Skip to main content

Power-Performance Evaluation of Parallel Multi-objective EEG Feature Selection on CPU-GPU Platforms

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2017)

Abstract

Heterogeneous CPU-GPU platforms include resources to benefit from different kinds of parallelism present in many data mining applications based on evolutionary algorithms that evolve solutions with time-demanding fitness evaluation. This paper describes an evolutionary parallel multi-objective feature selection procedure with subpopulations using two scheduling alternatives for evaluation of individuals according to the number of subpopulations. Evolving subpopulations usually provides good diversity properties and avoids premature convergence in evolutionary algorithms. The proposed procedure has been implemented in OpenMP to distribute dynamically either subpopulations or individuals among devices and OpenCL to evaluate the individuals taking into account the devices characteristics, providing two parallelism levels in CPU and up to three levels in GPUs. Different configurations of the proposed procedure have been evaluated and compared with a master-worker approach considering not only the runtime and achieved speedups but also the energy consumption between both scheduling models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Escobar, J.J., Ortega, J., González, J., Damas, M.: Assessing parallel heterogeneous computer architectures for multiobjective feature selection on EEG classification. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 277–289. Springer, Cham (2016). doi:10.1007/978-3-319-31744-1_25

    Chapter  Google Scholar 

  2. Escobar, J., Ortega, J., González, J., Damas, M.: Improving memory accesses for heterogeneous parallel multi-objective feature selection on EEG classification. In: Proceedings of the 4th International Workshop on Parallelism in Bioinformatics, PBIO 2016, pp. 372–383. Springer, Grenoble, August 2016

    Google Scholar 

  3. Escobar, J., Ortega, J., González, J., Damas, M., Prieto, B.: Issues on GPU parallel implementation of evolutionary high-dimensional multi-objective feature selection. In: Proceedings of the 20th European Conference on Applications of Evolutionary Computation, Part I, EVOSTAR 2017, pp. 773–788. Springer, Amsterdam, April 2017

    Google Scholar 

  4. Rupp, R., Kleih, S., Leeb, R., Millan, J., Kübler, A., Müller-Putz, G.: Brain-computer interfaces and assistive technology. In: Grübler, G., Hildt, E. (eds.) Brain-Computer-Interfaces in their Ethical, Social and Cultural Contexts. The International Library of Ethics, Law and Technology, pp. 7–38. Springer, Heidelberg (2014)

    Google Scholar 

  5. Vega, F.F., Chávez, F., Díaz, J., García, J.A., Castillo, P.A., Merelo, J.J., Cotta, C.: A cross-platform assessment of energy consumption in evolutionary algorithms. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 548–557. Springer, Cham (2016). doi:10.1007/978-3-319-45823-6_51

    Chapter  Google Scholar 

  6. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)

    Article  Google Scholar 

  7. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)

    Article  Google Scholar 

  8. Handl, J., Knowles, J.: Feature subset selection in unsupervised learning via multiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 217–238 (2006)

    Article  MathSciNet  Google Scholar 

  9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  10. Collet, P.: Why GPGPUS for evolutionary computation? In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series, pp. 3–14. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Jähne, P.: Overview of the current state of research on parallelisation of evolutionary algorithms on graphic cards. In: GI-Jahrestagung, INFORMATIK 2016, LNI, Bonn, Germany, pp. 2163–2174, September 2016

    Google Scholar 

  12. Luong, T., Melab, N., Talbi, E.G.: GPU-based island model for evolutionary algorithms. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 1089–1096. ACM, Portland, July 2010

    Google Scholar 

  13. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA architecture. In: Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 442–451. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12239-2_46

    Chapter  Google Scholar 

  14. Wong, M., Cui, G.: Data mining using parallel multi-objective evolutionary algorithms on graphics processing units. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series, pp. 287–307. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-objective optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series, pp. 267–286. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Asensio-Cubero, J., Gan, J., Palaniappan, R.: Multiresolution analysis over simple graphs for brain computer interfaces. J. Neural Eng. 10(4), 046014 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Work funded by project TIN2015-67020-P (Spanish “Ministerio de Economía y Competitividad” and ERDF funds). We would also like to thank the BCI laboratory of the University of Essex, and especially prof. John Q. Gan, for allowing us to use their databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Escobar, J.J., Ortega, J., Díaz, A.F., González, J., Damas, M. (2017). Power-Performance Evaluation of Parallel Multi-objective EEG Feature Selection on CPU-GPU Platforms. In: Ibrahim, S., Choo, KK., Yan, Z., Pedrycz, W. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2017. Lecture Notes in Computer Science(), vol 10393. Springer, Cham. https://doi.org/10.1007/978-3-319-65482-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65482-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65481-2

  • Online ISBN: 978-3-319-65482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics