
Chapter 11

Computability and Complexity of
Unconventional Computing Devices

Hajo Broersma, Susan Stepney, and Göran Wendin

Abstract We discuss some claims that certain UCOMP devices can per-
form hypercomputation (compute Turing-uncomputable functions) or per-
form super-Turing computation (solve NP-complete problems in polynomial
time). We discover that all these claims rely on the provision of one or more
unphysical resources.

11.1 Introduction

For many decades, Moore’s Law (Moore, 1965) gave us exponentially increas-
ing classical (digital) computing (CCOMP) power, with a doubling time of
around 18 months. This cannot continue indefinitely, due to ultimate phys-
ical limits (Lloyd, 2000). Well before then, more practical limits will slow
this increase. One such limit is power consumption. With present efforts to-
ward exascale computing, the cost of raw electrical power may eventually
be the limit to the computational power of digital machines: Information is
physical, and electrical power scales linearly with computational power (elec-
trical power = number of bit flips per second times bit energy). Reducing the
switching energy of a bit will alleviate the problem and push the limits to
higher processing power, but the exponential scaling in time will win in the
end. Programs that need exponential time will consequently need exponential
electrical energy. Furthermore, there are problems that are worse than being
hard for CCOMP: they are (classically at least) undecidable or uncomputable,
that is, impossible to solve.

CCOMP distinguishes three classes of problems of increasing difficulty
(Garey and Johnson, 1979):

1. Easy (tractable, feasible) problems: can be solved by a CCOMP machine,
in polynomial time, O(nk), or better.

185© Springer International Publishing AG, part of Springer Nature 2018
S. Stepney et al. (eds.), Computational Matter, Natural Computing Series,
https://doi.org/10.1007/978-3-319-65826-1_11

https://doi.org/10.1007/978-3-319-65826-1_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-65826-1_11&domain=pdf

186 Hajo Broersma, Susan Stepney, and Göran Wendin

2. Hard (intractable, infeasible) problems: take at least exponential time,
O(en), or exponential resources like memory, on a CCOMP machine.

3. Impossible (undecidable, uncomputable) problems: cannot be solved by a
CCOMP machine with any (finite) amount of time or memory resource.

Unconventional Computing (UCOMP) (European Commission, 2009) is a
diverse field including a wealth of topics: hypercomputation, quantum com-
puting (QCOMP), optical computing, analogue computing, chemical comput-
ing, reaction-diffusion systems, molecular computing, biocomputing, embod-
ied computing, Avogadro-scale and amorphous computing, memcomputing,
self-organising computers, and more.

One often hears that UCOMP paradigms can provide solutions that go
beyond the capabilities of CCOMP (Konkoli and Wendin, 2014). There is
a long-held notion that some forms of UCOMP can provide tractable so-
lutions to NP-hard problems that take exponential resources (time and/or
memory) for CCOMP machines to solve (Adleman, 1994; Copeland, 2004;
Lipton, 1995; Ouyang et al., 1997; Siegelmann, 1995), and the challenge to
solve NP-hard problems in polynomial time with finite resources is still ac-
tively explored (Manea and Mitrana, 2007; Traversa and Di Ventra, 2017;
Traversa et al., 2015). Some go further, to propose UCOMP systems that
can handle classically undecidable or uncomputable problems (Cabessa and
Siegelmann, 2011; Copeland and Shagrir, 2011; Hogarth, 1992).

Many of these analyses may be theoretically sound, in that, if it were
possible to implement the schemes, they would behave as claimed. But, is it
possible to implement such schemes, to build such a computer in the material
world, under the constraints of the laws of physics? Or are the hypothesised
physical processes simply too hard, or impossible, to implement?

Key questions we discuss in this chapter are:

1. Can UCOMP provide solutions to classically undecidable problems?
2. Can UCOMP provide more effective solutions to NP-complete and NP-

hard problems?
3. Are classical complexity classes and measures appropriate to any forms

of UCOMP?
4. Which forms of UCOMP are clearly and easily amenable to characteri-

sation and analysis by these? And why?
5. Are there forms of UCOMP where traditional complexity classes and

measures are not appropriate, and what alternatives are then available?

The idea that Nature is physical and does not effectively solve NP-
hard problems does not seem to be generally recognised or accepted by
the UCOMP community. However, there is most likely no free lunch with
UCOMP systems providing shortcuts, actually solving NP-hard problems
(Aaronson, 2005). The question is then, what is the real computational power
of UCOMP machines: are there UCOMP solutions providing significant poly-
nomial speed-up and energy savings, or more cost-effective solutions beyond

11 Computability and Complexity of Unconventional Computing Devices 187

the practical capability of CCOMP high performance computing, or differ-
ent kinds of solutions for embodied problems, or something else? This is the
subject of the discussion in this chapter.

In Sect. 11.2 we discuss what it means to be a computational problem. In
Sect. 11.4 we discuss UCOMP and hypercomputation (computability) claims.
In Sect. 11.5 we recap the classical definitions of computational complexity.
In Sect. 11.6 we discuss the power of various quantum computing approaches.
In Sect. 11.7 we discuss UCOMP and super-Turing computation (complex-
ity) claims, and the actual computational power of a variety of UCOMP
paradigms.

11.2 Computational problems and problem solving

In the context of problem solving, the term complexity of a problem is used
to indicate the difficulty of solving that particular problem, in many cases
relative to the difficulty of solving other problems. Two questions that need
to be answered first are: what do we mean in this context by problem and by
problem solving?

11.2.1 Difficulty

Within the area of CCOMP, solving a particular problem means developing
an algorithmic procedure that is able to produce a solution to that problem.
This assumes that the problem consists of a set of instances, each of which can
be encoded as an input to the algorithmic procedure, and that the algorithmic
procedure then produces an output that can be decoded into a solution for
that instance of the problem. This implies that being able to solve such
types of problems means being able to write and install a computer program
on a digital device that, executed on an input representing any instance of
the problem produces an output that serves as a solution to that particular
instance.

This leads to two natural questions:

• Does an algorithm exist for solving a particular problem? This is a ques-
tion of decidability or computability.

• If such an algorithm does exist, how efficient is it at solving the problem?
This is a question of complexity.

If such a computer program is available, it is natural to measure the dif-
ficulty of solving the problem by the time it takes the computer program
to come up with the solution. There are many issues with this measure. For
example, the execution time depends on the type and speed of the computer

188 Hajo Broersma, Susan Stepney, and Göran Wendin

(processor), the type and size of the (encoding of the) instance, and on how
smart the designed algorithmic procedure and its implementation were cho-
sen.

In order to tackle some of these issues, the theory usually involves just
the number of basic computational steps in the algorithmic procedure, and
relates this to a function in the size of the instances. Upper bounds on the
value of this function for the worst case instances are taken to indicate the
relative complexity of the problem when compared to other problems.

Another natural question to ask is how much space (memory) does the
program need to use to solve the problem. Again, the analyses abstract away
from the complexities of actual computer memory (caches, RAM, discs, and
so on), to an abstract concept of a unit of space.

This approach does not immediately say whether a more complex problem
is intrinsically difficult, nor whether the algorithmic procedure used is optimal
or not in terms of the complexity. Identification of the least complex algorithm
for problems is at the heart of the theory of computational complexity.

11.2.2 Decision, optimisation, and counting problems

There are different types of problems. One distinction is based on the type
of solutions.

The main focus in the area of computational complexity is on decision
problems, where the solution for each problem instance is yes or no. The
task is, given an arbitrary instance and a certain fixed property, to answer
whether the given instance has that property.

Consider the travelling salesman problem (TSP). An instance of TSP com-
prises a set of cities, together with the mutual distances between all pairs of
cities. A route is a permutation of the city list, corresponding to travelling
through each city precisely once, returning to the starting city. The length of
the route is the sum of the distances between the cities as travelled. Given
some value x representing the length of the route, TSP can be cast as a deci-
sion problem: is there a route that does not exceed x? For a nice exposition
on the many facets of TSP we refer the reader to Lawler et al. (1985).

Consider the k-SAT (satisfiability) problem (Garey and Johnson, 1979).
A formula (instance) in this problem involves any number m of conjoined
clauses, each comprising the disjunction of k terms. Each clause’s k terms
are drawn from a total of n Boolean literals, b1 . . . bn, and their negations.
For example, a 3-SAT problem instance could be the formula (b1 ∨ b2 ∨ b3)∧
(¬b2∨ b3∨ b5)∧ (b1∨¬b3∨ b4)∧ (¬b1∨ b3∨¬b5), which has n = 5 and m = 4.
k-SAT is a decision problem: is there an assignment of truth values to the bi
that satisfies (makes true) the formula?

