arXiv:1709.00947v1 [cs.CL] 4 Sep 2017

Learning Word Embeddings from
the Portuguese Twitter Stream:
A Study of some Practical Aspects

Pedro Saleiro!?, Lufs Sarmento, Eduarda Mendes Rodrigues!,
Carlos Soares'?, Eugénio Oliveira!:?

'FEUP, 2LIACC, *INESC TEC, Universidade do Porto, Portugal
pssc@fe.up.pt

Abstract. This paper describes a preliminary study for producing and
distributing a large-scale database of embeddings from the Portuguese
Twitter stream. We start by experimenting with a relatively small sample
and focusing on three challenges: volume of training data, vocabulary size
and intrinsic evaluation metrics. Using a single GPU, we were able to
scale up vocabulary size from 2048 words embedded and 500K training
examples to 32768 words over 10M training examples while keeping a
stable validation loss and approximately linear trend on training time per
epoch. We also observed that using less than 50% of the available training
examples for each vocabulary size might result in overfitting. Results on
intrinsic evaluation show promising performance for a vocabulary size of
32768 words. Nevertheless, intrinsic evaluation metrics suffer from over-
sensitivity to their corresponding cosine similarity thresholds, indicating
that a wider range of metrics need to be developed to track progress.

1 Introduction

Word embeddings have great practical importance since they can be used as
pre-computed high-density features to ML models, significantly reducing the
amount of training data required in a variety of NLP tasks. However, there
are several inter-related challenges with computing and consistently distributing
word embeddings concerning the:

— intrinsic properties of the embeddings. How many dimensions do we
actually need to store all the “useful” semantic information? How big should
the embedded vocabulary be to have practical value? How do these two
factors interplay?

— type of model used for generating the embeddings. There are multiple
possible models and it is not obvious which one is the “best”, both in general
or in the context of a specific type of applications.

— the size and properties of training data: What is the minimum amount
of training data needed? Should we include out of vocabulary words in the
training?

— optimization techniques to be used, model hyperparameter and training
parameters.

Not only the space of possibilities for each of these aspects is large, there are
also challenges in performing a consistent large-scale evaluation of the result-
ing embeddings [1]. This makes systematic experimentation of alternative word-
embedding configurations extremely difficult.

In this work, we make progress in trying to find good combinations of some
of the previous parameters. We focus specifically in the task of computing word
embeddings for processing the Portuguese Twitter stream. User-generated con-
tent (such as twitter messages) tends to be populated by words that are specific
to the medium, and that are constantly being added by users. These dynamics
pose challenges to NLP systems, which have difficulties in dealing with out of
vocabulary words. Therefore, learning a semantic representation for those words
directly from the user-generated stream - and as the words arise - would allow
us to keep up with the dynamics of the medium and reduce the cases for which
we have no information about the words.

Starting from our own implementation of a neural word embedding model,
which should be seen as a flexible baseline model for further experimentation,
our research tries to answer the following practical questions:

— how large is the vocabulary the one can realistically embed given the level
of resources that most organizations can afford to buy and to manage (as
opposed to large clusters of GPU’s only available to a few organizations)?

— how much data, as a function of the size of the vocabulary we wish to embed,
is enough for training meaningful embeddings?

— how can we evaluate embeddings in automatic and consistent way so that a
reasonably detailed systematic exploration of the previously describe space
of possibilities can be performed?

By answering these questions based on a reasonably small sample of Twitter
data (5M), we hope to find the best way to proceed and train embeddings for
Twitter vocabulary using the much larger amount of Twitter data available
(300M), but for which parameter experimentation would be unfeasible. This
work can thus be seen as a preparatory study for a subsequent attempt to produce
and distribute a large-scale database of embeddings for processing Portuguese
Twitter data.

2 Related Work

There are several approaches to generating word embeddings. One can build
models that explicitly aim at generating word embeddings, such as Word2Vec or
GloVe [2}]3], or one can extract such embeddings as by-products of more general
models, which implicitly compute such word embeddings in the process of solving
other language tasks.

Word embeddings methods aim to represent words as real valued continuous
vectors in a much lower dimensional space when compared to traditional bag-
of-words models. Moreover, this low dimensional space is able to capture lexical
and semantic properties of words. Co-occurrence statistics are the fundamental
information that allows creating such representations. Two approaches exist for
building word embeddings. One creates a low rank approximation of the word
co-occurrence matrix, such as in the case of Latent Semantic Analysis [4] and
GloVe [3]. The other approach consists in extracting internal representations
from neural network models of text [2,/5,/6]. Levy and Goldberg [7] showed that
the two approaches are closely related.

Although, word embeddings research go back several decades, it was the re-
cent developments of Deep Learning and the word2vec framework [2] that cap-
tured the attention of the NLP community. Moreover, Mikolov et al. 8] showed
that embeddings trained using word2vec models (CBOW and Skip-gram) exhibit
linear structure, allowing analogy questions of the form “man:woman::king:?7.”
and can boost performance of several text classification tasks.

One of the issues of recent work in training word embeddings is the variability
of experimental setups reported. For instance, in the paper describing GloVe
[3] authors trained their model on five corpora of different sizes and built a
vocabulary of 400K most frequent words. Mikolov et al. |§] trained with 82K
vocabulary while Mikolov et al. [2] was trained with 3M vocabulary. Recently,
Arora et al. [9] proposed a generative model for learning embeddings that tries
to explain some theoretical justification for nonlinear models (e.g. word2vec and
GloVe) and some hyper parameter choices. Authors evaluated their model using
68K vocabulary.

SemEval 2016-Task 4: Sentiment Analysis in Twitter organizers report that
participants either used general purpose pre-trained word embeddings, or trained
from Tweet 2016 dataset or “from some sort of dataset” [10]. However, partic-
ipants neither report the size of vocabulary used neither the possible effect it
might have on the task specific results.

Recently, Rodrigues et al. [11] created and distributed the first general pur-
pose embeddings for Portuguese. Word2vec gensim implementation was used and
authors report results with different values for the parameters of the framework.
Furthermore, authors used experts to translate well established word embed-
dings test sets for Portuguese language, which they also made publicly available
and we use some of those in this work.

3 Our Neural Word Embedding Model

The neural word embedding model we use in our experiments is heavily inspired
in the one described in [5], but ours is one layer deeper and is set to solve
a slightly different word prediction task. Given a sequence of 5 words - w;_o
W;—1 W; Wip1 Wiy, the task the model tries to perform is that of predicting
the middle word, w;, based on the two words on the left - w;_» w;_1 - and the
two words on the right - w11 w;yo: P(w;|wi—o, w;—1, wit1,wir2). This should

produce embeddings that closely capture distributional similarity, so that words

that belong to the same semantic class, or which are synonyms and antonyms of

each other, will be embedded in “close” regions of the embedding hyper-space.
Our neural model is composed of the following layers:

— a Input Word Embedding Layer, that maps each of the 4 input words
represented by a 1-hot vectors with |V| dimensions (e.g. 32k) into a low
dimension space (64 bits). The projections matrix - Wi,y - is shared across
the 4 inputs. This is not be the embedding matrix that we wish to produce.

— a Merge Layer that concatenates the 4 previous embeddings into a sin-
gle vector holding all the context information. The concatenation operation
ensures that the rest of the model has explicit information about the rela-
tive position of the input words. Using an additive merge operation instead
would preserve information onlu about the presence of the words, not their
sequence.

— a Intermediate Context Embedding Dense Layer that maps the pre-
ceding representation of 4 words into a lower dimension space, still repre-
senting the entire context. We have fixed this context representation to 64
dimensions. This ultimately determines the dimension of the resulting em-
beddings. This intermediate layer is important from the point of view of
performance because it isolates the still relatively high-dimensional input
space (4 x 64 bits input word embeddings) from the very high-dimensional
output space.

— a final Output Dense Layer that maps the takes the previous 64-bit repre-
sentation of the entire input context and produces a vector with the dimen-
sionality of the word output space (|V| dimensions). This matrix - Wouipus
- is the one that stores the word embeddings we are interested in.

— A Softmax Activation Layer to produces the final prediction over the
word space, that is the P(w;|w;—o, w;—1, w;11,w;+2) distribution

All neural activations in the model are sigmoid functions. The model was im-
plemented using the Syntagmaﬂ library which relies on Keras [12] for model
development, and we train the model using the built-in ADAM [13] optimizer
with the default parameters.

4 Experimental Setup

We are interested in assessing two aspects of the word embedding process. On
one hand, we wish to evaluate the semantic quality of the produced embeddings.
On the other, we want to quantify how much computational power and training
data are required to train the embedding model as a function of the size of the
vocabulary |V| we try to embed. These aspects have fundamental practical im-
portance for deciding how we should attempt to produce the large-scale database

! https://github.com/sarmento/syntagma

of embeddings we will provide in the future. All resources developed in this work
are publicly availableﬂ

Apart from the size of the vocabulary to be processed (|V]), the hyperpara-
maters of the model that we could potentially explore are i) the dimensionality
of the input word embeddings and ii) the dimensionality of the output word
embeddings. As mentioned before, we set both to 64 bits after performing some
quick manual experimentation. Full hyperparameter exploration is left for future
work.

Our experimental testbed comprises a desktop with a nvidia TITAN X (Pas-
cal), Intel Core Quad i7 3770K 3.5Ghz, 32 GB DDR3 RAM and a 180GB SSD
drive.

4.1 Training Data

We randomly sampled 5M tweets from a corpus of 300M tweets collected from
the Portuguese Twitter community [14]. The 5M comprise a total of 61.4M
words (approx. 12 words per tweets in average). From those 5M tweets we gen-
erated a database containing 18.9M distinct 5-grams, along with their frequency
counts. In this process, all text was down-cased. To help anonymizing the n-
gram information, we substituted all the twitter handles by an artificial token
“T_HANDLE”. We also substituted all HT'TP links by the token “LINK”. We
prepended two special tokens to complete the 5-grams generated from the first
two words of the tweet, and we correspondingly appended two other special
tokens to complete 5-grams centered around the two last tokens of the tweet.

Tokenization was perform by trivially separating tokens by blank space. No
linguistic pre-processing, such as for example separating punctuation from words,
was made. We opted for not doing any pre-processing for not introducing any
linguistic bias from another tool (tokenization of user generated content is not a
trivial problem). The most direct consequence of not performing any linguistic
pre-processing is that of increasing the vocabulary size and diluting token counts.
However, in principle, and given enough data, the embedding model should be
able to learn the correct embeddings for both actual words (e.g. “ronaldo”) and
the words that have punctuation attached (e.g. “ronaldo!”). In practice, we be-
lieve that this can actually be an advantage for the downstream consumers of
the embeddings, since they can also relax the requirements of their own tok-
enization stage. Overall, the dictionary thus produced contains approximately
1.3M distinct entries. Our dictionary was sorted by frequency, so the words with
lowest index correspond to the most common words in the corpus.

We used the information from the 5-gram database to generate all training
data used in the experiments. For a fixed size |V| of the target vocabulary to
be embedded (e.g. |[V| = 2048), we scanned the database to obtain all possible
5-grams for which all tokens were among the top |V| words of the dictionary
(i.e. the top |V| most frequent words in the corpus). Depending on |V, different
numbers of valid training 5-grams were found in the database: the larger |V| the

2 https://github.com/saleiro/embedpt

Table 1. Number of 5-grams available for training for different sizes of target vocab-
ulary |V|

V| |# 5-grams
2048 12,496,830
8192 [6,114,640
32768(10,899,570

more valid 5-grams would pass the filter. The number of examples collected for
each of the values of |V] is shown in Table

Since one of the goals of our experiments is to understand the impact of using
different amounts of training data, for each size of vocabulary to be embedded
|V'| we will run experiments training the models using 25%, 50%, 75% and 100%
of the data available.

4.2 Metrics related with the Learning Process

We tracked metrics related to the learning process itself, as a function of the
vocabulary size to be embedded |V| and of the fraction of training data used
(25%, 50%, 75% and 100%). For all possible configurations, we recorded the val-
ues of the training and validation loss (cross entropy) after each epoch. Tracking
these metrics serves as a minimalistic sanity check: if the model is not able to
solve the word prediction task with some degree of success (e.g. if we observe no
substantial decay in the losses) then one should not expect the embeddings to
capture any of the distributional information they are supposed to capture.

4.3 Tests and Gold-Standard Data for Intrinsic Evaluation

Using the gold standard data (described below), we performed three types of
tests:

— Class Membership Tests: embeddings corresponding two member of the
same semantic class (e.g. “Months of the Year”, “Portuguese Cities”, “Smi-
leys”) should be close, since they are supposed to be found in mostly the
same contexts.

— Class Distinction Test: this is the reciprocal of the previous Class Mem-
bership test. Embeddings of elements of different classes should be different,
since words of different classes ere expected to be found in significantly dif-
ferent contexts.

— Word Equivalence Test: embeddings corresponding to synonyms, antonyms,
abbreviations (e.g. “porque” abbreviated by “pq”) and partial references
(e.g. “slb and benfica”) should be almost equal, since both alternatives are
supposed to be used be interchangeable in all contexts (either maintaining
or inverting the meaning).

Therefore, in our tests, two words are considered:

— distinct if the cosine of the corresponding embeddings is lower than 0.70 (or
0.80).

— to belong to the same class if the cosine of their embeddings is higher than
0.70 (or 0.80).

— equivalent if the cosine of the embeddings is higher that 0.85 (or 0.95).

We report results using different thresholds of cosine similarity as we noticed that
cosine similarity is skewed to higher values in the embedding space, as observed
in related work [15,/16]. We used the following sources of data for testing Class
Membership:

— AP+Battig data. This data was collected from the evaluation data provided
by [11]. These correspond to 29 semantic classes.

— Twitter-Class - collected manually by the authors by checking top most fre-
quent words in the dictionary and then expanding the classes. These include
the following 6 sets (number of elements in brackets): smileys (13), months
(12), countries (6), names (19), surnames (14) Portuguese cities (9).

For the Class Distinction test, we pair each element of each of the gold stan-
dard classes, with all the other elements from other classes (removing duplicate
pairs since ordering does not matter), and we generate pairs of words which are
supposed belong to different classes. For Word Equivalence test, we manually
collected equivalente pairs, focusing on abbreviations that are popular in Twit-
ters (e.g. “qt” ~ “quanto” or “Ix” ~ “lisboa” and on frequent acronyms (e.g.
“slb” ~ “benfica”). In total, we compiled 48 equivalence pairs.

For all these tests we computed a coverage metric. Our embeddings do not
necessarily contain information for all the words contained in each of these tests.
So, for all tests, we compute a coverage metric that measures the fraction of the
gold-standard pairs that could actually be tested using the different embeddings
produced. Then, for all the test pairs actually covered, we obtain the success
metrics for each of the 3 tests by computing the ratio of pairs we were able to
correctly classified as i) being distinct (cosine < 0.7 or 0.8), ii) belonging to the
same class (cosine > 0.7 or 0.8), and iii) being equivalent (cosine > 0.85 or 0.95).

It is worth making a final comment about the gold standard data. Although
we do not expect this gold standard data to be sufficient for a wide-spectrum
evaluation of the resulting embeddings, it should be enough for providing us clues
regarding areas where the embedding process is capturing enough semantics, and
where it is not. These should still provide valuable indications for planning how
to produce the much larger database of word embeddings.

5 Results and Analysis

We run the training process and performed the corresponding evaluation for 12
combinations of size of vocabulary to be embedded, and the volume of training
data available that has been used. Table |2| presents some overall statistics after
training for 40 epochs.

Table 2. Overall statistics for 12 combinations of models learned varying |V| and
volume of training data. Results observed after 40 training epochs.

Embeddings|# Training Data Tuples|Avg secs/epoch|Training loss|Validation loss
|[V| = 2048 [561,786 (25% data) 4 3.2564 3.5932
V| = 2048 [1,123,573 (50% data) |9 3.2234 3.4474
|V| = 2048 |1,685,359 (75% data) |13 3.2138 3.3657
|[V| = 2048 |2,496,830 (100% data) |18 3.2075 3.3074
V| = 8192 |1,375,794 (25% data) |63 3.6329 4.286
V| = 8192 |2,751,588 (50% data) [151 3.6917 4.0664
V| = 8192 [4,127,382 (75% data) |187 3.7019 3.9323
V| = 8192 (6,114,640 (100% data) [276 3.7072 3.8565
|V| = 32768|2,452,402 (25% data) |388 3.7417 5.2768
|V| = 32768]4,904,806 (50% data) [956 3.9885 4.8409
|V| = 32768|7,357,209 (75% data) [1418 4.0649 4.6
|V| = 32768]10,899,570 (100% data) [2028 4.107 4.4491

— |V| = 32768, 100% data
— |V| = 8192, 100% data
— |V| = 2048, 100% data

— |V = 32768, 100% data
— |V| = 32768, 75% data
— |V| = 32768, 50% data

|V| = 32768, 25% data

ash |l N --

loss
loss

aof N\ Sse-oo o NS

35

20
epochs

15 20

epochs

25

Fig. 1. Continuous line represents loss in the training data while dashed line represents
loss in the validation data. Left side: effect of increasing |V| using 100% of training
data. Right side: effect of varying the amount of training data used with |V| = 32768.

The average time per epoch increases first with the size of the vocabulary to
embed |V| (because the model will have more parameters), and then, for each
|V|, with the volume of training data. Using our testbed (Section , the total
time of learning in our experiments varied from a minimum of 160 seconds, with
|V| = 2048 and 25% of data, to a maximum of 22.5 hours, with |V| = 32768
and using 100% of the training data available (extracted from 5M tweets). These
numbers give us an approximate figure of how time consuming it would be to
train embeddings from the complete Twitter corpus we have, consisting of 300M
tweets.

We now analyze the learning process itself. We plot the training set loss and
validation set loss for the different values of |V| (Figure [5| left) with 40 epochs
and using all the available data. As expected, the loss is reducing after each
epoch, with validation loss, although being slightly higher, following the same

trend. When using 100% we see no model overfitting. We can also observe that
the higher is |V| the higher are the absolute values of the loss sets. This is
not surprising because as the number of words to predict becomes higher the
problem will tend to become harder. Also, because we keep the dimensionality
of the embedding space constant (64 dimensions), it becomes increasingly hard
to represent and differentiate larger vocabularies in the same hyper-volume. We
believe this is a specially valuable indication for future experiments and for
deciding the dimensionality of the final embeddings to distribute.

On the right side of Figure [5| we show how the number of training (and vali-
dation) examples affects the loss. For a fixed |V| = 32768 we varied the amount
of data used for training from 25% to 100%. Three trends are apparent. As we
train with more data, we obtain better validation losses. This was expected. The
second trend is that by using less than 50% of the data available the model
tends to overfit the data, as indicated by the consistent increase in the valida-
tion loss after about 15 epochs (check dashed lines in right side of Figure [5).
This suggests that for the future we should not try any drastic reduction of the
training data to save training time. Finally, when not overfitting, the validation
loss seems to stabilize after around 20 epochs. We observed no phase-transition
effects (the model seems simple enough for not showing that type of behavior).
This indicates we have a practical way of safely deciding when to stop training
the model.

5.1 Intrinsic Evaluation

Table [3] presents results for the three different tests described in Section [4} The
first (expected) result is that the coverage metrics increase with the size of the
vocabulary being embedded, i.e., |V|. Because the Word Equivalence test set was
specifically created for evaluating Twitter-based embedding, when embedding
|V| = 32768 words we achieve almost 90% test coverage. On the other hand, for
the Class Distinction test set - which was created by doing the cross product of
the test cases of each class in Class Membership test set - we obtain very low
coverage figures. This indicates that it is not always possible to re-use previously
compiled gold-standard data, and that it will be important to compile gold-
standard data directly from Twitter content if we want to perform a more precise
evaluation.

The effect of varying the cosine similarity decision threshold from 0.70 to 0.80
for Class Membership test shows that the percentage of classified as correct test
cases drops significantly. However, the drop is more accentuated when training
with only a portion of the available data. The differences of using two alternative
thresholds values is even higher in the Word Equivalence test.

The Word Equivalence test, in which we consider two words equivalent word
if the cosine of the embedding vectors is higher than 0.95, revealed to be an
extremely demanding test. Nevertheless, for |V| = 32768 the results are far
superior, and for a much larger coverage, than for lower |V|. The same happens
with the Class Membership test.

Table 3. Evaluation of resulting embeddings using Class Membership, Class Distinc-
tion and Word Equivalence tests for different thresholds of cosine similarity.

Embeddings Class Membership Class Distinction Word Equivalence
V], %dat Acc. | Acc. TN | TN Acc. | Acc.
 Jocdata JCOVErage) ap 70 | @0.80 |V 8% @0.70|@0.80| Y *¢| @0.85 | @0.95
2048, 25% 30.71%(4.94% 100% |100% 26.67%2.94%
2048, 50% 29.13%|12.69% 100% |{100% 26.67%2.94%
2048, 75% 12.32% 29.13%(18.12% 1.20% 100% |100% 31.25% 33.33%12.94%
2048, 100% 32.28%26.77% 100% {100% 33.33%16.67%
8192, 25% 14.17%]4.94% 100% |100% 14.71%]2.94%
8192, 50% 22.41%(12.69% 99% [100% 20.59%2.94%
8192, 75% 29.60% 27.51%|18.12% 6.54% 99% [100% 70.83% 20.59%12.94%
8192, 100% 33.77%(21.91% 97% [100% 29.41%15.88%
32768, 25% 17.73%|5.13% 98% [100% 16.28%12.33%
32768, 50% 52.30%21.06% 83% [98% 34.88%19.30%
32768, 75% 47.79% 85.15%(49.41% 18.31% 44% |88% 89.58% 58.14%23.26%
32768, 100% 95.59%74.80% 13% |57% 72.09%(34.88%

On the other hand, the Class Distinction test shows a different trend for
larger values of |V| = 32768 but the coverage for other values of |V| is so low
that becomes difficult to hypothesize about the reduced values of True Negatives
(TN) percentage obtained for the largest |V|. It would be necessary to confirm
this behavior with even larger values of |V|. One might hypothesize that the
ability to distinguish between classes requires larger thresholds when |V] is large.
Also, we can speculate about the need of increasing the number of dimensions
to be able to encapsulate different semantic information for so many words.

5.2 Further Analysis regarding Evaluation Metrics

Despite already providing interesting practical clues for our goal of trying to
embed a larger vocabulary using more of the training data we have available,
these results also revealed that the intrinsic evaluation metrics we are using are
overly sensitive to their corresponding cosine similarity thresholds. This sensitiv-
ity poses serious challenges for further systematic exploration of word embedding
architectures and their corresponding hyper-parameters, which was also observed
in other recent works [16].

By using these absolute thresholds as criteria for deciding similarity of words,
we create a dependency between the evaluation metrics and the geometry of the
embedded data. If we see the embedding data as a graph, this means that metrics
will change if we apply scaling operations to certain parts of the graph, even if
its structure (i.e. relative position of the embedded words) does not change.

For most practical purposes (including training downstream ML models)
absolute distances have little meaning. What is fundamental is that the resulting
embeddings are able to capture topological information: similar words should be
closer to each other than they are to words that are dissimilar to them (under

the various criteria of similarity we care about), independently of the absolute
distances involved.

It is now clear that a key aspect for future work will be developing additional
performance metrics based on topological properties. We are in line with recent
work [17], proposing to shift evaluation from absolute values to more exploratory
evaluations focusing on weaknesses and strengths of the embeddings and not so
much in generic scores. For example, one metric could consist in checking whether
for any given word, all words that are known to belong to the same class are
closer than any words belonging to different classes, independently of the actual
cosine. Future work will necessarily include developing this type of metrics.

6 Conclusions

Producing word embeddings from tweets is challenging due to the specificities
of the vocabulary in the medium. We implemented a neural word embedding
model that embeds words based on n-gram information extracted from a sample
of the Portuguese Twitter stream, and which can be seen as a flexible baseline
for further experiments in the field. Work reported in this paper is a preliminary
study of trying to find parameters for training word embeddings from Twitter
and adequate evaluation tests and gold-standard data.

Results show that using less than 50% of the available training examples
for each vocabulary size might result in overfitting. The resulting embeddings
obtain an interesting performance on intrinsic evaluation tests when trained
a vocabulary containing the 32768 most frequent words in a Twitter sample
of relatively small size. Nevertheless, results exhibit a skewness in the cosine
similarity scores that should be further explored in future work. More specifically,
the Class Distinction test set revealed to be challenging and opens the door to
evaluation of not only similarity between words but also dissimilarities between
words of different semantic classes without using absolute score values.

Therefore, a key area of future exploration has to do with better evaluation
resources and metrics. We made some initial effort in this front. However, we
believe that developing new intrinsic tests, agnostic to absolute values of metrics
and concerned with topological aspects of the embedding space, and expanding
gold-standard data with cases tailored for user-generated content, is of funda-
mental importance for the progress of this line of work.

Furthermore, we plan to make public available word embeddings trained from
a large sample of 300M tweets collected from the Portuguese Twitter stream.
This will require experimenting producing embeddings with higher dimension-
ality (to avoid the cosine skewness effect) and training with even larger vocabu-
laries. Also, there is room for experimenting with some of the hyper-parameters
of the model itself (e.g. activation functions, dimensions of the layers), which we
know have impact on final results.

Acknowledgements We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan X Pascal GPU used for this research.

References

10.

11.

12.
13.

14.

15.

16.

17.

. Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity

with lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 3:211-225, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In NIPS,
2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In FMNLP, volume 14, pages 1532—-1543, 2014.
Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
society for information science, 41(6):391, 1990.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137—
1155, 2003.

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160-167. ACM, 2008.
Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factor-
ization. In Advances in neural information processing systems, pages 2177-2185,
2014.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in con-
tinuous space word representations. In Hlt-naacl, volume 13, 2013.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Rand-
walk: A latent variable model approach to word embeddings. arXiv preprint
arXiv:1502.03520, 2015.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin Stoy-
anov. Semeval-2016 task 4: Sentiment analysis in twitter. Proceedings of SemEval,
pages 1-18, 2016.

Joao Rodrigues, Anténio Branco, Steven Neale, and Jodo Silva. Lx-dsemvectors:
Distributional semantics models for portuguese. In International Conference on
Computational Processing of the Portuguese Language, pages 259-270. Springer,
2016.

Frangois Chollet. keras. https://github.com/fchollet/keras), 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Matko Bosnjak, Eduardo Oliveira, José Martins, Eduarda Mendes Rodrigues, and
Luis Sarmento. Twitterecho: a distributed focused crawler to support open research
with twitter data. In Proceedings of the 21st International Conference on World
Wide Web, pages 1233-1240. ACM, 2012.

Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. Improving zero-shot learn-
ing by mitigating the hubness problem. arXiv preprint arXiv:1412.6568, 2014.
Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. Prob-
lems with evaluation of word embeddings using word similarity tasks. ACL 2016,
page 30, 2016.

Anna Gladkova, Aleksandr Drozd, and Computing Center. Intrinsic evaluations of
word embeddings: What can we do better? ACL 2016, page 36, 2016.

https://github.com/fchollet/keras

	Learning Word Embeddings fromthe Portuguese Twitter Stream:A Study of some Practical Aspects

