Skip to main content

A Collaborative Framework for Joint Segmentation and Classification of Remote Sensing Images

  • Chapter
  • First Online:
  • 530 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 732))

Abstract

In this article, we present a collaborative framework for joint segmentation and classification. The framework is guided by and aware of the quality of each segment at every stage; it allows the consideration of both homogeneity based criteria as well as implicit semantic criteria to extract the objects belonging to a given thematic class. We apply the proposed framework to vegetation extraction in a very high spatial resolution image of Strasbourg. We compare our results to a pixel-based method, an object-based method and a hybrid segmentation-classification method. The experiments show that the proposed method reaches good classification results while remarkably improving the segmentation results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Binaghi, E., Brivio, P. A., Ghezzi, P., & Rampini, A. (1999). A fuzzy set-based accuracy assessment of soft classification. Pattern Recognition Letters, 20(9), 935–948.

    Google Scholar 

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 2–16.

    Google Scholar 

  • Chen, H.-C., & Wang, S.-J. (2004). The use of visible color difference in the quantitative evaluation of color image segmentation. In Proceedings of the ICASSP (pp. 593–596).

    Google Scholar 

  • Chow, C. (1970). On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, 16(1), 41–46.

    Google Scholar 

  • Derivaux, S., Forestier, G., Wemmert, C., & Lefèvre, S. (2010). Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation. Pattern Recognition Letters, 31, 2364–2374.

    Google Scholar 

  • di Sciascio, C., Zanni-Merk, C., Wemmert, C., Marc-Zwecker, S., & de Beuvron, F. D. B. (2013). Towards a semi-automatic semantic approach for satellite image analysis. Procedia Computer Science, 22, 1388–1397.

    Google Scholar 

  • Duveiller, G., Defourny, P., Desclée, B., & Mayaux, P. (2008). Deforestation in central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed landsat extracts. Remote Sensing of Environment, 112(5), 1969–1981. Earth Observations for Terrestrial Biodiversity and Ecosystems Special Issue.

    Google Scholar 

  • Farmer, M. E. (2009). Application of the wrapper framework for robust image segmentation for object detection and recognition. INTECH Open Access Publisher.

    Google Scholar 

  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The weka data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

    Google Scholar 

  • Haralick, R., Sternberg, S. R., & Zhuang, X. (1987). Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 9(4), 532–550.

    Google Scholar 

  • Hofmanna, P., Lettmayerb, P., Blaschkea, T., Belgiua, M., Wegenkittlb, S., Grafb, R., et al. (2014). Abia—a conceptional framework for agent based image analysis. South-Eastern European Journal of Earth Observation and Geomatics, 3(25), 125–129.

    Google Scholar 

  • Kurtz, C., Passat, N., Gançarski, P., & Puissant, A. (2012). Extraction of complex patterns from multiresolution remote sensing images: A hierarchical top-down methodology. Pattern Recognition, 45, 685–706.

    Google Scholar 

  • Lizarazo, I., & Elsner, P. (2011). Segmentation of remotely sensed imagery: Moving from sharp objects to fuzzy regions. Image Segmentation.

    Google Scholar 

  • Mahmoudi, F. T., Samadzadegan, F., & Reinartz, P. (2013). Object oriented image analysis based on multi-agent recognition system. Computers & Geosciences, 54, 219–230.

    Google Scholar 

  • Musci, M., Feitosa, R., & Costa, G. (2013). An object-based image analysis approach based on independent segmentations. In Urban Remote Sensing Event (JURSE), 2013 Joint (pp. 275–278).

    Google Scholar 

  • Pham, H. M., Yamaguchi, Y., & Bui, T. Q. (2011). A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landscape Urban Plan, 100, 223–230.

    Google Scholar 

  • Promper, C., Puissant, A., Malet, J.-P., & Glade, T. (2014). Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Applied Geography, 53, 11–19.

    Google Scholar 

  • Räsänen, A., Rusanen, A., Kuitunen, M., & Lensu, A. (2013). What makes segmentation good? A case study in boreal forest habitat mapping. International Journal of Remote Sensing, 34, 8603–8627.

    Google Scholar 

  • Rougier, S., & Puissant, A. (2014). Improvements of urban vegetation segmentation and classification using multi-temporal pleiades images. In 5th International Conference on Geographic Object-Based Image Analysis, Thessaloniki, Greece (p. 6).

    Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. Texas A & M University, Remote Sensing Center.

    Google Scholar 

  • Tarabalka, Y., Benediktsson, J., & Chanussot, J. (2009). Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2973–2987.

    Google Scholar 

  • Troya-Galvis, A., Gançarski, P., Passat, N., & Berti-Équille, L. (2015). Unsupervised quantification of under and over segmentation for object based remote sensing image analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5), 1936–1945.

    Google Scholar 

  • Zhang, H., Fritts, J. E., & Goldman, S. A. (2003). An entropy-based objective evaluation method for image segmentation. In Electronic Imaging 2004 (pp. 38–49).

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the French Agence Nationale de la Recherche (Grant Agreement ANR-12-MONU-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Troya-Galvis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Troya-Galvis, A., Gançarski, P., Berti-Équille, L. (2018). A Collaborative Framework for Joint Segmentation and Classification of Remote Sensing Images. In: Pinaud, B., Guillet, F., Cremilleux, B., de Runz, C. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 732. Springer, Cham. https://doi.org/10.1007/978-3-319-65406-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65406-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65405-8

  • Online ISBN: 978-3-319-65406-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics