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Abstract. This paper studies optimal time-bounded control in multi-mode sys-

tems with discrete costs. Multi-mode systems are an important subclass of linear

hybrid systems, in which there are no guards on transitions and all invariants are

global. Each state has a continuous cost attached to it, which is linear in the so-

journ time, while a discrete cost is attached to each transition taken. We show

that an optimal control for this model can be computed in NEXPTIME and ap-

proximated in PSPACE. We also show that the one-dimensional case is simpler:

although the problem is NP-complete (and in LOGSPACE for an infinite time

horizon), we develop an FPTAS for finding an approximate solution.

1 Introduction

Multi-mode systems [8] are an important subclass of linear hybrid systems [4], which

consist of multiple continuous variables and global invariants for the values that each

variable is allowed to take during a run of the system. However, unlike for the full linear

hybrid systems model, multi-mode systems have no guards on transitions and no local

invariants. In this paper, we study multi-mode systems with discrete costs, which extend

linear hybrid systems by adding both continuous and discrete costs to states. Every time

a transition is taken (i.e. when the current state changes), the discrete cost assigned to

the target state is incurred. The continuous cost is the sum of the products of the sojourn

time in each state and the cost assigned to this state. Our aim is to minimise the total cost

over a finite-time horizon or a long-time average cost over an infinite time horizon. We

exemplify this by applying this model to the optimal control of heating, ventilation, and

air-conditioning (HVAC) systems. HVAC systems account for about 50% of the total

energy cost in buildings [26], so a lot of energy can be saved by optimising their control.

Many simulation programs have been developed to analyse the influence of control on

the performance of HVAC system components such as TRNSYS [3], EnergyPlus [1],

and the Matlab’s IBPT [2]. Our approach has the advantage over the existing control

theory techniques that it provides approximation guarantees. Although the actual dy-

namics of a HVAC system is governed by linear differential equations, one can argue

[23,24,22] that constant rate dynamic, as in our model, can approximate well such a

behaviour.

The simplest subclass of our model is multi-mode systems with a single dimension.

It naturally occurs when controlling the temperature in a single room or building to

stay in a pleasant range. For this, the system can be in different modes, e.g. the air-

conditioning can be switched on or off, or one can choose to switch on an electrical

radiator or a gas burner. Each such a configuration can be modelled as mode of our
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multi-mode system. Modes have start-up cost (gas burners, e.g. may suffer some wear

and tear when switched on) as well as continuous costs.

When keeping an office building in a pleasant temperature range during opening

hours, we face a control problem for multi-mode systems with a finite time horizon. We

show that finding an optimal schedule in such a case is NP-complete and significantly

more challenging than for the infinite time horizon (LogSPACE). However, we devise

an FPTAS for the finite time horizon problem.

Heating multiple rooms simultaneously can be naturally modelled by multi-mode

systems (with multiple dimensions). In such a scenario, we might have different pleas-

ant temperature ranges in different rooms and the temperatures of the individual rooms

may influence each other. Naturally, controlling a multi-dimensional multi-mode sys-

tems is more complex than controlling a one-dimensional multi-mode system. We de-

velop a nondeterministic exponential time algorithm for the construction of optimal

control, whose complexity is only driven by potentially required high precision in expo-

nentially many mode switches. Allowing for an ε-deviation from the ranges of pleasant

temperatures reduces the complexity to PSPACE.

Related work. Our model can be viewed as a weighted extension of the linear hybrid

automata model ([5,17]), but with global constraints only. Even basic questions for the

general linear hybrid automata model are undecidable already for three variables and

not known to be decidable for two variables [9]. Most of the research for this model has

focused on qualitative objectives such as reachability. Various subclasses of hybrid sys-

tems with a decidable reachability problem were considered, see e.g. [9] for an overview.

In particular, reachability in linear hybrid systems, where the derivative of each variable

in each state is constant, can be shown to be decidable for one continuous variable by

using the techniques from [19]. In [6], it has been shown that reachability is decidable

for timed automata, which are a particular subclass of hybrid automata where the slope

of all variables is equal to 1.

In [22] we only studied the one-dimensional case of our model with the simplifying

assumption that there is exactly one mode that can bring the temperature down and it is

cost-free. In this paper, we drop this assumption and generalise the model to multiple di-

mensions. In the one-dimensional setting, we manage to prove similar nice algorithmic

properties as in [22], i.e. the existence of finitely many patterns for optimal schedules,

polynomial constant-factor approximation algorithm and an FPTAS. However, as op-

posed to the existence of a unique pattern for an optimal schedule in [22], we show that

that there can be 44 different patterns when the simplifying assumption is dropped. To

show this, we need to devise five safety-preserving and cost-non-increasing operations

on schedules, while in [22] it sufficed for each mode to just lump together all timed

actions that use this mode. Also, our constant-factor approximation algorithm requires

a careful analysis of the interplay between different sections of the normal form for

schedules, which results in an O(n7) algorithm, while in [22] it sufficed to use one

mode all the time and the algorithm ran in linear time.

Multi-mode systems were studied in [8], but with no discrete costs and with infi-

nite time horizons only. They were later extended in [7] to a setting where the rate of

change of each variable in a mode belonging to an interval instead of being constant.

[27] studied a hybrid automaton model where the dynamics are governed by linear dif-
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ferential equations, but again without switching costs and only with an infinite time

horizon. Both of these papers show that, for any number of variables, a schedule with

the optimal long-time average cost can be computed in polynomial time. In [23,24],

the same models without switching costs have been studied over the infinite time hori-

zon, with the objective of minimising the peak cost, rather than the long-time average

cost. In [11], long-time average and total cost games have been shown to be decidable

for hybrid automata with strong resets, in which all variables are reset to 0 after each

discrete transition. The long-time average and total cost optimisation for the weighted

timed automata model have been shown to be PSPACE-complete (see e.g. [10] for an

overview).

There are many practical approaches to the reduction of energy consumption and

peak demand in buildings. One particularly popular one is model predictive control

(MPC) [12]. In [25], stochastic MPC was used to minimise the energy consumption

in a building. In [21], On-Off optimal control was considered for air conditioning and

refrigeration. The drawback of using MPC is its high computational complexity and the

fact that it cannot provide any worst-case guarantees. UPPAAL Stratego [15] supports

the analysis of the expected cost in linear hybrid systems, but uses a stochastic semantics

of these models [16,14]. I.e. a control strategy induces a stochastic model where the

time delay in each state is uniformly or exponentially distributed. This is different to

the standard nondeterministic interpretation of the model, which we use in this paper. In

[20], an on-line controller synthesis combined with machine learning and compositional

synthesis techniques was applied for optimal control of a floor heating system.

Structure of the paper. The paper is organised as follows. We introduce all necessary

notation and formally define the model in Section 2. In Section 3, we study the compu-

tational complexity of limit-safe and ǫ-safe control in multiple dimensions. In Section 4,

we show that in one dimension every schedule can be transformed without increasing

its cost into a schedule following one of 44 different patterns. In Section 5, we show that

the cost optimisation decision problem in one-dimension with infinite and finite horizon

is LOGSPACE and NP-complete, respectively. In Section 6, still for the one-dimension

case, we first show a constant factor approximation algorithm and, building on it, de-

velop an FPTAS by a reduction to the 0-1 knapsack problem. To ease the exposition,

some of the proofs and algorithms were moved to the appendix.

2 Preliminaries

Let 0N and 1N be N -dimensional vectors with all entries equal to 0 and 1, respectively.

By R≥0 and Q≥0 we denote the sets of all non-negative real and rational numbers,

respectively. We assume that 0 · ∞ = ∞ · 0 = 0. For a vector v, let ‖v‖ be its ∞-

norm (i.e. the maximum coordinate in v). We write v1 ≤ v2 if every coordinate vector

of vector v1 is smaller than or equal to the corresponding coordinate in vector v2, and

v1 < v2 if, additionally, v1 6= v2 holds.

2.1 Formal Definition of Multi-Mode Systems

Motivated by our application of keeping temperature in multiple rooms within com-

fortable range, we restrict ourselves to safe sets being hyperrectangles, which can be
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specified by giving its two extreme corner points. A multi-mode system with discrete

costs, A, henceforth referred to simply as multi-mode system, is formally defined as a

tuple A = (M,N,A, πc, πd, Vmin, Vmax, V0) where:

– M is a finite set of modes;

– N ≥ 1 is the number of continuous variables in the system;

– A : M → QN is the slope of all the variables in a given mode;

– πc : M → Q≥0 is the cost per time unit spent in a given mode;

– πd : M → Q≥0 is the cost of switching to a given mode;

– Vmin, Vmax ∈ QN : Vmin < Vmax, define the safe set, S, as follows {x ∈ RN : Vmin ≤
x ≤ Vmax};

– V0 ∈ QN , such that V0 ∈ S, defines the initial value of all the variables.

2.2 Schedules, their cost and safety

A timed action is a pair (m, t) ∈ M × R≥0 of a mode m and time delay t > 0. A

schedule σ (of length k) with time horizon tmax is a finite sequence of timed actions

σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that
∑k

i=1 ti = tmax. A schedule σ with

infinite time horizon is either an infinite sequence of timed actions σ = 〈(m1, t1), (m2,
t2), . . . , (mk, tk), . . .〉, such that

∑∞

i=1 ti = ∞ or a finite sequence of timed actions

σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that tk = ∞. The run of a finite schedule

σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 is a sequence of states run(σ) = 〈V0, V1, ...,
Vk〉 such that, for all 0 ≤ i ≤ k − 1, we have that Vi+1 = Vi + tiA(mi).

A schedule and its run are called safe if Vmin ≤ Vi ≤ Vmax holds for all 1 ≤ i ≤ k.

A schedule and its run are called ǫ-safe if Vmin − ǫ · 1N < Vi < Vmax + ǫ · 1N holds

for all 1 ≤ i ≤ k. The run of an infinite schedule and its safety and ǫ-safety are defined

accordingly.

The total cost of a schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 with a

finite time horizon is defined as π(σ) =
∑k

i=1 πd(mi) + πc(mi)ti. The limit-average

cost for a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 with an infinite time

horizon is defined as πavg(σ) = πc(mk) and for an infinite schedule σ = 〈(m1, t1),
(m2, t2), . . .〉 it is defined as

πavg(σ) = lim sup
k→∞

(

k
∑

i=1

πd(mi) + πc(mi)ti

)

/

k
∑

i=1

ti

A safe finite schedule σ is ǫ-optimal if, for all safe finite schedules σ′, we have that

π(σ′) ≥ π(σ) − ǫ. A safe finite schedule is optimal if it is 0-optimal. A safe infinite

schedule σ is optimal if, for all safe infinite schedules σ′, we have that πavg(σ
′) ≥

πavg(σ).
The following example shows that there may not be an optimal schedule for a multi-

mode system with a finite time horizon.

Example 1. Consider a multi-mode system with three modes: M1,M2,M3. The slope

vectors in these modes are A(M1) = (1, 1), A(M2) = (1,−1) and A(M3) = (−1, 1),
respectively. The continuous cost of using M1 is πc(M1) = 1 and all the other costs
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are 0. Let V0 = Vmin = 02 and Vmax = 12. Notice that we can only use M2 or M3 once

we get out of the initial corner V0. This can only be done using M1. Now let the time

horizon be tmax. Note that the following schedule σǫ = (M1, ǫ),
(

(M2, t), (M3, t)
)l

,

where t′ = tmax − ǫ, l = ⌈t′/ǫ⌉, and t = t′/2l, has time horizon tmax and total cost

ǫ > 0. As ǫ can be made arbitrarily small but has to be > 0, σǫ is an ǫ-optimal schedule

for all ǫ > 0, but no optimal schedule exists.

Note that in Example 1, for any ǫ > 0, there exists an optimal ǫ-safe schedule σ

with total cost 0: σ0 = 〈
(

(M2, t), (M3, t)
)l
〉 where l is defined as in Example 1. Our

aim is to find an “abstract schedule” that, for any given ǫ > 0, can be used to construct

in polynomial time an ǫ-safe ǫ-optimal schedule.

Let M∗ = {m ∈ M | πd(m) = 0} be the subset of modes without discrete

costs. Note that, as shown in [8], the cost and safety of a schedule with M∗ modes

only, depends only on the total amount of time spent in each of the M∗ modes. We

therefore lump together any sequence of timed actions that only use M∗ modes and

define an abstract timed action (over M∗) as a function t : M∗ → R≥0. A finite

abstract schedule with time horizon tmax (of length k) is a finite sequence τ = 〈t1,
(m1, t1), t2, (m2, t2), . . . , (mk−1, tk−1), tk〉 such that ∀i mi ∈ M \ M∗ and
∑

i≤k,m∈M∗ ti(m) +
∑

i<k ti = tmax. The run of the abstract schedule τ is a sequence

〈V0, V1, . . . , V2k+1〉 such that, for all i ≤ k, we have V2i = V2i−1 + A(mi)ti and

V2i+1 = V2i +
∑

m∈M∗ A(m)ti(m). We say that an abstract schedule is limit-safe if

its run is safe. The total cost of an abstract schedule τ is defined as

∑

i≤k,m∈M∗

πc(m, ti(m)) +
∑

i<k

(

πd(mi) + πc(mi)ti
)

.

Note that any safe schedule can be turned into a limit-safe abstract schedule with the

same cost by simply replacing any maximal subsequence of consecutive timed actions

that only use M∗ modes by a single abstract timed action. A limit-safe abstract schedule

σ is optimal if the total cost of all other limit-safe abstract schedules is higher than π(σ).
The following statement justifies the name “limit-safe”.

Proposition 1. Given a limit-safe abstract schedule τ and ǫ > 0, we can construct in

polynomial time an ǫ-safe schedule σ such that π(τ) = π(σ).

Proof. Let M∗ = {m1,m2, . . . ,mj}. To obtain σ from τ , we replace each abstract

timed action
{(

m, tm) | m ∈ M∗
}

by a sequence
(

(m1, tm1
/l), . . . , (mj , tmj

/l)
)l

for

a sufficiently large l ∈ N.

Sufficiently large means that, for t∗ =
∑

m∈M∗ tm, l > t∗ ·maxm∈M∗ ‖A(m)‖/ǫ.
This choice guarantees that

∑

m∈M∗ ‖A(m)‖·tm/l < ε. Thus, when the abstract action
{(

m, tm) | m ∈ M∗
}

joins two states V2i, V2i+1 along the run 〈V0, V1, . . . , . . . , V2k+1〉
of τ , we know that this concrete schedule will cover the l-th part of V2i, V2i+1 after ev-

ery sequence (m1, tm1
/l), (m2, tm2

/l), . . . , (mj , tmj
/l). As the safe set is convex, the

start and end points of this sequence are safe points. Also,
∑

m∈M∗ ‖A(m)‖ · tm/l < ε
implies that the points in the middle are ǫ-safe. ⊓⊔

Example 1 continues. An example limit-safe abstract schedule of length 1 is τ =
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{(m1, tmax/2), (m2, tmax/2)}. Based on τ we can construct an ǫ-safe schedule 〈
(

(m1,

tmax/2l), (m2, tmax/2l)
)l
〉 where l is any integer greater than tmax/ǫ.

2.3 Structure of optimal schedules

We show here that it later suffices to consider only schedules with a particular structure.

Definition 1. We call a finite schedule σ angular if there are no two consecutive timed

actions (mi, ti), (mi+1, ti+1) in σ such that A(mi) = A(mi+1).

We show that while looking for an (ǫ-)safe (ǫ-)optimal finite schedule, we can re-

strict our attention to angular schedules only.

Proposition 2. For every finite (ǫ-)safe schedule with time horizon tmax there exists an

angular safe schedule with the same or lower cost.

Henceforth, we assume that all finite schedules are angular. Let M0 = {m |
A(m) = 0}, which we will also refer to as zero-modes.

Proposition 3. For every finite safe schedule with time horizon tmax there exists a safe

schedule with the same or lower cost, in which at most one zero-mode is used at the

very beginning.

Henceforth, we assume that all finite schedules use at most one zero-mode timed

action and only at the very beginning.

2.4 Approximation algorithms

We study approximation algorithms for the total cost minimisation problem in multi-

mode systems. We say that an algorithm is a constant factor approximation algorithm

with a relative performance ρ iff, for all inputs x, the cost of the solution that it com-

putes, f(x), satisfies OPT (x) ≤ f(x) ≤ (1 + ρ) · OPT (x), where OPT (x) is the

optimal cost for the input x. We are particularly interested in polynomial-time approx-

imation algorithms. A polynomial-time approximation scheme (PTAS) is an algorithm

that, for every ρ > 0, runs in polynomial-time and has relative performance ρ. Note

that the running time of a PTAS may depend in an arbitrary way on ρ. Therefore, we

typically strive to find a fully polynomial-time approximation scheme (FPTAS), which

is an algorithm that runs in polynomial-time in the size of the input and 1/ρ.

The 0-1 Knapsack problem is a well-known NP-complete optimisations problem,

which possess multiple FPTASes (see e.g. [18]). In this problem we are given a knap-

sack with a fixed volume and a list of items, each with an integer volume and value.

The aim is to pick a subset of these items that together do not exceed the volume of the

knapsack and have the maximum total value.
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3 Complexity of limit-safe and ǫ-safe finite control

As our one-dimensional model strictly generalises the simple linear hybrid automata

considered in [22], we immediately obtain the following result.

Theorem 1 (follows from [22], Theorem 3). Given (one-dimensional) multi-mode sys-

tem A, constants tmax and C (both in binary), checking whether there exists a safe

schedule in A with time horizon tmax and total cost at most C is NP-hard.

In the rest of this section we fix a (multi-dimensional) multi-mode system A and

time horizon tmax.

Theorem 2. If a limit-safe abstract schedule exists in A, then there exists one of expo-

nential length and it can be constructed in polynomial time.

Proof (sketch). Before we formally prove this theorem, we need to introduce first a bit

of terminology. We call a mode m safe for time t > 0 at V ∈ S := {x ∈ RN : Vmin ≤
x ≤ Vmax} if V +A(m)t ∈ S. Also, m is safe at V if there exists t > 0 such that m is

safe for time t at V . We say that a coordinate of a state, V ∈ S, is at the border if that

coordinate in V is equal to the corresponding coordinate in Vmin or Vmax.

Our algorithm first removes from M all modes that will never be safe to use in a

limit-safe schedule. This procedure can be found between lines 1 – 8 of Algorithm 2

in Appendix D. This is an adaptation of [8, Theorem 7] where an algorithm was given

for finding safe modes that can ever be used in a schedule with no time horizon. The

main difference here is that the modes in M∗ can always be used in a limit-safe abstract

schedule even if they are not safe to use. We find here a sequence of sets of modes

M∗ = M0 ⊂ M1 ⊂ M2 ⊂ . . . such Mi+1 is the set of modes that are safe at a state

reachable from V0 via a limit-safe abstract schedule that only uses modes fromMi. Note

that at some step k ≤ |M | this sequence will stabilise, i.e. Mk = Mk+1. Similarly as in

the proof of [8, Theorem 7], we can show that no mode from M \Mk can ever be used

by a limit-safe abstract schedule. As a result, we can remove all these modes from M .

Next, we remove all modes that cannot be part of a limit-safe abstract schedule with

time horizon tmax. For this, for each m, we formulate a very similar linear programme

(LP) as above (cf. lines 9 – 11 of Algorithm 2) where we ask for the time delay of m to

be positive and the total time delay of all the modes to be tmax. By a simple adaptation

of the proof of [8, Theorem 4], if this LP is not satisfiable then m can be removed from

A.

Next, we look for the easiest possible target state Vend that can potentially be reached

using a limit-safe abstract schedule from V0 with time horizon tmax. For this, Vend has

to have the least number of coordinates at the border of the safe set. Note that this is

well-defined, because if V and V ′ are two points reachable from V0 via a limit-safe

abstract schedules τ and τ ′ with time horizon tmax, respectively, then τ/2 (i.e. divide all

abstract and timed actions delays in τ by 2) followed by τ ′/2, is also a limit-safe abstract

schedule with time horizon tmax, which reaches (V +V ′)/2. However, (V +V ′)/2 has

a coordinate at the border iff both V and V ′ have it as well. This shows that there is a

state with a minimum number of coordinates at the border.

To find the coordinates that need to be at the border we will use the following LP.
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We have a variable xi for each dimension i ≤ N and a constraint that requires xi to be

less or equal to the i-th coordinate of Vmax − Vend and Vend − Vmin. We also add that
∑

m∈M tm = tmax and Vend = V0 +
∑

m∈M tm · A(m), with the objective Maximise
∑

i xi. If the value of the objective is > 0, we will get to know a new coordinate that

does not have to be at the border. We then remove it from the LP and run it again. Once

the objective is 0, then all the remaining coordinates, I , have to be at the border and

the solution to this LP tells us, at which border the solution has to be located (it cannot

possibly be at the border of both Vmin and Vmax as then we could reach the middle).

Next, in order to bound the length of a limit-safe abstract schedule by an exponential

in the size of the input, we not only need a state with the minimum number of coordi-

nates at the border, but also sufficiently far way from the border. Otherwise, we may

need super-exponentially many timed actions to reach it. In order to find such a point,

we replace all xi-s in the previously defined LP by a single variable x which is smaller

or equal to all the coordinates of Vmax − Vend and Vend − Vmin from I . We then set the

objective to Maximise x, which will give us a suitable easy target state Vend.

Now, consider A′, which is the same as A but with all slopes negated (i.e. A′(m) =
−A(m) for all m ∈ M ). We claim that Vend is reachable from V0 using a limit-safe

abstract schedule τ iff (V0 + Vend)/2 is reachable from V0 in A with time horizon

tmax/2 and (V0 + Vend)/2 is reachable from Vend in A′ with time horizon tmax/2; this

again follows by considering τ/2. Note that a coordinate of (V0 + Vend)/2 is at the

border iff it is at the border in both V0 and Vend.

This way we reduced our problem to just checking whether a limit-safe abstract

schedule exists from one point to another more permissive point (i.e. where the set of

safe modes is at least as big) within a given time horizon. Algorithm 2 in the appendix D

solves this problem and constructs (if there exists one) a limit-safe abstract schedule of

at most exponential length with these properties. It again reuses the same constructions

as above, e.g. constructs exactly the same sequence of sets of modes M∗ = M0 ⊂
M1 ⊂ . . . ⊂ Mk, and its correctness follows by a similar reasoning as above. We

now need to invoke this algorithm twice: to check that (V0 + Vend)/2 is reachable from

V0 with time horizon tmax/2 and that (V0 + Vend)/2 is reachable from Vend with time

horizon tmax/2 in A′. If at least one of these calls return NO, then no limit-safe abstract

schedule from V0 to Vend can exist. Otherwise, let σ and σ′ be the schedules returned

by these two calls, respectively. Then the concatenation of σ with the reverse of σ′ is a

limit-safe abstract schedule that reaches Vend from V0 with time horizon tmax. ⊓⊔

Theorem 3. Finding an optimal limit-safe abstract schedule in A can be done in non-

deterministic exponential time.

Proof. The limit-safe abstract schedule constructed in Theorem 2 has an exponential

length. To establish a nondeterministic exponential upper bound, we can guess the

modes (and the order in which they occur). With them, we can produce an exponen-

tially sized linear program, which encodes that the run of the abstract schedule is safe

and minimises the total cost incurred. ⊓⊔

Theorem 3 and Proposition 1 immediately give us the following.

Corollary 1. If a limit-safe abstract schedule exists in A, then for any ǫ > 0 an ǫ-safe

schedule with the same cost can be found in nondeterministic exponential time.
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Moreover, from Theorem 2 and the fact that in the case of multi-mode systems with

no discrete costs all abstract schedules have length 1, we get the following.

Corollary 2. Finding an optimal limit-safe abstract schedule for multi-mode systems

with no discrete costs can be done in polynomial time.

We can reduce the computational complexity in the general model if we are willing

to sacrifice optimality for ǫ-optimality.

Theorem 4. If a limit-safe abstract schedule exists, then finding an ǫ-safe ǫ-optimal

strategy can be done in deterministic polynomial space.

Proof. When reconsidering the linear programme from the end of the proof of Theorem

3, we can guess the intermediate states in polynomial space (and thus guess and output

the schedule) as long as all states along the run (including the time passed so far) are

representable in polynomial space.

Otherwise we use the opportunity to deviate by up to ǫ from the safe set by increas-

ing or decreasing the duration of each timed action up to some δ > 0, in order to keep

the intermediate values representable in space polynomial in |A| and ǫ. However, we

apply these changes in a way that the overall time remains tmax. Clearly this is possible,

because within δ/2 of the actual time point of each state along the run, there is a value

whose number of digits in the standard decimal notation is at most equal to the sum of

the number of digits in δ/2 and tmax. Picking any such point for every interval would

induce a schedule with the required property and they can be simply guessed one by

one.

The final imprecision introduced by this operation is at most b ·δ ·maxm∈M |A(m)|,
where b is a bound on the number of timed actions in a limit-safe schedule, which is

exponential in |A|. If we choose δ = ǫ/(b · maxm∈M |A(m)|), then we will get the

required precision.

Although our algorithm is nondeterministic, due to Savitch’s theorem, it can be

implemented in deterministic polynomial space. ⊓⊔

4 Structure of Finite Control in One-dimension

We show in this section that any finite safe schedule in one-dimension can be trans-

formed without increasing its cost into a safe schedule, which follows one of finitely

many regular patterns. The crucial component of this normal form will be a “leap” that

we define below. We first introduce some notation. Let M+ = {m | A(m) > 0} and

M− = {m | A(m) < 0}. Recall that M0 = {m | A(m) = 0}. We will call a mode,

m, an up mode, down mode, or zero-mode if m ∈ M+, m ∈ M−, or m ∈ M0, re-

spectively. Similarly, the trend of a timed action (m, t) is up, down, flat if m is an up,

down, zero-mode, respectively. For any subsequence of timed actions σ′ = 〈(mi, ti),
. . . , (mj , tj)〉 in a schedule σ, whose run is run(σ) = 〈V0, V1, . . . , Vk〉, we say

that σ′ starts at state v and ends at state v′ iff v = Vi−1 and v′ = Vj . We use the same

terminology for a single timed action (in this case this subsequence has length 1).

Definition 2. A partial leap is a pair of consecutive timed actions (mi, ti), (mi+1, ti+1)
in a safe schedule such that mi ∈ M+, mi+1 ∈ M−, andA(mi)ti+A(mi+1)ti+1 = 0,
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i.e. the state of a multi-mode system does not change after any partial leap. A partial

leap is complete if A(mi)ti = Vmax − Vmin. We will simply refer to complete leaps as

leaps.

There are |M+ × M−| types of leaps. A leap is of type (m,m′) ∈ M+ × M−

iff mi = m and mi+1 = m′. Let ∆tm and ∆πm denote the time and cost it takes

for an up mode m to get from Vmin to Vmax or a down mode m to get from Vmax to

Vmin. Note that ∆tm = |(Vmax − Vmin)/A(m)| and ∆πm = πd(m) + πc(m) · ∆tm.

By ∆tm,m′ and ∆πm,m′ we denote the time duration and the cost of a leap of type

(m,m′) ∈ M+×M−, respectively. Note that ∆tm,m′ = ∆tm +∆tm′ and ∆πm,m′ =
∆πm +∆πm′ .

Any safe schedule σ can be decomposed into three sections that we will call its head,

leaps, and tail. The head section ends after the first timed action that ends at Vmin. The

leaps section contains only leaps of possibly different types following the head section.

Finally, the tail section starts after the last leap in the leaps section has finished. Note

that any of these sections can be empty and the tail section can in principle contain

further leaps. We show here that, for any safe schedule of length at least three, there

exists another safe one with the same or a smaller cost, whose head and tail sections

follow one of the 10 patterns presented in Figure 3 and Figure 4, respectively, where

partial up/down means that the next state is not at the border. For each of these patterns,

there exists an example which shows that an optimal safe schedule may need to use

such a pattern and hence it is necessary to consider it. In order to prove this, we first

need to define several cost-nonincreasing and safety-preserving operations that can be

applied to safe schedules. These will later be applied in Theorem 5 to transform any

safe schedule into one of the just mentioned regular patterns. These operations are easy

to explain via a picture, but cumbersome to define formally. Therefore, we moved their

formal definitions to the Appendix E and present here only the intuition behind them.

Let σ be any safe finite schedule. Following Proposition 2 and 3, we can assume

that σ is angular and only contains at most one timed action with a zero-mode, and if

it contains one, this action occurs at the very beginning. Unless explicitly stated, the

operations below are defined for timed actions with up or down trend only.

Vmax

Vmin

1

2

m1

3

m2

4m3

2
′

m2

3
′

m3

m1

Vmax

Vmin
1

2

m1

3

m2

4

m3

5

m4

2
′

m3

3
′

m4 4
′

m1
m2

Fig. 1: On the left, the rearrange operation applied to three timed actions 1-2-3 with

modes m1,m2,m3 results in 1’-2’-3’ with modes m2,m3,m1. On the right, the shift

operation is being applied to a partial leap 1-2-3 which will be moved after the (com-

plete) leap 3-4-5.

The first operation that we need is the rearrange operation, which simply changes

the order of any subsequence of timed actions with the same trend. The next one is the

shift operation. It cuts any subsequence of timed actions that start and end at the same
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state, V , and pastes this subsequence after any timed action that ends at V . The effect

of these two operations can be seen in Figure 1.

Vmin

Vmax

1

2

mi

3

mi+1

4

mi+2

5

mi+3

3’

mi+3 4’

mi+2

mi+1 Vmin

Vmax

1

2

m1

3

m2

4

m3

7

6 m2

5

m2

Fig. 2: On the left, an example of applying the shift-down operation to timed actions

mi+1,mi+2. These actions are rearranged to move after point 5, which becomes point

3’ (i.e. following timed action mi+3). On the right, an example of applying the wedge

operation to three timed actions m1,m2,m3. This operation is a (parallel) translation

of the action m2, which changes the time duration of each of theses actions. After this

operation either the m2 line touches Vmin, which would remove m1 from the schedule,

or the m2 line touches Vmax, which would change a state along the run of the schedule

to be at the border.

Next is the shift-down operation. We can see an example of applying this operation

in Figure 2. Intuitively, it can rearrange any subsequence of timed actions that start and

end at the same state and move them after any timed action that ends at Vmin. The most

complicated operation we define is the wedge operation. It acts on three consecutive

timed actions in a safe schedule and simultaneously shrinks the middle action while

extending the other two, or stretches the middle action while shrinking the other two. We

can see its behaviour in Figure 2. Intuitively, it moves the timed action m2 parallelly up

or down, until either the timed action m1 is removed or m2 ends at Vmax. The direction

depends on the cost gradient, but as the cost delta function of this operation is linear,

one of these directions is cost-nonincreasing.

Finally, we define the resize operation that will be used the most in our procedure.

The resize operation requires one parameter t ∈ R and can act on any two consecu-

tive timed actions in a safe schedule. Intuitively, if t < 0, this operation decreases the

total time of this pair of timed actions by |t| while changing only the middle state be-

tween these two timed actions along the run of the schedule. If t > 0, this operation

increases the duration of this pair of timed actions by t while again changing only the

state between them along the run. If t > 0 then we will also refer to this operation as

the stretch operation and if t < 0 as the shrink operation with parameter −t > 0. If the

stretch and shrink operations are simultaneously applied with the same parameter t to

two non-overlapping pairs of timed actions, the result is a safe schedule with the same

time horizon as before, but with a possibly different total cost. We will call a flexi any

subsequence of length 2 in a safe schedule such that both shrink and stretch operations

can be applied to it for some t > 0 without compromising its safety. A simultaneous

application of these two operations to flexis is demonstrated in Figure 5 and 6.
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Consider two non-overlapping flexis at positions i and j in a safe schedule σ. Let

σ′ = resize(σ, i, t) be the resulting schedule of applying the resize operation with pa-

rameter t to the i-th and i + 1-th timed actions in σ and resize-domain(σ, i) be the

maximal closed interval from which t can be picked to ensure that σ′ is safe. Sim-

ilarly, let σ′′ = resize(σ, j,−t) and σ′′′ = resize(resize(σ, i, t), j,−t)). Note that

σ′′′ has the same time horizon as σ and is safe as long as t ∈ resize-domain(σ, i) ∩
resize-domain(σ, j) and let us denote this closed interval by I . Furthermore, π(σ′′′)−
π(σ) = π(σ′) − π(σ) + π(σ′′) − π(σ) because the two flexis did not overlap. As it is

shown in Appendix E, both π(σ′) − π(σ) and π(σ′′) − π(σ) are linear functions in t
in the interior of I . As a result, π(σ′′′) − π(σ) is also a linear function in t and so its

minimum value is achieved at one of the endpoints of I . Also, at such an endpoint, one

of the time actions in these two flexis will disappear and as a result the total cost would

be reduced even further. It follows, that there is an endpoint of I such that selecting it

as t will not increase the cost of the schedule, but it will remove a flexi from σ. As the

zero-mode timed action and the last timed action in a schedule can have flexible time

delay, we can also define the resize operation for them in a similar way (see Appendix

E). As a result, we can apply the resize operation with parameter t to any of these (in-

cluding a flexi) and with parameter −t to the other. Reasoning as above, there is a value

for t such that the cost of the resulting schedule does not increase, the schedule remains

safe, and at least one of the timed actions is removed from σ or one more state along

the run of σ becomes Vmin or Vmax.

t = 0 t = 0 t = 0

t = 0 t = 0 t = 0

Vmax

Vmax

Vmin

Vmin

(a) (b) (c)

(d) (e) (f)

t = 0 t = 0 t = 0

(g) (h) (i)

Vmax

Vmin

1 2
m1

3

m2

1

2

m1

1

2

m1

3

m2

1
2

m1

3

m2

4

m3

1

2

m1

3

m2

1

2

m1

3

m2

4

m3

1

2

m1

3

m2

4

m3

1

3

1

2

m1

4

2

m1

m2

3

m2

m3

Fig. 3: Ten possible head patterns: (a) flat+down (b) down (c) partial-up+down (d)

flat+up+down (e) up+down (f) partial-down+up+down (g) partial-up+up+down (h)

partial-down+down (i) up+partial-down+down and (j) empty (not depicted).
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Vmax

Vmin

tmax

Vmax

Vmin

(a)

tmax
(d)

tmax

(e)

tmax tmax

(g) (h)

tmax tmax
(b) (c)

tmax

(f)

(i)

Vmax

Vmin

tmax

1

2

m1

1

2

m1
3

m2

1

2

m1

4

3

m3

2 m2

1

m1

1

2

m1

3

m2

4

m3

41

2

m1

3

m2

1

2

m1

3
m2

m3

1

2

m1

3

m2

5

1

2

m1 3m2

4

m3
m4

Fig. 4: Ten possible tail patterns: (a) partial-up (b) partial-up+up (c) up+partial-

down+down (d) up+partial-down (e) up (f) partial-up+down (g) partial-up+up+down

(h) partial-up+down+up (i) up+partial-down+down+up and (j) empty (not depicted).

Theorem 5. For every safe schedule σ in a one-dimensional multi-mode system there

exists a safe schedule σ′ whose head section matches one of the patterns in Figure 3, tail

section matches one of the patterns in Figure 4, and π(σ′) ≤ π(σ) holds. Furthermore,

it suffices to consider only 44 combinations of these head and tail patterns, and the

length of all of them is at most five.

Proof. We will repeatedly apply combination of shrink and stretch operations to flexis

until we remove all non-overlapping ones. Note that after each such an application either

a timed action is removed or one more state along the run of σ becomes equal to Vmax

or Vmin. We claim that the following steps will transform σ into a suitable σ′:

1. as long as there are at least one pair of non-overlapping flexis then shrink one and

stretch the other until a timed action is removed or a new state at the border is

created;

2. once there is only one flexi left or two overlapping ones, use the shift or shift-down

operation to move them to the end of the schedule;

3. if the first timed action is flat, pair it with the remaining flexi to remove one of them

using the shrink-stretch operation combination;

4. if the last state of run(σ) is not at the border and a flexi or flat timed action remains

after the previous step, they should be paired with each other for the shrink-stretch

operation combination;

5. if two overlapping flexis exist, use the wedge operation to resolve them;
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6. finally, if the tail section still does not follow any of the patterns, apply the shift-

down operation to the (unique) segment that starts and ends at Vmax.

A graphical representation of this procedure when applied to an example schedule can

be seen in Appendix G. It is easy to see that the first step of this procedure will stop

eventually because σ has a finite number of timed actions and states along its run. The

rest of the steps of this procedure just try to reduce the number of possibilities for the

head and tail sections. Note that, apart from the initial state, there can be only one state,

along the run of the resulting σ′, which is not at the border. This is because otherwise a

shrink-stretch or wedge operation could still be applied. Drawing all possible patterns

with one point not at the border and eliminating the ones that are inter-reducible using

one of these operations, results in Figure 3 for the head section and Figure 4 for the tail

section.

If we try to combine all these head and tail pattern together then this would result

in 10 · 10 = 100 possible combinations. However, as just mentioned, there can be

only one point not at the border or a zero-mode timed action in a schedule so these

combinations of head and tail patterns can be reduced further. In particular, any head

pattern can be combined with tail patterns (e) and (j), but only (b), (e), (j) head patterns

can be combined with the remaining tail ones. Therefore, there are 10 · 2 + 3 · 8 = 44
combined patterns and it is easy to check that none of them has length larger than five

(this is important for the computational complexity stated in Theorem 8). ⊓⊔

Vmin

Vmax

Stretch by Shrink by

1

2

m1

3

m2

1
′

2
′

m3

3
′

m4

5

4

m2

t

4
′

5
′

m3

t

Fig. 5: Shrink and stretch operations being applied to two up-up flexis. The 1-2-3 one

is stretched by t, which results in 1-4-5, and 1’-2’-3’ is shrunk by t, which results in

4’-5’-3’. Note that 3 and 5 (also, 1’ and 4’) are the same states but shifted in time. In

fact, all states along the run of the schedule stay the same apart from 2 and 2’, and as a

result the schedule stays safe.

5 Complexity of Optimal Control in One-dimension

We start with considering the easy case of infinite time horizons, before turning to the

interesting case of finite time horizons.

5.1 Infinite time horizon

First let us consider the case M0 = ∅. If also M+ × M− = ∅ then there are no safe

schedules with infinite horizon at all. Otherwise, let (i′, j′) = argmin(i,j)∈M+×M− ∆πi,j/∆ti,j .
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Stretch by Shrink by

Vmin

Vmax

1

2

mi

3

mi+1

4

5

mj
6

mj+1

2
′

3
′

mi+1

4
′

5
′

mj

t t

Fig. 6: Shrink and stretch operations being applied to two up-down flexis.

Let us pick any mode m− ∈ M− and denote t− := (Vmin − V0)/A(m
−). Consider the

infinite schedule σ, which starts with the timed action (m−, t−) followed by infinitely

many complete leaps of type (i′, j′). Obviously, at all times t = t− + k ·∆ti′,j′ where

k ∈ N, σ is more expensive by at most πd(m
−) + πc(m

−)t− from the cheapest sched-

ule with time horizon t. Consequently, as k → ∞, this shows that the limit superior

of the average cost cannot be smaller than ∆πi′,j′/∆ti′,j′ . At the same time, σ realises

this long-time average.

If M0 6= ∅, then let m′ = minm∈M0 πc(m) be the zero-mode with the lowest

continuous cost to run. We claim that if πc(m
′) < ∆πi′,j′/∆ti′,j′ or M+ ×M− = ∅

then an optimal safe schedule is simply (m′,∞), whose limit-average cost is πc(m
′),

and otherwise σ defined above is an optimal safe schedule. This is because, if πc(m
′) <

∆πi′,j′/∆ti′,j′ , then, at any time point of σ where a leap of some type (i, j) is used,

removing this leap and increasing the time m′ is used for by ∆ti,j reduces the total cost

up to this time point.

Taking into account that argmin(i,j)∈M+×M− ∆πi,j/∆ti,j can be computed using

logarithmic space (because multiplication, division and comparison can be [13]) we get

the following theorem.

Theorem 6. An optimal safe infinite schedule for one-dimensional multi-mode systems

can be computed in deterministic LOGSPACE.

5.2 Finite Time Horizon

Due to Theorem 1, we already know that the decision problem for optimal schedules in

one-dimensional multi-mode systems is at least NP-hard. Here, we show that the prob-

lem is NP-complete by showing that an optimal schedule exists and that each section of

an optimal schedule can be guessed.

Note that the existence of an optimal schedule for the one-dimensional case sets it

apart from the general case. In Example 1, we have shown that optimal schedules are

not even guaranteed to exist for two-dimensional multi-mode systems.

Theorem 7. For any one-dimensional multi-mode systems A and tmax ≥ 0, there exists

an optimal schedule with time horizon tmax, and checking for the existence of an optimal

schedule with cost ≤ C is NP-complete. (When tmax and C are given in binary.)
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Proof. First, we can simply iterate over all schedules of length one and directly calcu-

late their costs. Next, we can iterate over pairs of modes, m1 and m2, and for each of

them solve a linear program (LP) which will give us the cheapest schedule of length

two using these two modes. This LP finds the cheapest partition of tmax between the

two modes and has the following form: Minimise πc(m1)t1 + πc(m2)(tmax − t1) +
πd(m1) + πd(m2)

Subject to: 0 ≤ t1 ≤ tmax, Vmin ≤ V0+A(m1)t1 ≤ Vmax and

Vmin ≤ V0+A(m1)t1+A(m2)(tmax − t1) ≤ Vmax.
This can be done in O(|A|2) time.

Now, for schedules of length at least three, we showed in Section 4 that any such a

schedule can be transformed without increasing its cost into one that can be split into

three sections: the head section, the leaps section, and the tail section (some of which

may be empty). Due to Theorem 5, there are 44 combined patterns for the tail and head

sections. Note that, when considering only the cost of the whole schedule, it suffices for

us to know the number of leaps of each type in the leaps section and not their precise

order. Notice that a schedule with time horizon tmax can contain at most ⌊tmax/∆πi,j⌋
leaps of type (i, j). The size of this number is polynomial in the size of the input A.

There are O(|M |2) types of leaps so the number of leaps of each type and the combined

pattern of the schedule can be guessed non-deterministically with polynomially many

bits. This guess uniquely determines the cost of the schedule. This is because, after

the total time of the leaps section is deducted from tmax, we get the exact time the

head and tail section have to last for. Each combined pattern has at most one of the

following: a flexi, a zero-mode, or the last state not at the border. The time remaining

will determinate exactly (if at all possible) the value of this single flexible point along

this schedule. Now, computing the cost of the resulting schedule and checking whether

it is lower than C can be done in polynomial time. This shows that the problem is in NP.

It also shows that optimal schedules exist, because there are only finitely many options

to choose from. ⊓⊔

6 Approximate Optimal Control in One-Dimension

6.1 Constant Factor Approximation

We first show an approximation algorithm with a 3-relative performance for the cost

minimisation problem in one-dimensional multi-mode systems, which runs in O(|A|7)
time. Our algorithm tries all possible patterns for an optimal schedule and for the leaps

section always picks leaps of the same type. It then adds, if necessary or for cost effi-

ciency, a partial leap to the leaps section and minimises the total cost of the just con-

structed schedule by optimising the time duration of this partial leap. This constant

approximation algorithm is crucial for showing the existence of an FPTAS for the same

problem in the next subsection.

Theorem 8. Computing a safe schedule with total cost at most three times larger than

the optimal one for one-dimensional multi-mode system A can be done in O(|A|7) time.
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6.2 FPTAS algorithm

We now show that the cost minimisation problem for one dimensional multi-mode sys-

tems is in FPTAS by a polynomial time reduction to the 0-1 Knapsack problem, for

which many FPTAS algorithms are available (see e.g. [18]). This is similar to the FPTAS

construction in [22], but differs in how the modes with fractional duration are handled.

First we iterate over all possible schedules of length at most two and find the cheapest

one in polynomial time. Next, thanks to Theorem 5, all optimal schedules longer than

two can be transformed into one of 44 different patterns. Each of these patterns results

in a slightly different FPTAS formulation. An FPTAS for the general model consists of

all of these individual FPTASes executed one after another. The details of the proof can

be found in Appendix F.

Theorem 9. Solving the optimal control problem for multi-mode systems with relative

performance ρ takes O(poly(1/ρ)poly(size of the instance)) time and is therefore in

FPTAS.

Acknowledgement

This work was supported by EPSRC EP/M027287/1 grant “Energy Efficient Control”.

References

1. EnergyPlus: Building energy simulation program. https://energyplus.net/.

2. IBPT: International Building Physics Toolbox in Simulink. http://www.ibpt.org/.

3. TRaNsient SYstems Simulation Program. http://sel.me.wisc.edu/trnsys/.

4. Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, P.-H. Ho,

Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic analy-

sis of hybrid systems. Theoretical computer science, 138(1):3–34, 1995.

5. Rajeev Alur, Costas Courcoubetis, Thomas Henzinger, and Pei Ho. Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. In Hybrid Sys-

tems, pages 209–229. Springer Berlin / Heidelberg, 1993.

6. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, April 1994.

7. Rajeev Alur, Vojtech Forejt, Salar Moarref, and Ashutosh Trivedi. Safe schedulability of

bounded-rate multi-mode systems. In HSCC, pages 243–252. ACM, 2013.

8. Rajeev Alur, Ashutosh Trivedi, and Dominik Wojtczak. Optimal Scheduling for Constant-

Rate Multi-Mode Systems. In Proc. of Hybrid Systems: Computation and Control 2012.

9. Eugene Asarin, Venkatesh P. Mysore, Amir Pnueli, and Gerardo Schneider. Low dimen-

sional hybrid systems – decidable, undecidable, don’t know. Information and Computation,

211:138–159, February 2012.

10. Patricia Bouyer. Weighted Timed Automata: Model-Checking and Games. Electronic Notes

in Theoretical Computer Science, 158:3–17, May 2006.

11. Patricia Bouyer, Thomas Brihaye, Marcin Jurdziński, Ranko Lazić, and Michał Rutkowski.
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A Proof of Proposition 2

Proof. Let σ be a finite safe schedule with two timed actions (mi, ti), (mi+1, ti+1) in

σ such that A(mi) = A(mi+1). (If no such timed actions exist then σ is angular and we

are done.) We can now replace these timed actions by a single timed action (m, ti+ti+1)
such that m is the mode from mi or mi+1 with the lower continuous cost, and m′ the

other mode. (I.e. {m,m′} = {mi,mi+1} and πc(m) ≤ πc(m
′)) For the resulting safe

schedule σ′, it now holds that π(σ′) ≤ π(σ) − πd(m
′). ⊓⊔

B Proof of Proposition 3

Proof. Let σ be a finite safe schedule with timed actions (m1
0, t

1
0), (m

2
0, t

2
0), . . . , (m

l
0, t

l
0)

that use zero-modes (i.e. mi
0 ∈ M0 for all i ≤ l). (If no such timed actions exist then σ

is already in the form requested and we are done.) Let m0 = argmini≤l πc(m
i
0) be the

zero-mode among the ones used by σ with the lowest continuous cost. We construct a

new safe schedule σ′ by first removing from σ all timed actions that use a zero-mode.

We then add at the very beginning a single timed action (m0,
∑

i≤l t
i
0). It is easy to see

that such defined σ′ is safe and its total cost is equal or lower than that of σ. ⊓⊔

C Algorithm for Optimal Reachability Problem for Multi-Mode

Systems with no discrete costs (adopted [8, Algorithm 2])

Algorithm 1: An algorithm checking whether any safe schedule exists and if so

finding one with the minimal total continuos-cost.

Input: MMS A = (M = {m1, . . . ,mk}, N,A, πc, πd ≡ 0, Vmin, Vmax, V0), target point

Vend and t > 0 such that all modes of A are safe at V0 and Vend for time t.
Output: NO, if no safe schedule from V0 to Vend exists, and a continuos-cost-optimal

schedule (of at most exponential length), otherwise.

1 Check whether the following linear programming problem with variables {t(m)}m∈M has

a solution.

Minimise
∑

m∈M

πc(m)t(m)
subject to:

V0 +
∑

m∈M

A(m)t(m) = Vend and

t(m) ≥ 0 for all m ∈ M.

2 if no satisfying assignment exists then

3 return NO

4 else

5 Find a polynomial sized assignment {t(m)}m∈M .

6 Let l be the smallest natural number greater or equal to
∑

m∈M t(m)/t. (Note that

this number is at most exponential in the size of the input and can be written down

using polynomially many bits.)

7 return the schedule
(

(m1, t
(m1)/l), (m2, t

(m2)/l), . . . , (mk, t
(mk)/l)

)l
.
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D Algorithm for finding a limit-safe schedule

Algorithm 2: Finding a limit-safe schedule to target state Vend with time horizon

tmax.

Input: Multi-mode system A = (M,N,A,πc, πd, Vmin, Vmax, V0), set of modes M∗ with

zero discrete costs, time horizon tmax, and target state Vend such that any mode safe

at V0 is safe as Vend.

Output: NO if no safe schedule with time horizon tmax exists from V0 to Vend, and such a

schedule, otherwise.

1 k := 0;M0 := M∗;
2 repeat

3 k := k + 1; Mk := Mk−1;

4 foreach mode q ∈ M \Mk−1 do

5 if the following set of linear constraints is satisfiable for some assignment to the

variables t, {t
(m)
0 }m∈M0

, {t
(m)
1 }m∈M1

, . . . , {t
(m)
k−1}m∈Mk−1

:

· t > 0

For all i = 0, . . . , k − 1 :

· t
(m)
i ≥ 0 for all m ∈ Mi

· Vi+1 = Vi +
∑

m∈Mi

A(m)t
(m)
i

· Vmin ≤ Vi+1 ≤ Vmax

· Vmin ≤ Vk + A(q)t ≤ Vmax (1)

then

6 Mk := Mk−1 ∪ {q};

7 until Mk = Mk−1;

8 k := k − 1;

9 foreach j = 0, . . . , k and q ∈ Mj do

10 if the following set of linear constraints is not satisfiable for any assignment to the

variables t, {t
(m)
0 }m∈M0

, {t
(m)
1 }m∈M1

, . . . , {t
(m)
k }m∈Mk

:

· t
(q)
j > 0

For all i = 0, . . . , k − 1 :

· t
(m)
i ≥ 0 for all m ∈ Mi

· Vi+1 = Vi +
∑

m∈Mi

A(m)t
(m)
i

· Vmin ≤ Vi+1 ≤ Vmax

·

k
∑

i=0

∑

m∈Mi

t
(m)
i = tmax

then

11 Mj := Mj \ {q};

/* the algorithm continues below... */
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12 if the following set of linear constraints is not satisfiable for any assignment to the

variables {t
(m)
0 }m∈M0

, {t
(m)
1 }m∈M1

, . . . , {t
(m)
k }m∈Mk

:

For all i = 0, . . . , k :

· t
(m)
i > 0 for all m ∈ Mi

· Vi+1 = Vi +
∑

m∈Mi

A(m)t
(m)
i

· Vmin ≤ Vi+1 ≤ Vmax

·

k
∑

i=0

∑

m∈Mi

t
(m)
i = tmax

then

13 return NO

14 Compute a polynomial sized solution to the linear program in step 12 and use it in the

next line.

15 return the schedule created by composing the following schedules obtained by repeatedly

calling [8, Algorithm 2] (see Appendix C) to find a safe schedule:

– from V0 to V1 using only modes in M0 with the safe time bound t = minm∈M0
t
(m)
0 ,

– from V1 to V2 using only modes in M1 with the safe time bound t = minm∈M1
t
(m)
1 ,

– . . . ,

– from Vk to Vk+1 using only modes in Mk with the safe time bound t = minm∈Mk
t
(m)
k .

E Formal Definition of Operations

Definition 3 (Rearrange Operation). Let (mi, ti), . . . , (mj , tj) be any subsequence

of σ such that either ∀ i≤ l ≤ j ml ∈ M− or ∀ i≤ l ≤ j ml ∈ M+ hold. Note that any

permutation of the timed actions (mi, ti), . . . , (mj , tj) will result in a new schedule σ′

which is safe and has the same total cost as σ.

Definition 4 (Shift Operation). Let the run of our finite schedule σ = 〈(m1, t1), (m2,
t2), . . . , (mk, tk)〉 be 〈V0, V1, ..., Vk〉. For any i ≤ l ≤ j such that Vi = Vl = Vj holds,

we can move the whole subsequence of timed actions (mi, ti), . . . , (mj−1, tj−1) just

after (ml−1, tl−1) in σ to obtain a new safe schedule with the same cost. Specifically,

the new schedule will look as follows: 〈(m1, t1), . . . , (mi−1, ti−1), (mj , tj),
. . . , (ml−1, tl−1), (mi, ti), . . . , (mj−1, tj−1), (ml, tl), . . . , (mk,
tk)〉 Analogously, in the same situation, we can also move the whole subsequence of

timed actions (mj , tj), . . . , (ml−1, tl−1) just after (mi−1, ti−1) in σ to obtain a new

safe schedule with the same cost.

Definition 5 (Shift-Down Operation). Let the run of our finite schedule σ = 〈(m1,
t1), (m2, t2), . . . , (mk, tk)〉 be 〈V0, V1, ..., Vk〉. For any i ≤ j and l such that

Vi = Vj+1 = Vmax and Vl+1 = Vmin, we can “rotate” the whole subsequence of timed

actions (mi, ti), . . . , (mj , tj) and move it just after (ml, tl) in σ to obtain a new safe

schedule σ′ with the same cost. Specifically, let d = argmin i≤ b < j Vb+1. Note that if

we rotate the subsequence of actions in the way to start with timed action (md, td) then
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we will never encounter a lower state the start state, because d was the lowest point

along this subsequence of timed actions. Specifically, the new schedule σ′ will look as

follows 〈(m1, t1), . . . , (mi−1, ti−1), (mj+1, tj+1), . . . , (ml, tl), (md, td), . . . , (mj ,
tj), (mi, ti), . . . , (md−1, td−1), (ml+1, tl+1), . . . , (mk, tk)〉.

Definition 6 (Resize Operation). Let σ = 〈(m1, t1), . . . , (mk, tk)〉 whose run is 〈V0,
V1, . . . , Vk〉. For i < k and t ∈ R, let resize(σ, i, t) be a schedule σ′ identical to σ
apart from timed actions (mi, ti), (mi+1, ti+1) being replaced by (mi, t

′
i), (mi+1, t

′
i+1)

in the following way, where we distinguish among several cases. If t > 0 then we will

also refer to this operation as the stretch operation and if t < 0 as the shrink operation.

(up-up) If 0 < A(mi) < A(mi+1) then let t′i = ti + βt+ t and t′i+1 = ti+1 − βt where

β =
A(mi)

A(mi+1)−A(mi)
≥ 0

Let resize-domain(σ, i) := [−ti/(β + 1), ti+1/β]. Note that πc(σ
′) − πc(σ) =

((β + 1)πc(mi)− βπc(mi+1)) · t.
If 0 < A(mi+1) < A(mi) then let t′i = ti − β · t and t′i+1 = ti+1 + β · t+ t where

β =
A(mi+1)

A(mi+1)−A(mi)
≥ 0

Let resize-domain(σ, i) := [−ti+1/(β + 1), ti/β]. Note that πc(σ
′) − πc(σ) =

((β + 1)πc(mi+1)− βπc(mi)) · t.
(up-down) Here 0 < A(mi) and A(mi+1) < 0 holds. Let t′i = ti+βt and t′i+1 = ti+1−βt+t

where

β =
−A(mi+1)

A(mi)−A(mi+1)
≥ 0

Let resize-domain(σ, i) := [−min{ti/β, ti+1/(1− β)}, (Vmax − Vi)/(βA(mi))].
Note that πc(σ

′)− πc(σ) = (βπc(mi) + (1− β)πc(mi+1)) · t.
(down-up) Analogous to up-down case.

(down-down) Analogous to up-up case.

(flat) If (m1, t1) is a zero-mode action in σ, then let resize(σ, 0, t) be equal to σ where the

first action is replaced by (m1, t1+ t). Let resize-domain(σ, 0) := [−t1, tmax − t1]
and notice that πc(σ

′)− πc(σ) = πc(m1) · t
(last-action) If (mk, tk) is the last action in σ, then let resize(σ, k, t) be equal to σ where the

last action is replaced by (mk, tk + t).
Let resize-domain(σ, k) := [−tk,max {(Vmax − V )/A(mk), (Vk − Vmin)/A(mk)}]
and notice that πc(σ

′)− πc(σ) = −πc(mk) · t

Definition 7 (Wedge Operation). Let σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 be a fi-

nite safe schedule whose run is 〈V0, V1, ..., Vk〉. Let τ = 〈(mi, ti), (mi+1, ti+1), (mi+2,
ti+2)〉 be any three consecutive timed actions in which exactly two consecutive timed

actions have the same trend. It suffices to consider the case where A(i) > A(i+1) > 0
and A(i + 2) < 0 as all other cases are very similar. Notice that if A(i + 1) > A(i)
then we can simply change the order of (mi, ti), (mi+1, ti+1) using the rearrange op-

eration defined earlier. Furthermore, we only define this operation in the case where
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Vi−1 = Vi+2. This is the only situation we need this operation for and it is easy to gen-

eralise this further. Let α = A(i+2)(ti + ti+1 + ti+3)/(A(i+2)−A(i+1)). For any

t ≥ 0, consider the sequence of timed actions τ ′ = 〈(mi, (t+α)ti/(ti+1−α)), (mi+1,
t), (mi+2, ti + ti+1 + ti+3 − t− (t+ α)ti/(ti+1 − α))〉. Let us replace τ by τ ′ in σ to

get σ′ whose run is 〈V ′
0 , V

′
1 , ..., V

′
k〉. We claim that Vi−1 = V ′

i−1 = V ′
i+2 = V ′

i+2, so the

runs of σ and σ′ can only differ at their i-th and i+1-th states. At the same time notice

that πc(σ
′) − πc(σ) is a linear function of t as a sum of linear functions. As a result

its minimum is attained at the smallest or largest permissible value of t. Moreover, the

permissible value of t is a closed interval [β, α] where β can be calculated using the

following linear constraint V ′
i+1 ≤ Vmax.

F Proof of Theorem 9 from Section 6

Proof. We consider here only one of the 44 possible pattern cases, because all these

FPTAS algorithms will look essentially the same. These can be later combined all these

FPTASes into a single FPTAS for the general model by running them one by one. The

case we will look at is up+down pattern, with modes m1,m2, for the head section

and partial-up+up+down, with modes m3,m4,m5, for the tail section. We consider all

combinations of these five modes mi individually, and therefore consider them given.

(Note that there are only quintically many such combinations.) Wlog. we assume that

∆πm3
−πd(m3) ≥ ∆πm4

−πd(m4), because otherwise we could swap the role of m3

with m4 in our algorithm below. Note that any schedule with this pattern which picks

m3 in the tail for α∆tm3
amount of time, uses m4 for (1− α)∆tm3

amount of time in

the tail section.

Let c∗ be the 3-approximation, which can be computed using the procedure from

Theorem 8, of the optimal cost o∗. To get an approximation to our optimal cost problem

with a relative performance ρ, it suffices to find a solution with c∗ρ/3 absolute perfor-

mance. We split this into two equal parts of ǫ = c∗ρ/6. An optimal solution to the knap-

sack instance that we produce will provide us with a schedule with cost no greater than

ǫ over the optimal one. Moreover, a solution to the knapsack instance with δ absolute er-

ror will provide a schedule with an ǫ+δ absolute error. Therefore, it suffices to set δ = ǫ
to find a schedule with ρ relative performance. In our reduction, the total value of all the

items in the resulting knapsack problem is at most 4|M |2 times the optimal cost for safe

schedules, so by using ρ′ = ρ/(12|M |2), for the resulting knapsack problem we will

find a near optimal solution with a relative performance ρ for multi-mode systems. The

running time of this procedures is in O(poly(1/ρ)poly(|M |)poly(size of the knapsack instance)).
This suffices to establish the inclusion of the cost minimisation problem for multi-mode

systems in FPTAS.

For each type of leaps, (m,m′) ∈ M+ × M−, we build the following items for

this knapsack problem instance: {(2i ·∆tm,m′ , 2i ·∆πm,m′) | i ∈ N ∧ 2i ·∆πm,m′ ≤
c∗∧2i ·∆tm,m′ ≤ tmax}. Let i∗ ∈ N be smallest such that 2−i∗ ·(∆πm3

−πd(m3)) ≤ ǫ.
For both m3 and m4 we add the following extra multiset of items: {(2−i ·∆tm3

, 2−i ·
(∆πm3

−πd(m3)−∆πm4
+πd(m4))) | i ∈ Z+∧i ≤ i∗∧2−i ·(∆πm3

−πd(m3)) ≤ c∗}
and additionally (2−i∗ ·∆tm3

, 2−i∗ · (∆πm3
−πd(m3)−∆πm4

+πd(m4)), which is a

copy of an element already in the multiset. Note that this models the fact that the more

m3 is used in the tail section the less mode m4 is used in tail section and with the same
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proportion. Also, all costs are nonnegative because of the assumption that ∆πm3
≥

∆πm4
. Let tΣ be the time span of all items in this knapsack instance. We set the volume

of this 0-1 knapsack instance to be tΣ − tmax + (Vmax − V0)/A(m1) +∆tm2
+∆tm5

.

The just produced knapsack problem has the following properties:

– the size of its description is polynomial in the size of the original problem including

the relative performance;

– fractional time duration of m3 in the tail section can be overestimated by joining

together the fractional items for both m3 and m4 (which do not include discrete

costs), so that we do not exceed the volume by 2−i∗ ·∆tm3
or more;

– n leaps of of type (m,m′) in σ can be achieved by picking the items for this type

and corresponding to the binary representation of n; and

– The volume of these items is ≥ tmax − (Vmax −V0)/A(m1)−∆tm2
−∆tm5

, which

leaves enough space for modes m1 and m2 in the head section, and mode m5 in

the tail section. Let v∗ be the value of the items in this knapsack and o∗ denotes the

optimal cost. Then

0 ≤ v∗+πd(m1)+πc(m1)(Vmax−V0)/A(m1)+∆πm2
+πd(m3)+∆πm4

+∆πm5−o∗ ≤ ǫ

– Let VΣ be the value of all items in the multiset. For any solution to the knapsack

problem with value V we get a schedule σ′ with cost ≤ VΣ − V + πd(m1) +
πc(m1)(Vmax − V0)/A(m1) +∆πm2

+ πd(m3) +∆πm4
+∆πm5.

All of this shows that solving this knapsack instance with a relative performance of

ρ/(12|M |2) gives us a safe schedule with relative performance of ρ. ⊓⊔

G Transformation of an Example Schedule
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tmaxt = 0
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Fig. 7: The original schedule. For any two non-overlapping flexis, we try to shrink one

by t and stretch the other by t for the maximum possible time t > 0. We repeat this

until there is at most one flexi left. Here, we start off by shrinking flexi 1-2-3 (of type

up-up) and stretching flexi 5-6-7 (of type up-down). This will result in straightening the

1-2-3 flexi and removal of its midpoint 2 (we can see the end result in the next figure).

25



Vmax

Vmin

tmaxt = 0

1
6

9

10

8

11

12

7

2

3

4

5

Fig. 8: Next, we will apply the procedure to flexis 2-3-4 (of type down-down) and 4-5-

6 (of type up-down). This will result in straightening the 2-3-4 flexi and removal of its

midpoint 3 (we can see the end result in the next figure).
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Fig. 9: Next, we will apply the procedure to flexis 5-6-7 (of type up-up) and 8-9-10 (of

type down-down). This will result in straightening of the 5-6-7 flexi and removal of its

midpoint 6 (we can see the end result in the next figure).
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Fig. 10: Next, we will apply the procedure to flexis 1-2-3 (of type up-down) and 3-4-5

(of type up-down). This will result in moving the midpoint 2 up until it reaches Vmax.
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Fig. 11: Next, we will apply the procedure to flexis 2-3-4 (of type down-up) and 7-8-9

(of type down-down). This will result in moving the midpoint 3 down until it reaches

Vmin.
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Fig. 12: Next, we will apply the procedure to flexis 3-4-5 (of type up-down) and 7-8-9

(of type down-down). This will result in moving the midpoint 4 up until it reaches Vmax.
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Fig. 13: Next, we will apply the procedure to flexis 4-5-6 (of type down-up) and 7-8-9

(of type down-down). This will result in moving the midpoint 5 down until it reaches

Vmin.
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Fig. 14: Next, we will apply the procedure to flexis 6-7-8 (of type up-down) and 8-9-10

(of type down-up). This will result in straightening of the 8-8-10 flexi and removal of

the midpoint 9.
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Fig. 15: Next, we will apply the procedure to flexis 5-6-7 (of type up-up) and 7-8-9 (of

type down-up). This will result in moving the midpoint 8 down until it reaches Vmin.
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Fig. 16: Since there no more non-overlapping flexis in the schedule, we try to move

the one that remains in the leaps section to the end of the schedule. In this case, as all

of them are already located after the leaps section, this step is skipped. Next, we will

apply the same procedure but with the first timed action if it is a flat one or with the

last timed action if it does not reach neither Vmin nor Vmax (and so shrink and stretch

operations can be applied to it). In this case we apply this operation to flexi 6-7-8 (of

type up-down) and the last timed action 8-9. This results in moving point 9 up until it

reaches Vmax.
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Fig. 17: Our schedule is already partitioned into three distinct sections: head, leaps,

and tail. However, the tail section does not follow any of the 10 patterns in Figure 4.

We cannot apply become the flexes 5-6-7 and 6-7-8 are overlapping. At the same time

points 6 and 7 still have some flexibility in them. We apply the wedge operation to the

5-6-7-8 segment to resolve this. In this case, points 6 and 7 are moved up until one of

them reaches Vmax and the first one to do so is point 7.
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Fig. 18: There is only one point between Vmin and Vmax left (point 6), but the tail still

does not follow any of the 10 patterns. We use the shift-down operation to segment 7-8

and move it after 5.

Vmax

Vmin

tmaxt = 0

1

2

3

4

5

6

7

8

9

Fig. 19: Finally, both the head section (1-2-3) and tail section (7-8-9) follows one of

the standard patterns. The head section follows the partial-up+down pattern (Figure

3(e)) and the tail section follows partial-up+up pattern (Figure 4(b)). The leaps section

(3-4-5-6-7) consists of two (complete) leaps.
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