Hugonin, J.P.: Surface plasmons of metallic surfaces perforated by nanohole arrays. J. Opt. A: Pure Appl. Opt. 7(8), 422–426 (2005)

    Article  Google Scholar 

  16. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  Google Scholar 

  17. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davis, G.: Adaptive nonlinear approximations. Ph.D. dissertation, New York University, New York (1994)

    Google Scholar 

  19. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theor. 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baraniuk, R.G.: A lecture on compressive sensing. IEEE Sign. Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  22. Zhao, S.F., Zhao, K.Q.: Frequency-type contact probability and random events transformation theorem. CAAI Trans. Intell. Syst. 9, 53–59 (2014). (in Chinese)

    MathSciNet  Google Scholar 

  23. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Sel. Top. Sign. Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  24. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theor. 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This research was partly supported by the National Natural Science Foundation of China “NSAF” Joint Fund Grants U1230109 and the National Natural Science Foundation of China Fund Grants 30627001, 60672058. This research was also supported by State Key Laboratory of Digital Manufacturing Equipment & Technology of HUST and advanced manufacturing testing center (School of Mechanical Science and Engineering of HUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ye, M., Ye, H., Yan, G. (2017). HADAMARD Transform Sample Matrix Used in Compressed Sensing Super-Resolution Imaging. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics