
Chapter 10

Philosophy of Computation

Zoran Konkoli, Susan Stepney, Hajo Broersma, Paolo Dini,
Chrystopher L. Nehaniv, and Stefano Nichele

Abstract Unconventional computation emerged as a response to a series
of technological and societal challenges. The main source of these challenges
is the expected collapse of Moore’s law. It is very likely that the existing
trend of building faster digital information processing machines will come
to an end. This chapter provides a broad philosophical discussion of what
might be needed to construct a theoretical machinery that could be used
to understand the obstacles and identify the alternative designs. The key
issue that has been addressed is simple to formulate: given a physical system,
what can it compute? There is an enormous conceptual depth to this question
and some specific aspects are systematically discussed. The discussion covers
digital philosophy of computation, two reasons why rocks cannot be used
for computation are given, a new depth to the ontology of number, and the
ensemble computation inspired by recent understanding of the computing
ability of living cell aggregates.

10.1 Introduction

Given a physical system, what can it compute? In broad philosophical terms
this question is normally referred to as the implementation problem. This
seemingly practical question has a surprising conceptual depth: Any attempt
to formalize a rigorous answer (e.g. in pure mathematical terms) is bound to
end in paradoxes. To illustrate the types of paradoxes that usually emerge,
consider Hilary Putnam’s answer to this question. As a critique of the thesis
of computational sufficiency in cognitive science Putnam, in the appendix of
his book (Putnam, 1988), suggested a construction, or a recipe, that can be
used to turn any object into a device that can implement any finite state
automaton with input and output.

153© Springer International Publishing AG, part of Springer Nature 2018
S. Stepney et al. (eds.), Computational Matter, Natural Computing Series,
https://doi.org/10.1007/978-3-319-65826-1_10

https://doi.org/10.1007/978-3-319-65826-1_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-65826-1_10&domain=pdf

154 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

In brief, the thesis of computational sufficiency states that the human brain
can be modelled as an abstract automaton, and that the different states of
mind are simply the different states of the automaton (Von Eckardt, 1995). In
somewhat simplistic terms, should this be the case, then this would explain
to a large extent what the mind is. Note a particular focus on computation
in this context. Here the mind is strongly related to the ability to compute.

Putnam’s agenda was to show that the notion of computation is simply
too broad to be used to define what mind is. His goal was to show that
every material object has an intrinsic ability to compute. Namely, for Put-
nam’s construction to work the object that the procedure is being applied
to must have a set of rather generic properties (e.g. the system should not
be periodic), that are naturally realized in existing objects. Thus a corollary
of Putnam’s construction is that any object can implement any finite state
automaton. Note that the statement does not read “some objects can imple-
ment any automaton”, or “every object can implement some automaton”. It
was precisely this corollary that was the key motivation behind the construc-
tion. Putnam wished to illustrate that the ability to compute is something
that is intrinsic to every object, and that this ability per se cannot be used
to define what a mind is. According to this corollary, a rock can compute
anything, and it should have a mind of its own. This statement is clearly a
paradox, since it contradicts our intuition regarding what computing means.
This illustrates the first type of paradoxes one can encounter when aiming for
a formal (mathematically rigorous) answer to the implementation problem.

The second type of a paradox is as follows. Given that every simple ob-
ject, even a rock, can be turned into a computing device, the information
processing engineers that are exploring various devices for information pro-
cessing applications should achieve their goals with much less efforts than
they are obviously investing in finding new device designs. This is clearly
another paradox. To describe it, the term the natural computability paradox
has been coined (Konkoli, 2015). Note the key difference between the two
types of paradoxes: the implementation problem emphasizes the existence of
computation, while the natural computability problem emphasizes the use of
the device.

The paradoxes that have just been presented indicate that such generic
philosophical-computing-oriented questions should not be taken too lightly.
A seemingly rather intuitive and straightforward question that deals with
the philosophy of computation can have an immense depth. Our main goal
in this chapter is to provide a structured exposé of how such questions could
be asked, point to the paradoxes that are arising in the process, and discuss
ways of resolving such paradoxes.

This chapter is organized on the following principles. Two approaches are
exploited to present the material. (i) The traditional way is to define a class of
systems and then investigate their expressive power (e.g. the standard models
of computation like Turing Machines). We cover that angle for completeness,
simply to help a reader versed in digital computation who perhaps wishes

10 Philosophy of Computation 155

to understand the unconventional computation better. While doing so, some
philosophical aspects are emphasized, in addition to the usual emphasis on
the expressive power and complexity of computation. (ii) We present a palette
of philosophical ideas and frame them as thought experiments. Each thought
experiment deals with a given system for which we consider the task of turning
it into a useful information processing device. In the process, we discuss
the key philosophical questions we wish to address. These discussions are
organized into separate sections where each section contains a structured
and rigorous set of statements describing what a computation might be in
a well-defined context, addressing either a class of systems (emphasizing the
model of computation context), or a particular fixed (e.g. dynamical) system.

The above principles are implemented as follows. For completeness, a few
key ideas of the digital computation paradigm are reviewed first, in Sect. 10.2.
It is implicitly understood that the reader has an elementary understanding
of the Turing machine concept. Accordingly, this concept is not covered in
detail. The section emphasizes some philosophical aspects of the Turing ma-
chine construct, since it is the standard answer to the questions of what
computing is and what computing means in the context of digital compu-
tation. The following sections extend the discussion towards unconventional
computation. We begin these discussions by addressing the first thought ex-
periment in Sect. 10.3: what would it take to turn a rock into a computer?
Sect. 10.3.1 and Sect. 10.3.2 address the question from two related yet dis-
tinct ways. Obviously, we are trying to justify from a theoretical point of
view that a rock cannot compute.1 Philosophical relation between systems
and control mechanisms is discussed in Sect. 10.4. In Sect. 10.5 an intimate
relationship between the concepts of number and state is discussed, and how
these concepts are related to finite state automata and permutation-reset au-
tomata. Sect. 10.6 addresses the problem of instantiating computing systems
that behave as living cells do: they multiply, process information, aggregate
into complex structures, and eliminate redundant computational units when
they are no longer needed, all while being affected by their environment.
Sect. 10.7 contains a brief summary of the topics covered.

10.2 Philosophy of digital computation

What is digital computation? In this section we are going to explain what we
mean by digital computation. Our concept of digital computation is based on
an abstract model of this type of computation due to Alan Turing that has
been around since the 1930s (Turing, 1936), and an outline of a machine to
perform this type of computation described by John von Neumann in 1945.

1 Note that due to Putnam’s construction this question has a surprising depth to it.
Arguing that a rock cannot compute is not as easy as it sounds.

156 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

All our modern digital computers are based on this model of Turing and its
implementation by von Neumann.

Turing’s aim of defining computation the way he did, was to give an ab-
stract description of the simplest possible device that could perform any
computation that could be performed by a human. His purely abstract def-
inition of computation raises a number of controversial philosophical and
mathematical problems we will encounter. Moreover, it can be argued that
computation, understood in the abstract terms of Turing, is too far removed
from the physical implementation of computation. There are quite a few other
models of digital computation around, and we mention several of them briefly.
We focus on the Turing model because it is a reasonably simple model, and
has the same computational power. We explain what we mean by this.

Moreover, the Turing model has been instrumental in the development of
the theory of computational complexity, a very active area within computer
science and mathematics. We explain this relationship in Chapter 11 of this
volume. Even taking into account the controversial nature of Turing’s ab-
stract model and its implementation, the great success story of digital com-
putation is based on his ideas, together with the invention and continuing
miniaturization of the transistor since 1947. Transistors are the fundamental
building blocks of all modern electronic devices, including our supercomput-
ers, PCs, laptops, mobile phones and other gadgets. We shortly explain the
impact of what is known as Moore’s Law on the advancement of nanotech-
nology and the further miniaturization of our digital equipment.

10.2.1 Turing machines

Just like any type of computation, digital computation is always dealing
with or considered to be computing something. For a general discussion on
the philosophical issues related to central common notions like data, repre-
sentation and information, we refer to Sect. 10.3.2. In fact, the philosophy of
information has become an interdisciplinary field in itself, intimately related
to the philosophy of computation. Here, for digital computation in particular,
we assume that any data and necessary information for the computation at
hand is represented at the abstract level by strings of zeros and ones, and at
the implementation level in a von Neumann setting by clearly distinguishable
low (for a zero) and high (for a one) currents or voltages, determining the
switch state of transistors (zero for Off and one for On).

Based on the above assumption, we are now turning our attention to the
abstract model of a computational device due to Turing, that is widely known
as a Turing machine (not the Turing machine, as there are many variations
on the basic concept).

10 Philosophy of Computation 157

10.2.2 The basic version of a Turing machine

What we describe next is usually referred to as the standard deterministic
Turing machine.

A Turing machine (TM) is a so-called finite-state automaton combined
with an unlimited storage medium usually referred to as a tape. It is called a
finite-state automaton because at any moment during a computation it can
be in one of a finite number of internal states. The TM has a read/write head
that can move left and right along the (one-sided infinite) tape. Initially, the
TM is in its start state and the head is at the left end of the tape. The tape is
divided into cells, each capable of storing one symbol, but cells can be empty
as well.

For simplicity and in the light of the above remarks, we can think of the
symbols as zeros and ones, and that there is an additional symbol that repre-
sents a blank cell (in most text books λ is used for this purpose). Furthermore,
in its simplest form the TM has a transition function that determines whether
the read/write head erases or writes a zero or a one at the position of the
current cell, and whether the head moves one cell to the left or right along
the tape (but not passing the left end of the tape). In addition to these oper-
ations, the TM can change its internal state based on the transition function
and the symbol in the current cell on the tape. Hence, the transition function
determines instructions of the form: if the TM is in state s, the head of the
TM points to cell c, and the TM head reads a zero, one, or λ from c, then it
writes a zero, one or λ into cell c, moves its head one cell to the left or right,
and changes to state s′ (or stays in state s).

In fact, the behaviour of the TM is completely determined by the transition
function (that can be a partial function): the TM starts in its start state with
its head at the left end of the tape, and operates step by step according to
the transition function. The TM halts (stops moving its head or changing
states or erasing/writing symbols) if the transition function for the current
state and cell content is undefined; otherwise it keeps operating. In principle,
it could go on forever.

If the TM halts on a particular binary input string w that is initially
written on the tape, we can interpret the resulting binary string on the tape
as the output of the TM on input w. This way, we can interpret the operations
of a (halting) TM as a mapping from input strings to output strings, hence
as the computation of a (partial or total) function. Using this interpretation,
one can define Turing computable functions as those that can be computed
on a TM in the above sense. The subsequent operations of the TM can then
be seen as an algorithmic procedure or program to compute the output for
any given input of a Turing computable function. For these reasons, TMs are
a model for computability, although they do not model the physical processes
of a real computer or the command lines of programming languages directly.
In fact, Turing invented his abstract model in a time real computers as we
know them today did not exist yet. His intention was to formalize the notion

158 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

of what is sometimes referred to as ‘intuitively computable’ or ‘effectively
computable’. We come back to this later.

We know – in fact, Turing already knew – that there exist many func-
tions that are not Turing computable. There are simple counting arguments
to show that such functions must exist, but there are also easy tricks to
actually construct examples of such functions. From a philosophical point
of view, the interesting question here is: are such functions not computable
at all because they are inherently non-computable? Or do there exist more
powerful devices or alternative models for computation that can compute
some functions that are not Turing computable? Perhaps surprisingly, up
to now all known alternatives are equally powerful, in the sense that they
can compute exactly the same functions. Note that we are not talking about
computation time, complexity issues and memory usage here, only about the
ability to compute the output value(s) of a function for all possible input
values. Interestingly, it was Turing himself who claimed that any effectively
computable function could be computed on a TM. In the next sections we
gather supporting evidence for his claim.

There exist several alternative paradigms for (digital) computation, like
for instance models based on RAM, λ-calculus, While programs, and Goto
programs. We will not give any details on such models here, but just mention
that all the existing models are, in some sense, equivalent to the Turing
model.

10.2.3 The Church-Turing thesis

As we have seen, the investigations about computability have led to a number
of approaches to actually try to get our hands on what it means for something
to be computable. The earliest attempt was based on the seminal work of
Turing, who defined when functions are computable in terms of his abstract
model of computation. We have called these functions Turing computable. It
turns out that all other notions of computability based on existing alternative
approaches are equivalent: the computation of a function in any of these
approaches can be simulated in any of the other approaches. In other words,
a function is computable in any of these known approaches if and only if it
is Turing computable. In this light, it is widely accepted among computer
scientists that it is likely that any notion of effective or intuitive computation
is equivalent to Turing computation. This is known as the Church-Turing
thesis for computable functions.

Church-Turing Thesis I A function f is effectively computable if and only
if there is a TM that computes f .

It should be clear that the above statement is not a theorem, but more
like a working hypothesis. A possible proof for the statement would require a

10 Philosophy of Computation 159

precise mathematical definition of what we mean by an effective computation.
That would mean being back at square one. Due to the existing supporting
evidence, one could consider taking the statement of the Church-Turing thesis
as a definition of what we mean by effectively computable functions, with
the risk that one day someone might turn up with a more powerful model or
device for computation.

For the purpose of explaining what the existing theory of computational
complexity based on TMs entails, we now focus on decisions problems. These
are problems for which we require a Yes or No answer for any instance of the
problem. Solving such problems is in a way closely related to computation,
and requires only a slight adaptation of the abstract model of TMs. As a con-
sequence, the above Church-Turing thesis also has a counterpart for decision
problems.

10.2.4 Decision problems and (un)decidability

To be able to decide whether a specific instance of a decision problem is a Yes
instance or a No instance, any algorithm for solving this problem has to reach
one of the two conclusions, for any instance of the problem. Therefore, it is
intuitively clear that we need to extend our TM model by defining which of
the halting states should correspond to a Yes answer and which should not.
For this purpose a subset of the states of the TM is designated and called
the set of accepting states.

Assuming that the instances of the decision problem are encoded as input
strings on the tape of the TM, we now consider the set of instances as a
language over an alphabet. A language L over an alphabet (for simplicity,
think again of a set of strings of zeros and ones) is said to be recognized by
the TM if for all strings w ∈ L (w �∈ L) the computation of the TM halts in
an accepting state (does not halt in an accepting state or does not halt at all);
L is decided by the TM if, subject to this, the TM halts on all w �∈ L. If there
exists a TM that decides a language L, then L is called decidable. In fact, L
is decidable if its characteristic function is Turing computable (outputting 1
or 0 when halting in an accepting or non-accepting state, respectively).

The counterpart of the Church-Turing thesis for decision problems is as
follows.

Church-Turing Thesis II A decision problem P can be solved effectively
if and only if there is a TM that decides the language corresponding to an
encoding of P .

As in the case of computability, also here we have no formal description of
what we mean by effectively solving a decision problem.

We know that there are undecidable problems like there are non-computable
functions. Again, from a philosophical point of view, the interesting question

160 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

here is: are such problems not decidable at all because they are inherently
undecidable?

10.3 Why rocks do not compute

The material presented in the previous section focused on digital computa-
tion. It can be seen as a way to answer the question what computing means,
and how it can be realized using digital devices. There are many systems in
nature that process information and do not resemble digital devices. Such
digital devices can be used to simulate existing systems (e.g. fluid dynam-
ics software packages or chemical reactions simulators, or ultimately, various
software packages that can be used to simulate living cells). However, the
converse is not necessarily true. For example, it is hard to judge whether the
living cells performs digital computation since the dynamics of the living cell
hardly resembles anything digital, at least not in an obvious way.2 There is
a plethora of systems that are being investigated for information processing
applications, that are far from being digital, e.g. this whole book addresses
the possibility of using amorphous materials. The question is, to what ex-
tent can we extrapolate our understanding of digital devices to understand
unconventional computation? How large is the step that is needed to bridge
between the two to gain a unified understanding of both?

Clearly these issues are extremely complex and very broad. Very likely, any
attempt to obtain a systematic answer is likely to end in failure. Accordingly,
as an illustration, in this and following section Putnam’s paradox is discussed
in the context of unconventional computation. This is done in the form of a
thought experiment. Assume that, against all odds, the goal is to turn a rock
into a computer. Can we tell, in any rigorous mathematical way, why rocks do
not compute? The following two subsections argue that they, indeed, cannot
from two different but still related perspectives.

10.3.1 Powerful computation with minimal equipment

Putnam’s construction has been criticized in several ways and there have
been numerous responses to Putnam’s work (Brown, 2012; Chalmers, 1996;
Chrisley, 1994; Copeland, 1996; Godfrey-Smith, 2009; Horsman et al., 2014;
Joslin, 2006; Kirby, 2009; Ladyman, 2009; Scheutz, 1999; Searle, 1992; Sha-
grir, 2012). The most common argument is that the auxiliary equipment
that would be needed to turn a rock into an automaton would perform ac-
tual computation. Such arguments contain an implicit assumption that there

2 Gene expression networks behave as digital switches, but intrinsically they are not con-
structed using digital components, their collective behaviour appears such.

10 Philosophy of Computation 161

is an intention to actually use the device. Here the natural question to ask
is: what type of computation is performed most naturally by the rock?

10.3.1.1 Finding the right balance

In this thought experiment, the goal is to have a simple device consisting
ideally of rock and nothing else. Since this is clearly not possible, the question
is what is the minimal amount of equipment that should be used to achieve
the information processing functionality (of some automaton), and what is
the automaton? This line of reasoning has been formalized in depth in Konkoli
(2015).

Namely, assume that the goal is to compare the computing abilities of
two physical systems, which are fixed, but otherwise arbitrary. This can be
done by simply investigating how hard or easy it might be to use the systems
for computation. Clearly, each of the two systems might be suitable for a
particular type of computation, and this might be guessed in some cases,
but we wish to ask the question in a generic way: is there a procedure for
identifying the most suitable computation for a given system?

As an example, Putnam’s construction indicates that both a single bacte-
rial cell and the human brain have the same computing power. However, there
is an intuitive expectation that it should be much easier to use the human
brain for computation, provided it would be ethically justifiable to use the
human brain in this way. We also have a rather good intuitive understanding
of what each of these systems could compute (e.g. one could use bacteria for
relatively simple sensing purposes, while the human brain could be used to
play a game of chess). What is this expectation based on? Is it possible to
formalize this implicit intuition about their respective computing powers?

This rather extreme example shows that a way to understand what a given
system can compute best (and possibly distinguish it from other systems in
terms of their computing power) is to analyze how to actually use the system
to perform computation. For example, it would be very hard to force bacteria
to play a game of chess, this is simply not practical. Thus the ease of use of
a given object (for information processing tasks) is a good starting point for
understanding which information processing tasks it can perform naturally.

The reasoning in the above has been formalised mathematically in Konkoli
(2015). The mathematical formalisation is reviewed in here briefly, Thereafter
it is applied to the issue of the computing rock.

10.3.1.2 The mathematics of balances

The first question one must address is how to measure the “amount” of
auxiliary equipment that needs to be used to turn a system into a computer.
Given that a suitable definition can be found, the amount should be as small

162 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

as possible, since we wish the system to perform the computation (and not
the equipment).

The amount of the auxiliary equipment can be “measured” by quantifying
the complexity of the computation performed by the auxiliary equipment
L while implementing an automaton A. The complexity can be measured
using the concept of the logical depth (Bennett, 1988), which is a measure
of the length of the digitized description of the automaton. Thus given the
description of the interface L and the automaton A being implemented, there
is a procedure to evaluate the complexity of the computation it performs,
H(L|A). The least costly implementation L∗ is such that H(L|A) > H(L∗|A)
for every conceivable equipment (interface) L. This complexity should be
compared with the complexity of the automaton A being implemented by
the device, which is denoted by H(A).

The balance between the two is the most important concept. The most
natural automaton implemented by the device is the one that appears with
the largest complexity H(A) and the lowest cost of implementation H(L∗|A).
In less mathematical terms, we are asking the question: what is the most
complex computation that a given device can compute most naturally (with
the least costly interface)?

This balance between the complexity of the interface and the complexity
of the computation achieved can be expressed in many ways, e.g. as

F (A) = H(A)−H(L∗|A) (10.1)

or by using the ratio F (A) = H(A)/H(L∗|A). Then the most natural imple-
mentation A∗ can be identified by maximizing the above expression(s) with
regard to A, i.e. F (A∗) > F (A) where A is any imaginable automaton.

The formula (10.1) suggest that even the most trivial automaton, the one
that does nothing, A0, is a natural implementation. No interface is needed
to implement such an automaton and both logical depths are balanced in
some sense. A similar type of balance can occur for more complex automata.
Presumably, there is a whole range of automata with roughly identical F
values. However, this trend is broken at some point, which can be used to
define the natural computation performed by the system.

10.3.1.3 The case of a rock

Finally, returning to the rock, the key question at this stage is how can one
use the construct in (10.1) to analyze what a rock can compute? Given that
a rock is given, the whole range of automata should be investigated. These
automata occur with a varying degree of complexity, and one has to look at
the trends in the F (A), and find the automaton for which the complexity of
the function being computed per the complexity of interface implementation
is the largest. After such point on the complexity scale the complexity of

10 Philosophy of Computation 163

Fig. 10.1 (a) A sufficiently commuting diagram: the physical evolution H and the ab-
stract evolution C give the same result, as viewed through a particular representation R.
(b) A computation: prediction of the abstract evolution C through instantiation, physical
evolution, and representation. (Adapted from Horsman et al. (2014))

the interface simply explodes. The reason why the rock does not compute is
that the values for H(L∗|A) grow very fast for any automaton that starts
deviating from the null automaton A0. The null automaton represents the
natural computation performed by the rock.

10.3.2 Abstraction/representation theory

Classical computer science regards computations, and often computers, as
mathematical objects, operating according to mathematical rules. However,
every computer, whether classical or unconventional, is a physical device, op-
erating under the laws of physics. That computation depends in some way on
the laws of physics is demonstrated by the existence of quantum computing,
which results in a different model from classical computing, because it oper-
ates under different physical laws. Classical computation implicitly assumes
Newtonian physics.

Unconventional computational matter, from carbon nanotubes to slime
moulds and beyond, raise the question of distinguishing a system simply
evolving under the laws of physics from a system performing a computation.
Abstraction/representation theory (Horsman et al., 2014; Horsman, 2015;
Horsman et al., 2018; Horsman et al., 2017a; Horsman et al., 2017b; Kendon
et al., 2015) has been developed specifically to answer the question: ‘when
does a physical system compute?’

Consider a physical system p evolving under the laws of physics H(p)
to become p′ (Figure 10.1(a)). Let this system p in the physical world be
represented by a model mp in the abstract world, via some representation
relation RT , where the representation is relative to some theory T . Note that
RT is not a mathematical relation, since it relates physical world objects to

164 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

their abstract world models. We can similarly represent the result of the
physical evolution, p′, as the abstract world model mp′ . Now let C be our
abstract world model of the evolution, resulting in m′

p. We say the diagram
(sufficiently) commutes when these two resulting models m′

p and mp′ are
sufficiently close for our purposes. Finding good theories and models such
that the substrate is well-enough characterised that the diagram sufficiently
commutes for a range of initial states of p, is the subject of experimental
science.

Now assume we have such a commuting diagram for some well-characterised
substrate p. We can use this to compute, in the following way. We encode
our abstract problem ms into an abstract computational model mp (for ex-
ample, via computational refinement). We then instantiate this model mp in
some physical system p (Figure 10.1(b)). Note that this instantiation relation
is a non-trivial inversion of the representation relation, and has connections
with engineering (see Horsman et al. (2014) for details). We allow the phys-
ical system to evolve under its laws, then represent the resulting state back
in the abstract realm as mp′ . Since the diagram sufficiently commutes, this
observed result mp′ is a sufficiently good prediction of the desired computa-
tional result m′

p. This computational result can then be decoded back into
the problem result m′

s.
Hence the physical system has been used to compute the result of the

abstract evolution C. This gives the definition: physical computing is the use
of a physical system to predict the outcome of an abstract evolution.

Note that the physical computation comprises three steps: instantiation of
the initial system, physical evolution, and representation of the result. Com-
putation may be ‘hidden’ in the initial instantiation and final representation
steps, and needs to be fully accounted for when assessing the computational
power of the physical device. Such hidden computation may include steps
such as significant image processing to extract a pattern representing the
result from a physical system, or the need to initialise or measure physical
variables with unphysically realisable precision.

This definition allows the same abstract computation to be realised in
multiple diverse physical substrates, using different instantiation and repre-
sentation relations (Figure 10.2). Note that if a particular substrate q is not
well-characterised, so that the result mq′ is being compared against some
other computed result mp′ in order to check that it is correct, then q is not
being used to compute: rather, the substrate q is being used to perform exper-
iments, possibly in order to characterise it. Computation requires prediction
of a result, not of checking a result against some alternative derivation.

This definition applies to multiple substrates being used to perform a com-
putation together. There are two conceptually different approaches (Hors-
man, 2015), although they can be combined. Figure 10.3(a) shows a hybrid
computing system: the problem is decomposed in the abstract domain, and
part of it is performed in one substrate, part in another, and the separate ab-
stract results are combined. Figure 10.3(b) shows heterotic computing (Hors-

10 Philosophy of Computation 165

Fig. 10.2 Alternative realisations of the same computation in different physical systems,
using different instantiation and representation relations.

Fig. 10.3 Multiple substrate computing: (a) hybrid computing; (b) heterotic computing.
(Adapted from Horsman (2015))

man, 2015; Kendon et al., 2015). Here the decomposition happens in the
physical domain, and the instantiation and representation relations apply to
the composed physical system as a whole. This potentially allows the com-
posed physical system to have computational capability greater than the sum
of its individual parts.

This definition of physical computing demonstrates why a rock does not
compute, does not implement any finite state automaton (Horsman et al.,
2018). The rock’s purported computation is actually occurring entirely in
the representation relation being used to interpret the result, not in the rock
itself. And the specific computation (specific choice of representation relation)
is being imposed post hoc, using some previous computation of the answer;
it is not a prediction.

The definition of physical computation talks of a physical system “be-
ing used”. This “user” is the representational entity (computational entity
in Horsman et al. (2014)), There is no need for this entity to be conscious,
sentient, or intelligent (Horsman et al., 2017b). However, it must exist; see
Horsman et al. (2014) for details of why this is the case. This requirement can

166 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

summarised as “no computation without representation” (Horsman, 2015).
This in turn demonstrates why the entire universe is not a computer. Unlike
the case of the rock, where representation is everything, here there is no rep-
resentational activity at all: everything is in the physical domain, and there is
no corresponding abstract computation being performed. Clearly representa-
tional entities may instantiate and represent part of the universe to perform
their computations, but the entire universe is ‘merely’ a physical system.

10.4 On the requisite variety of physical systems

In the previous sections, the examples of a Turing machine and a rock have
been presented with the purpose of clarifying what can compute and what
can be computed. Turing machines are ideal models and make use of an arbi-
trary number of internal states. Rocks (hypothetically) make use of arbitrary
complex interfaces, i.e. auxiliary equipment to the computational automaton.
In order for a physical system to compute, some problem inputs have to be
encoded in a way that is “understood” by the computational substrate. In
other words, the inputs have to have an effect on the internal state of the
computational medium. The computational system itself can hold (represent)
a certain number of internal states. If we want to be able to observe any kind
of computation, some result has to be read from the physical system and
decoded by some kind of output apparatus, i.e. interface.

If a physical system can represent a certain number of internal states, the
computational complexity of the problems that can be computed by such
system is bounded by the number of output states that can be distinguished.
Computational matter exploits the underlying physical properties of materi-
als as a medium for computation. As such, the internal theoretical number
of states in which the material can be, e.g. state of each of the molecules
composing the material system, is several orders of magnitude higher than
what can be practically decoded (unless we use particle collider detectors as
reading apparatus, colliding particles as computational material and quarks
as units of information). What can we compute with a physical system then?
The available computational power is bounded by the number of states that
are available to the observer, e.g. electric apparatus or any apparatus that
measures any interesting physical property of the material.

Such philosophical relation between systems and control mechanisms has
been rigorously formalized within the field of cybernetics by Ross Ashby, a
pioneer British cyberneticist and psychiatrist. Ashby, recognized as one of
the most rigorous thinkers of his time, formulated his law of requisite variety
(Ashby, 1956) which states, in a very informal way, that in order to deal
correctly with the diversity of problems, a (control) system needs to have a
repertoire of responses which is at least as many as those of the problem.
Ashby described the systems under his investigation as heterogeneous, made

10 Philosophy of Computation 167

of a big collection of parts, great richness of connections and internal interac-
tions. Even if Ashby proposed the concept of relative variety in the context
of biological regulation, i.e. organisms’ adaptation to the environment, it has
been adopted and reformulated in a large number of disciplines. Some exam-
ples include Shannon’s information theory (Shannon, 1948), structure and
management of organizations and societies (Beer, 1984), behavior-focused
design (Glanville et al., 2007), and computational systems in general.

In the following sections we review the concept of variety and give a formu-
lation of Ashby’s law of requisite variety in the context of computation. We
describe some philosophical issues related to variety, computation and com-
plexity, such as the intrinsically incorrect variety of physical computational
systems.

10.4.1 Variety

Consider the set of elements S = {a, b, c, a, a, d}; its variety is the number of
elements that can be distinguished. As such, the variety of S is 4. In many
practical cases, the variety may be measured logarithmically (if base 2, then
measured in bits). If a set is said to have no variety, it has all elements of
one type and no distinctions can be made. If logarithmically measured, the
variety of a set with only elements of one kind is log2 1 = 0.

10.4.2 Law of requisite variety

Let O be the set of outcomes of a system, D the set of disturbances that can
deteriorate the outcomes and R the set of regulations available to a regulator
(control mechanisms) to counterbalance the disturbances and maintain the
functionality of the system. Let us denote VO, VD and VR the varieties of the
sets O, D and R, respectively. If the varieties are measured logarithmically,
the minimal value of VO (numerically) is VD −VR. If the value of VD is given
and fixed, VO’s minimum can be lessened only by a corresponding increase in
VR. Only variety in R can force down variety in D, “only variety can destroy
variety”.

Glanville (2004) describes two types of possible system controllers, one in
the form of a regulator (the kind of control that “allows us to stay upright
when skiing, stable in the face of perturbations”, the skiing control) and one
in the form of a restriction (“in a classroom the variety of the teacher is
much lower than the variety of the class but some Victorian teachers used
to handle the situation by restricting the variety of the students” (Robinson,
1979), restrictive control).

168 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

Problems ProblemsResponses Responses

Insufficient Variety Requisite Variety

Fig. 10.4 Graphical representation of the law of requisite variety. On the left the variety
of responses is insufficient or incorrect, on the right there is requisite variety (at least
enough variety) of responses.

Now, for the sake of creating a more realistic analogy, let us consider a
physical system D that is supposed to perform some sort of computation, O
is the set of possibly incorrect (or unwanted) outcomes of the systems (if the
result is read and interpreted correctly, O has minimum variety) and R is the
system’s controller (e.g. reading apparatus, interface or output mapping). In
the ideal case, the variety of R would be as much as the variety of D and the
variety of O would be minimized.

Figure 10.4 shows a simple graphical representation of the original for-
mulation of the law of requisite variety as initially proposed by Ashby. In
practice, the number of available responses of the system has to match the
possible problems to be solved in order to have requisite variety. Otherwise
the variety is said to be insufficient or incorrect.

10.4.3 Insufficient variety of physical systems

In the context of a physical computational system, requisite variety may be
considered at two different stages:

1. the number of internal states of the systems has to code (represent) at
least the number of possible input instances of the problem under inves-
tigation;

2. the number of responses that can be read has to have at least the variety
of the possible number of states represented by the systems.

While the first point is intimately connected to the fact that rocks cannot
compute, the latter raises a deeper concern. The number of states that a
physical system can represent is typically higher than the number of states

10 Philosophy of Computation 169

that can be decoded. Hence, the variety of complex physical systems is not
well defined. The way we have been able to control systems of increasing
computational complexity has relied by far on Moore’s law: building better
controllers of continuously increasing variety. Bremermann (1962) postulated
that any unit of matter has a finite computing capacity, according to the Laws
of Physics. He calculated the computational capacity of a gram of matter and
called this number Bremermann’s constant, which is equal to 1047 bits per
second. With this number, Ashby derived the computational capacity of the
whole universe as 10100 bits. (It is not our intention to argue this calculation,
as few orders of magnitude here do not make any difference.) It is possible
to think of systems with greater variety than the computational power of the
universe. Imagine a screen with 50 × 50 pixels than can be either black or
white. Its variety is 22500. Thus, no control system with such variety can be
built, no matter if Moore’s law still holds or not. From a practical perspective,
this implies that the complexity of the problems that can be solved is bounded
by the number of states (and the scale) of the input/output interface used
for decoding and reading the result.

10.4.4 Variety as complexity, new computational
models?

Variety is a synonym of complexity. Cybernetics has studied systems indepen-
dently of the substrate in which computation may happen (Wiener, 1961) and
the same set of concepts is suitable for formalizing different kinds of systems.
To paraphrase Ashby, one of the “peculiar virtues of cybernetics is that it of-
fers a method for the scientific treatment of the system in which complexity is
outstanding and too important to be ignored”, and again, “variety, a concept
inseparable from that of information”. Shannon used information as measure
of uncertainty (read complexity). If a message is predictable, it carries little
information as there are few states that are very probable and information
content may be derived from a probability distribution. On the other hand, if
all the states have same probability of occurrence, the information cannot be
predicted beforehand. Ashby added that “it must be noticed that noise is in
no intrinsic way distinguishable from any other form of variety”. Shannon’s
Theorem 10 (Shannon, 1948) is formulated in terms of requisite variety as “if
noise appears in a message, the amount of noise that can be removed by a
correction channel is limited to the amount of information that can be carried
by that channel”. Bar-Yam (2004) uses variety as synonym of complexity and
proposed the law of requisite complexity. In the context of matter that com-
putes, it can be reinterpreted as “the controller (input/output apparatus) for
a complex system needs to be at least as complex as the system it attempts
to control”.

170 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

If computation is to be embedded into physical matter systems, a differ-
ent computational model that goes beyond the standard Turing mechanistic
model may be needed, as material computers are devices that interact with
the physical world. Dodig-Crnkovic and Burgin (2011) describe the mecha-
nistic world by the following principles:

1. The ontologically fundamental entities of physical reality are [space-time
and matter (mass-energy)] defining physical structures and motion (or
change of physical structures);

2. All the properties of any complex physical system can be derived from
the properties of its components;

3. Change of physical structures is governed by laws.

It may be argued that Turing models (Turing, 1936), which consist of
an isolated computing machine that operates on an input tape of atomic
symbols, are mechanistic models. The assumption of a mechanistic model is
that the laws of conservation of energy, mass, momentum, etc. hold, i.e. the
system is isolated from the environment. Computational matter is hard to
model mechanistically because of its inherent complexity. If Ashby’s law of
requisite variety is considered, in order for a computational model to be well
defined it has to match the complexity of its environment. Physical systems
exhibit a much higher complexity than Turing machines. Hence, it may be
necessary to have more powerful models than Turing machines in order to
represent matter that computes.

More than 20 years after Ashby’s law of requisite variety was formulated,
new (second-order) cybernetics (Foerster, 2007; Maruyama, 1963) started
to give more importance to the positive side of requisite variety instead of
the negative ones: “Give up trying to control, [. . .] gain access to enormous
amounts of variety, [. . .] a potential source of creativity”. von Neumann,
while working with self-replicating automata, postulated a lower complexity
threshold under which the system would degenerate, but above which would
become self-reproducing. Ashby himself wrote a note on this, saying that a
good regulator, i.e. controller, should account for emergence in the variety.
The emergence of new functionality in a system should add to the variety of
the regulator as to be able to cope with unexpected disturbances.

Requisite variety is an ideal condition and physical systems should aspire
to have a variety as well defined as possible (or at least enough for the kind
of computational problems one may want to solve).

10.5 On the ontology of number and state

In order to perform a computation, an abstract mathematical model requires
a physical substrate or system that changes its physical state in a correspond-
ing manner. This suggests that the Numbers of computations and the States

10 Philosophy of Computation 171

of the physical systems they represent are intimately connected. Although
this observation is already sufficient to motivate ontological questions such
as ‘what is a state?’ and ‘what is a number?’, the question of the relationship
between them investigated in this section arose from a different perspective
on the representation problem. Namely, can the time-evolution of a physical
system be used to “guide” a computation, or to define or enable a specific
type of computation?

10.5.1 Motivation

The correspondence of the time evolution of an electronic system with cer-
tain mathematical operations was exploited by the analogue computers of
the 1950s. For example, different arrangements of circuit elements (resistors,
capacitors, etc.) connected to one or more operational amplifiers yield alge-
braic or analytical relationships between the input and output voltages that
correspond to addition, subtraction, integration, differentiation, and so forth.

In digital computers there is no such connection, by design. The ‘general-
purpose’ digital computer was developed precisely to abstract from the details
of the physical system so as to be able to perform any kind of computation.
This has been largely successful, but as mentioned above there are some
computations that classical computers cannot do and that require quantum
computers. Similarly, we expect some biological systems to “compute” in a
very different way from what the current von Neumann architecture does,
or even from the Turing Machine model described in Sect. 10.2. Thus, one
of the current research questions in unconventional computing is whether
such biological systems afford any properties for the computational systems
they implement that may be deemed desirable or interesting from an anthro-
pocentric point of view. Self-healing and self-organizing computing systems
are typical examples of such desirable properties.

At this point the problem splits in two. On the one hand, a biological
system can be seen as a computational device that executes the functions
it evolved for. A typical example is the ability of slime mould to find food
by growing around obstacles of different topologies (Adamatzky, 2010). In
other words, this view is based on regarding physical behaviour as a form of
computation, and is likely to benefit from a clarification of the link between
State and Number.

On the other hand, the other perspective aims to develop computing sys-
tems that satisfy human needs and requirements, but that embody some of
the dynamical characteristics of biological systems, such as self-healing and
self-organization. In this view, we could argue for a three-tier model:

• At the lowest level is a general-purpose digital computer, which we can
assume to be classical. At this level (the physical system of Sect. 10.3.2)

172 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

the voltages of the logic gates can be identified with the binary number
system and related operations.

• At an intermediate level we have a subset of the computations that are
possible at the lowest level. Such computations are consistent with con-
straints derived from biological systems, so in some sense this level is able
to emulate different biological systems, or some of their properties.

• At the top level (the representation level of Sect. 10.3.2) ‘normal’ compu-
tations are performed on variables that are meaningful to human users.
However, since these computations are implemented by the intermediate
level, they rely on an evolution of the physical system that in some sense
emulates the behaviour of a biological system.

This framework underpins the type of biocomputing that is discussed next,
and motivated the search for any fundamental properties or ‘primitives’ that
could make the formalization of the biological constraints into the interme-
diate layer easier or more natural. Seeking a better understanding of the
ontology of Number and State is part of this exploration.

10.5.2 Interaction computing

The BIOMICS project3 is exploring the idea to leverage the self-organizing
properties of biological systems to achieve ‘self-organizing computing sys-
tems’ through the concept of ‘interaction computing’ (Dini et al., 2013), some
of whose properties and implications are discussed in Sect. 10.6. The idea of
Interaction Computing is inspired by the observation that cell metabolic/reg-
ulatory systems are able to self-organize and/or construct order dynamically,
through random interactions between their components and based on a wide
range of possible inputs. The emphasis on ontogenetic rather than phyloge-
netic processes was partly motivated by Stuart Kauffman’s observation that
natural selection in biological evolution does not seem powerful enough to
explain the order construction phenomena we see in nature (Kauffman, 1993,
Preface).

The expectation of the three-tier model above is that it is more powerful
than the Turing machine model, in spite of the fact that the intermediate
layer performs a subset of the computations that the physical system at the
lowest layer can support. This idea has been around for a long time and was
well-argued by Peter Wegner almost 20 years ago (Wegner, 1997), but could
probably be summarized most simply by noticing that the computation re-
sults from the interaction of multiple machines which, like the molecules in a
biochemical mixture, do not always know which inputs will arrive next and
which other machines they will interact with next. Whether the different ma-
chines are implemented as separate von Neumann computers or are emulated

3 www.biomicsproject.eu

http://www.biomicsproject.eu

10 Philosophy of Computation 173

in the intermediate layer by a single von Neumann machine is inconsequen-
tial. In the vision of Interaction Computing their interactions are constrained
in the same way. Interestingly, the original concept for this kind of compu-
tation can also be ascribed to Alan Turing, in the same paper where the
TM was introduced (Turing, 1936). Turing did not provide a formal model,
but only briefly described the ‘Choice Machine’, i.e. a machine that could be
interrupted by external inputs during the execution of an algorithm. Rhodes
provides an abstract formalization of this concept in the form of a general-
ization of a sequential machine (Rhodes, 2010).

The achievement of self-organizing computational systems, therefore, ap-
pears to depend on the ability to express and formalize architectural and
dynamical properties of biological – and in particular biochemical – systems
as constraints on binary general-purpose digital computing systems. Whereas
the encoding between the two is generally achieved through the semantics of
programming languages, it is worth asking whether some structural or alge-
braic properties of biological systems might give rise to desirable computa-
tional properties, thereby in essence “modulating” the encoding achievable
by programming languages, compilers, and so forth.

One of the first questions that arose in this line of thinking sought to
establish whether there are any “primitive” properties of physical systems
that could be related directly to similarly “primitive” properties in compu-
tational systems. This is the main motivation behind the exploration of the
relationship between the concept of State and the concept of Number.

10.5.3 Algebraic automata theory

The first step in constructing the link between the concepts of State and
Number is to associate a physical or biological system with its approximation
as a finite-state automaton. The second step is to recognize that a finite-
state automaton can be seen mathematically as a set of states acted upon
by a semigroup of transformations (including an identity transformation, so
technically a monoid).

The idea of connecting the states of such a ‘transformation semigroup’ to
the concept of number is due to Rhodes (Rhodes, 2010) and is based on the
interpretation of the Krohn-Rhodes decomposition of a transformation semi-
group into a cascade of simpler machines through the ‘prime decomposition
theorem’ (Krohn and Rhodes, 1965).4 The simpler machines in the cascade
play the same role as the different digits of a number expressed as a posi-

4 The appellative ‘prime’ derives from the fact that, since the simpler machines have

irreducible semigroups (the irreducible 2-state reset automata with identity (flip-flops),

prime order counters, or simple non-abelian groups (SNAGs)), they cannot be decomposed
further and so are analogous to prime numbers in integer decomposition.

174 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

tional expansion.5 The manner in which the component machines depend on
each other is uni-directional (‘loop-free’) in the same way as the carry bit
in regular addition. In other words, the expansion of an automaton into a
cascade of machines means that each (“global”) state of the automaton can
be expanded into an ordered tuple of (“positional”) states analogous to the
expansion of a number in a given positional number system (with variable
base).6 And the change of state caused by the receipt of an input symbol is
mathematically analogous to addition in a positional number system, with
the effect of positional state changes in the upper layers in the cascade on the
lower layers through ‘dependency functions’ being mathematically identical
to the effect of the carry bit on the positions to the left of any given digit in
the positional expansion of any given number. Through this representation
state changes of automata can be seen as generalizations of the addition of
numbers: State 1 + Input Symbol = State 2.

A few years after the Krohn-Rhodes theorem was proved, Zeiger (1967)
proved a variant whose statement is somewhat easier to understand. The
holonomy theorem says that any finite-state automaton can be decomposed
into a cascade product of certain permutation-reset automata. The permuta-
tion automata involved are ‘sub-machines’ of the original automaton whose
states are subsets of the original state setX and whose semigroups are permu-
tation groups (which include an identity map) permuting these subsets, and
these are augmented with all possible resets to yield the permutation-reset
automata of the decomposition.7

This idea is explained in some detail by Dini et al. (2013), but the gist
can probably be communicated well enough by Figure 10.5. The figure shows
an example of the converse of what is stated above because it is easier to
understand. Namely, a 4-bit binary number can be seen as a cascade of 4
binary counters. Each counter, in turn, is isomorphic to a cyclic group of
order 2 (C2). In this idealized example each level of the decomposition only
has (reversible) groups, there are no irreversible resets (flip-flops).

Permutation-reset automaton.

To explain what a permutation-reset automaton is, Figure 10.6 shows differ-
ent types of actions that can be induced on a set of six states by the elements
of a semigroup S. Let’s call one such element s ∈ S. In Case 10.6a, s per-

5 A positional expansion (in a constant base) is a representation of a number into a string
of digits each of whose position from the right end of the string corresponds to the power
of the base −1 times which that digit should be multiplied.
6 Furthermore, at each level in the cascade more than one machine could be present, but
this is not important for this conceptual discussion.
7 Holonomy decomposition was implemented within the past few years as the SgpDec

package (Egri-Nagy et al., 2014) in the GAP (GAP Group, 2014) computational algebra
language.

10 Philosophy of Computation 175

{4,12} {2,10} {6,14} {1,9} {5,13} {3,11} {7,15}

1 1 0 1 + 1

0 1

+1

+1

0 1

+1(1)

+1(1)

0 1

+1(1,1)

+1(1,1)

0 1

+1(1,1,1)

+1(1,1,1)

1

0

1

1

0

1

1

1

= 1 1 1 0

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

{0,2,4,6,8,10,12,14} {1,3,5,7,9,11,13,15}

{0,4,8,12} {2,6,10,14} {1,5,9,13} {3,7,11,15}

{0,8}

{8}{0} {4} {12} {2} {10} {6} {14} {1} {9} {5} {13} {3} {11} {7} {15}

C2

C2

C2

C2

(LSB)

(MSB)

Fig. 10.5 (Left) Binary positional notation for non-negative integers < 16 expressed as
a composition of binary counters, with dependency conditions (carry bit) shown explicitly.
(Right) Corresponding group coordinatization in decimal notation.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

a) An invertible
(cyclic) permutation

b) A non-invertible
constant map or reset

1

2

3

4

5

6

1

2

3

4

5

6

c) A non-invertible
transformation

1

2

3

4

5

6

1

2

3

4

5

6

d) Another
non-invertible
transformation

Fig. 10.6 Different kinds of transformations of 6 states (after Maler (Maler, 2010))

mutes the states and so is a member of a group that is a subgroup of S; in
Case 10.6b, s is a constant map, which is non-invertible; the remaining two
cases are other examples of non-invertible transformations. A permutation-
reset automaton has elements that can only be like Case 10.6a (including the
identity permutation) or Case 10.6b. In Cases 10.6b, 10.6c, and 10.6d, s can-
not belong to a group action that permutes the states. At the same time, in
Case 10.6b the degree of non-invertibility is maximum. Thus, permutations
and resets could be regarded as “mutually orthogonal” in the sense that no
combination of one type can yield a member of the other type. In other
words, permutation groups and identity-reset semigroups are analogous to a
generalized basis into which an automaton can be decomposed.

176 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

As in the more complex Krohn-Rhodes decomposition, also in the holon-
omy decomposition the way the permutation-reset automata are wired to-
gether is ‘loop-free’, which means that the dependence is unidirectional. As
above, this is a generalization of the carry rule in normal addition. The various
levels must be wired in a loop-free manner, setting up particular dependen-
cies from higher-level to lower-level components so that the resulting ‘cascade
product’ is able to emulate the original automaton.

As above, the cascade of machines can also be seen from a more abstract
point of view as yielding a possible “expansion” of any given state of the orig-
inal automaton into a positional “number” system. This is best understood
by realizing that the notion of a number is actually an abstract concept that
has many possible “implementations” or representations: we can choose to
count a flock of sheep by an equal number of pebbles, or we can write down
a number in positional decimal notation like 89. We could also express 89 in
binary notation as 1011001, which is also positional, or in Roman numerals
as LXXIX, which is not (and therefore much less useful in both practical
and mathematical terms). Writing ‘89’ on a piece of paper is easier and more
practical than carrying around 89 pebbles, or 89 beans, etc.

However, notice an interesting fact: whereas with numbers we are much
more familiar with their (decimal) expansion, to the point that we have to
make an effort to notice that ‘89’ is not the “essence” of this number but just
one of its possible representations, the opposite is true for an automaton:
we are quite familiar with the fact that an automaton is at all times in one
of its states, which we can easily visualize, but we have a really hard time
thinking about the “expansion” of such a state into a positional notation of
some form. This is not just because the base of such an expansion is far from
clear and, even if it were clear, in general it changes between positions (levels
of the cascade), but because we don’t really know what to do with such an
expansion until we become familiar with using it.

Reconciling algebra and physics.

A potentially confusing aspect of the holonomy decomposition of an automa-
ton concerns the relationship between its algebraic structure and the physical
behaviour of the system it models. The action of any groups that may be
present in the decomposition on (sub)sets of states is generally described in
terms of permutations of the state set upon which any such group is acting;
thus, it is parallel. By contrast, a physical system will visit a sequence of
its states, one at a time. These two views can be reconciled by noting that
a permutation should be seen as an (invertible) function from the state set
to itself. Thus, a physical state change corresponds, for each level of the ex-
pansion of the corresponding state in the automaton, to one evaluation of
one such function at one state, to obtain another state. And a sequence of
physical states in general corresponds, at each level where there is a group,

10 Philosophy of Computation 177

to the sequential evaluation of different elements of that group acting on a
sequence of states from the same set (where the output of one evaluation is
the input of the next).

In other words, the algebraic description is meant to capture the structure
of a cascade that emulates the original automaton, i.e. all its possible com-
putations (input sequences and state traces). Whether any group structure
that results has a deeper physical or computational significance is not im-
mediately clear and requires further thought. Indeed, the group structure of
modulo n counters in the base n expansion of the real numbers is essential,
but could seem mysterious at first sight given the fact that the numbers have
no elements of finite order n at all!

From a physics perspective the presence of groups is appealing because
it implies the presence of conserved quantities.8 Conserved quantities that
are relevant in physics are conserved along the time-evolution of the system,
implying that the state changes of a physical system that conserves some
quantity can be expressed as the elements of a group. An example of such an
invariant is, trivially, the constant of integration obtained when a differential
system is reduced to quadrature and that corresponds more generally to a
level set of a ‘first integral’ of the system. It appears that such conserved
quantities and groups correspond to the top level of the holonomy decompo-
sition, because the top-level group acts on the whole state set. If there are
groups at lower levels the expectation is that they correspond to some further
aspect of the physical quantity being conserved.

In many cases we can see what is being conserved by groups at the various
levels of the decomposition, but it often takes great effort to understand this
kind of correspondence. However, the development of the mathematical the-
ories is proceeding, as discussed in the next section. From a computational
point of view, the challenge is to understand the meaning of the intermediate
levels of the decomposition. If the top layer represents global transformations
that affect the whole state set and the lowest layer the encoded action on sin-
gleton states, the intermediate layers encode the action on subsets of states,
also known as ‘macrostates’ in computer science. Such a hierarchy amounts
to a ‘coordinatisation’ of the original automaton that becomes increasingly
more fine-grained the lower one goes in the levels. It is very interesting that
such a coordinatisation should emulate the behaviour of the original automa-
ton, but it may still seem very difficult to imagine “programming” in such an
environment, i.e. where each instruction is coordinatised across multiple lev-
els, within each of which it acts as either a constant map on a subset of states
or a permutation thereof. Therefore, the expectation is that progress will be
made first by relying on the algebra to understand the biology, and then by

8 Paraphrasing Ian Stewart, a symmetry is an invertible transformation that leaves some

aspect of the structure of a mathematical object invariant. The set of all such symmetries

always forms a group. The converse is also true: the presence of a group implies the presence
of an invariant of some kind or other.

178 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

relying on the biology to gain new insights into the very unconventional kind
of computation it appears to implement.

10.6 Interaction and dynamically deployable
computational structure in ensembles

Unlike traditional computing using a pre-circumscribed state- and phase-
space where all the possible configurations are in principle limited at the
outset to some fixed structure, natural systems like differentiated multicel-
lular organisms can grow from one or a few cells to fill and create dynamic
structures. It is clear that such systems perform a myriad of information
processing tasks. For example, consider the case of evolving embryo where
cells have to differentiate into specific types and further have to be positioned
properly in a rather robust way. Is this type of computing intrinsically differ-
ent from the computation performed in more stable environments? Below we
address some topics that might be helpful for reasoning around this question
from a rather broad conceptual point of view.

10.6.1 Growing and changing computational structures

Resources may be allocated or released as cells proliferate or die away in the
course of development in interaction with the external environment, including
other individuals (West-Eberhard, 1989). Multiple asynchronous parallel pro-
cesses are created and branch, or terminate, depending on interaction. The
nature of this interaction may be impossible to circumscribe at the outset, not
only in terms of its detailed content, but also even in terms of what channels
of interaction exist. While Turing computation can be regarded as ‘off-line’
and computation involving interaction as ‘on-line’ (Wegner, 1997) (through
a fixed interface) making the latter qualitatively different in terms of what
algorithms can be carried out, but we are speaking here of something beyond
merely adding interactivity. Beyond static state spaces, pre-circumscribed
computation, and even beyond augmenting traditional models with interac-
tion, we refer to something much more like what living systems do as they
grow, change and reproduce: the capacity to change structure in the course
of interaction in ways that are dynamically defined during the unfolding of
the time course of interaction with whatever entities may come and go in the
external environment. Here interaction itself takes place through dynamically
changing structures. These changes affect the nature of interactions internally
and externally, as well as re-structuring the internal dynamic (often recursive
hierarchical) constituent components and the dynamic interaction topologies
connecting their activity. Interaction machines (Nehaniv et al., 2015) and

10 Philosophy of Computation 179

related formalisms allows us to treat discrete or continuous constructive dy-
namical systems whose structure, constituents, state spaces, and capacities
vary dynamically over the course interaction.

10.6.2 Ensembles

Furthermore, a key idea for us is that the ensemble of computational resources
deployed at any given moment may include multiple copies or instances of
computational ‘cells’ from a lineage that has experienced various different
trajectories in their interaction with the environment (ensembles), as is the
case with living cells in a multicellular body, or living in close proximity in a
colony. These multiple instances can be viewed as the ‘same’ individual expe-
riencing multiply time-lines, and responding in multiple ways. This viewpoint
allows us then to apply the methods of algebra (Nehaniv et al., 2015) that
facilitate the use of such ensembles to maintain natural subsystems as pools
of reversible computation in which actions or reversible. The permutations
we referred to in the previous section now explicitly map not single states,
but are operators that permute an ensemble of states. Even relatively simple
systems that we find in living cells (like the p53-mdm2 genetic regulatory
control pathway) can achieve finitary universal computation, i.e. the capacity
to realize any mapping f : Xn → Xm from every finite set X when harnessed
in multiple copies (Nehaniv et al., 2015). This may be the case with genetic
regulatory control in cells.

10.6.3 Recurrence and differentiation

Dynamic re-engagement with recurring scenarios of such computational en-
sembles could lead to robustness and more adaptive choice – as in the case
of Darwinian evolution (Nehaniv, 2005; Pepper, 2003) or interaction history
learning (Nehaniv et al., 2013) – compare also F. Varela’s ideas on principles
of biological autonomy (Varela, 1979) and recurrence in cycles of dependent
origination (Varela et al., 1991).

With further differentiation between types of cells – i.e. ensembles not of
heterogeneous cells but organized structurally to reflect different functions in
a division of labour – even more is possible in terms of exploiting dynamic
organizational structure, including hierarchies, in interaction.

180 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

10.7 Conclusions

A series of philosophical questions related to the idea of computation have
been posed in different setups: Given a physical system, what can it compute?
In which ways is digital computation different from other types of computa-
tion? Are there other types of computation? Why living cells compute? Can
a rock compute as well? Can we compute with evolving systems? Is it ad-
vantageous to compute with such? What is a number? How to we represent
it?

Many of the these questions are rather complex. Further, it has been ar-
gued that even seemingly practical questions in the list above have a sur-
prising conceptual depth. For all these questions any attempt to formalize a
rigorous answer (e.g. in pure mathematical terms) is bound to end in para-
doxes. Some of the paradoxes have been addressed, and resolved to some
extent. This has been done by discussion a few rigorous mathematical frame-
works that can be used to address them.

Perhaps it is fair to say that, in relative terms, when compared to other
types of computation, digital computation is well-understood. However, as
soon as one leaves the comfort provided by the abundance of mathematical
machinery used to describe digital computation, the world seems to be packed
with paradoxes.

For example, loosely speaking, it is possible to argue that every rock can
compute anything, which is clearly not the case. Two related solutions to this
paradox have been suggested which, very briefly can be stated as: (1) there
is no simple interface that can turn a rock into a computer; (2) for the rock,
the representation is everything. Admittedly, from the dynamical point of
view, as a system, the rock is hardly an interesting object. Why bother with
philosophical constructs that explain why rocks do not compute? However,
the situation changes rapidly when other systems are considered such as
amorphous materials or self-organized amorphous materials that multiply
and die, e.g. as living cells. Without a theory that can explain why rocks do
not compute, there can hardly be a theory that explains why living cells do,
for example.

Note that it is known that such an elementary concept of an integer num-
ber becomes hard to describe when thinking in rigorous philosophical and
mathematical terms. In here we tried to address the issue from the informa-
tion processing point of view too.

Living systems can be seen as powerful information processing devices,
already at the single cell level, and, in particular, at the level of cell colonies
or cell ensembles. Cells multiply, change types, aggregate and arrange them-
selves in space, all while being exposed to external influences. Perhaps out
of the systems considered in this chapter, such systems are by far the hard-
est ones to address in this philosophical context. The key reason is that the
structure of the configuration space of such systems evolves in time, as new
cells are added and removed from the ensemble.

10 Philosophy of Computation 181

Why should one bother with such broad questions? There are several rea-
sons. The first major reason is that we still do not have a mathematical ma-
chinery that could be used to argue why living cells compute. Such a mathe-
matical approach should feature the following concepts: Abstract model ver-
sus implementation in terms of computational power, what are we throw-
ing away, and what do the results of the previous subsection imply or mean
for in-principle and in-practice (im)possibilities to compute/execute/problem
solving.

The second reason is entirely practical, and equally, if not more important.
The good fortune provided by Moore’s Law is likely to end very soon. Moore’s
Law is not a natural law, but it has become a target, and it has been part
of the roadmaps to lead the research and industrial developments in digital
circuitry, and it has therefore had a great impact on industry and society. In
somewhat simplistic terms, the law guarantees that we can continue building
ever faster computers. There are many drives for this trend, both scientific
and societal. For example, this state of affairs is one of the main reasons why
unconventional computation is gaining in the number of followers. As a soci-
ety we are facing many challenges if this trend of being able to perform fast
computations cannot continue. It is possible that one can advance the field
further by developing the engineering side. However, given the complexity
of the task ahead, it is likely that an access to a systematic way of thinking
might be a great aid in finding new information processing solutions in nature
and adjusting the ones from nature. The discussion presented in this chapter
should be seen as an illustration of what might be done to reach these goals.

References

Adamatzky, A. (2010). Physarum Machines: Computers from Slime Mould.
World Scientific.

Ashby, William Ross (1956). An introduction to cybernetics. Champman &
Hall.

Bar-Yam, Yaneer (2004). “Multiscale variety in complex systems”. Complex-
ity 9(4):37–45.

Beer, Stafford (1984). “The viable system model: Its provenance, develop-
ment, methodology and pathology”. Journal of the Operational Research
Society 35:7–25.

Bennett, C. H. (1988). “Logical Depth and Physical Complexity”. The Uni-
versal Turing Machine: A Half-Century Survey. Ed. by R. Herken. Oxford
University Press, pp. 227–257.

Bremermann, H. J. (1962). “Optimization through evolution and recombina-
tion”. Self-Organizing Systems. Ed. by Marshall C. Yovitis and George T.
Jacobi. Spartan, pp. 93–106.

182 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

Brown, C. (2012). “Combinatorial-State Automata and Models of Computa-
tion”. Journal of Cognitive Science 13:51–73.

Chalmers, D. J. (1996). “Does a rock implement every finite-state automa-
ton?” Synthese 108:309–333.

Chrisley, R. L. (1994). “Why everything doesn’t realize every computation”.
Minds and Machines 4:403–420.

Copeland, B. J. (1996). “What is computation?” Synthese 108:335–359.
Dini, P., C. L. Nehaniv, A. Egri-Nagy, and M. J. Schilstra (2013). “Explor-

ing the Concept of Interaction Computing through the Discrete Algebraic
Analysis of the Belousov-Zhabotinsky Reaction”. BioSystems 112(2):145–
162.

Dodig-Crnkovic, Gordana and Mark Burgin (2011). Information and compu-
tation: Essays on scientific and philosophical understanding of foundations
of information and computation. Vol. 2. World Scientific.

Egri-Nagy, A., C. L. Nehaniv, and J. D. Mitchell (2014). SgpDec – Hier-
archical Decompositions and Coordinate Systems, Version 0.7.29. url:
sgpdec.sf.net.

Foerster, Heinz von (2007). Understanding understanding: Essays on cyber-
netics and cognition. Springer.

GAP Group (2014). GAP – Groups, Algorithms, and Programming, V 4.7.5.
url: www.gap-system.org.

Glanville, Ranulph (2004). “A (cybernetic) musing: Control, variety and ad-
diction”. Cybernetics & Human Knowing 11(4):85–92.

Glanville, Ranulph, Hugh Dubberly, and Paul Pangaro (2007). “Cybernet-
ics and service-craft: Language for behavior-focused design”. Kybernetes
36(9/10):1301–1317.

Godfrey-Smith, P. (2009). “Triviality arguments against functionalism”. Philo-
sophical Studies 145:273–295.

Horsman, C., Susan Stepney, Rob C. Wagner, and Viv Kendon (2014). “When
does a physical system compute?” Proceedings of the Royal Society A
470(2169):20140182.

Horsman, D. C. (2015). “Abstraction/Representation Theory for heterotic
physical computing”. Phil. Trans. Roy. Soc. A 373:20140224.

Horsman, Dominic, Viv Kendon, and Susan Stepney (2018). “Abstraction/
Representation Theory and the Natural Science of Computation”. Physi-
cal Perspectives on Computation, Computational Perspectives on Physics.
Ed. by Michael E. Cuffaro and Samuel C. Fletcher. Cambridge University
Press, pp. 127–149.

Horsman, Dominic, Susan Stepney, and Viv Kendon (2017a). “The Natural
Science of Computation”. Communications of ACM 60(8):31–34.

Horsman, Dominic, Susan Stepney, Viv Kendon, and J. P. W. Young (2017b).
“Abstraction and representation in living organisms: when does a biologi-
cal system compute?” Representation and Reality in Humans, Other Liv-
ing Organisms and Intelligent Machines. Ed. by Gordana Dodig-Crnkovic
and Raffaela Giovagnoli. Springer, pp. 91–116.

http://www.gap-system.org

10 Philosophy of Computation 183

Joslin, D. (2006). “Real realization: Dennett’s real patterns versus Putnam’s
ubiquitous automata”. Minds and Machines 16:29–41.

Kauffman, S. (1993). The Origins of Order: Self-Organisation and Selection
in Evolution. Oxford University Press.

Kendon, Viv, Angelika Sebald, and Susan Stepney (2015). “Heterotic com-
puting: past, present, and future”. Phil. Trans. Roy. Soc. A 373:20140225.

Kirby, K. (2009). “Putnamizing the Liquid State (extended abstract)”.
NACAP 2009.

Konkoli, Zoran (2015). “A Perspective on Putnam’s Realizability Theorem
in the Context of Unconventional Computation”. International Journal of
Unconventional Computing 11:83–102.

Krohn, K. and J. Rhodes (1965). “Algebraic Theory of Machines. I. Prime
Decomposition Theorem for Finite Semigroups and Machines”. Transac-
tions of the American Mathematical Society 116:450–464.

Ladyman, J. (2009). “What does it mean to say that a physical system im-
plements a computation?” Theoretical Computer Science 410:376–383.

Maler, O. (2010). “On the Krohn-Rhodes Cascaded Decomposition Theo-
rem”. Time for Verification: Essays in Memory of Amir Pnueli. Ed. by
Z. Manna and D. Peled. Vol. 6200. LNCS. Springer.

Maruyama, Magoroh (1963). “The second cybernetics: Deviation-amplifying
mutual causal processes”. American Scientist 51:164–179.

Nehaniv, Chrystopher L. (2005). “Self-replication, Evolvability and Asyn-
chronicity in Stochastic Worlds”. Stochastic Algorithms: Foundations and
Applications. Vol. 3777. LNCS. Springer, pp. 126–169.

Nehaniv, Chrystopher L, Frank Förster, Joe Saunders, Frank Broz, Elena
Antonova, Hatice Kose, Caroline Lyon, Hagen Lehmann, Yo Sato, and
Kerstin Dautenhahn (2013). “Interaction and experience in enactive in-
telligence and humanoid robotics”. IEEE Symposium on Artificial Life
(IEEE ALIFE 2013). IEEE, pp. 148–155.

Nehaniv, Chrystopher L., John Rhodes, Attila Egri-Nagy, Paolo Dini, Eric
Rothstein Morris, Gábor Horváth, Fariba Karimi, Daniel Schreckling, and
Maria J. Schilstra (2015). “Symmetry structure in discrete models of bio-
chemical systems: natural subsystems and the weak control hierarchy in
a new model of computation driven by interactions”. Philosophical Trans-
actions of the Royal Society A 373:2040223.

Pepper, John W. (2003). “The evolution of evolvability in genetic linkage
patterns”. BioSystems 69(2):115–126.

Putnam, H. (1988). Representation and Reality. MIT Press.
Rhodes, J. (2010). Applications of Automata Theory and Algebra via the

Mathematical Theory of Complexity to Biology, Physics, Psychology, Phi-
losophy, and Games. World Scientific Press.

Robinson, Michael (1979). “Classroom control: Some cybernetic comments
on the possible and the impossible”. Instructional Science 8(4):369–392.

Scheutz, M. (1999). “When Physical Systems Realize Functions”. Minds and
Machines 9:161–196.

184 Z. Konkoli, S. Stepney, H. Broersma, P. Dini, C. L. Nehaniv, S. Nichele

Searle, J. R. (1992). The Rediscovery of the Mind. MIT Press.
Shagrir, O. (2012). “Computation, Implementation, Cognition”. Minds and

Machines 22:137–148.
Shannon, C. E. (1948). “A mathematical theory of communication”. Bell

System Technical Journal 27(3):379–423.
Turing, A. (1936). “On Computable Numbers, with an Application to the

Entscheidungsproblem”. Proceedings of the London Mathematical Society
(2) 42:A correction, ibid, 43, 1937, pp. 544-546, 230–265.

Varela, Francisco J. (1979). Principles of Biological Autonomy. North Hol-
land.

Varela, Francisco J., Evan Thompson, and Eleanor Rosch (1991). The Em-
bodied Mind. MIT Press.

Von Eckardt, B. (1995). What is cognitive science? MIT Press.
Wegner, P. (1997). “Why Interaction Is More Powerful than Algorithms”.

Communications of the ACM 40(5):80–91.
West-Eberhard, Mary Jane (1989). “Phenotypic plasticity and the origins of

diversity”. Annual Review of Ecology and Systematics:249–278.
Wiener, Norbert (1961). Cybernetics or Control and Communication in the

Animal and the Machine. MIT Press.
Zeiger, H. P. (1967). “Cascade synthesis of finite-state machines”. Informa-

tion and Control 10(4):plus erratum, 419–433.

	Chapter 10 Philosophy of Computation
	10.1 Introduction
	10.2 Philosophy of digital computation
	10.2.1 Turing machines
	10.2.2 The basic version of a Turing machine
	10.2.3 The Church-Turing thesis
	10.2.4 Decision problems and (un)decidability

	10.3 Why rocks do not compute
	10.3.1 Powerful computation with minimal equipment
	10.3.1.1 Finding the right balance
	10.3.1.2 The mathematics of balances
	10.3.1.3 The case of a rock

	10.3.2 Abstraction/representation theory

	10.4 On the requisite variety of physical systems
	10.4.1 Variety
	10.4.2 Law of requisite variety
	10.4.3 Insufficient variety of physical systems
	10.4.4 Variety as complexity, new computational models?

	10.5 On the ontology of number and state
	10.5.1 Motivation
	10.5.2 Interaction computing
	10.5.3 Algebraic automata theory

	10.6 Interaction and dynamically deployable computational structure in ensembles
	10.6.1 Growing and changing computational structures
	10.6.2 Ensembles
	10.6.3 Recurrence and differentiation

	10.7 Conclusions
	References