Decision problems differ from problems for which the solution is other
than just yes or no. A large class of problems for which this is the case,

11 Computability and Complexity of Unconventional Computing Devices 189

is the class of so-called optimisation problems. For these problems, it is not
sufficient to come up with solutions, but the solutions are required to satisfy
certain additional optimisation criteria. TSP can be cast as an optimisation
problem: what is (the length of) a shortest route?

Another large class of problems that are not decision problems, is the class
of counting problems. For these problems, the solutions are numbers rather
than yes or no. For TSP, one could, e.g., ask for the number of routes that
are shorter than x, or for the number of different shortest routes.

Most optimisation and counting problems have decision counterparts (as
is clear in the case of TSP above). Such optimisation and counting problems
are obviously at least as difficult to solve as their decision counterparts.

11.2.3 Terminology

We use the term hypercomputation to refer to UCOMP models that can
compute classically uncomputable functions (such as the Halting function,
a total function that decides whether an arbitrary computer program halts
on an arbitrary input). This is sometimes referred to as computation that
“breaks the Turing barrier” or is “above the Turing limit” (that is, the barrier
to, or limit on, computability).

We use the term super-Turing computation to refer to UCOMP models
that can compute more efficiently (using exponentially fewer resources) than
a Deterministic Turing Machine (DTM).

The UCOMP literature is not consistent in its use of these terms. Careful
reading may be needed to determine if a particular claim is about computabil-
ity or about complexity.

11.3 A brief review of CCOMP computability

11.3.1 Undecidable problems, uncomputable functions

Not all problems can be solved by an algorithmic procedure using a classical
computer. It has been known since Turing (1937) that there are undecid-
able problems: those for which there is provably no algorithmic procedure to
produce the correct yes/no answer.

The earliest example of such a problem is the Halting Problem. In this
problem, one has to write a computer program H that takes as its input any
computer program P and input I, and outputs yes if P would eventually
halt (terminate) when run on I, and outputs no otherwise. There is provably

190 Hajo Broersma, Susan Stepney, and Göran Wendin

no such H. Since then, many other examples of such undecidable problems
have been established.

For problems not cast as decision problems, but in terms of computing
the value of a function defined in a finite number of well-defined steps, there
are uncomputable functions. Well-known examples include Kolmogorov com-
plexity (Li and Vitányi, 1997), the Busy Beaver function (Rado, 1962), and
Chaitin’s omega halting probability (Chaitin, 1975; Chaitin, 2012). Note that
by function in the above we mean a function on the natural numbers; such
a function F is (Turing) computable if there is a Turing Machine that, on
input n, halts and returns output F (n). The use of Turing Machines here
is not essential; there are many other models of computation that have the
same computing power as Turing Machines.

The existence of (many) uncomputable functions of the above type follows
from the fact that there are only countably many Turing Machines, and thus
only countably many computable functions, but there are uncountably many
functions on the natural numbers. Similarly, a set of natural numbers is said
to be a computable set if there is a Turing Machine that, given a number n,
halts with output 1 if n is in the set and halts with output 0 if n is not in
the set. So for any set with an uncountable number of elements, most of its
elements will be uncomputable. Hence most subsets of the natural numbers
are uncomputable.

Decision problems can be encoded as subset problems: encode the problem
instance as a unique natural number; the yes answers form a subset of these
numbers; the decision problem becomes: is the number corresponding to the
problem instance an element of the yes set? Hence most decision problems
are uncomputable, that is, undecidable.

These undecidable problems and uncomputable functions are hard to solve
or compute in a very strong sense: within the context of CCOMP it is simply
impossible to solve or compute them.

11.3.2 Oracles and advice

Computability is an all or nothing property (although whether a problem
class is computable may itself be an uncomputable problem). Oracles can be
used to add nuance to this property: how much (uncomputable) help would
be needed to make a problem computable? Less powerful oracles can also be
considered when investigating complexity: how much oracular help is required
to reduce the complexity of a problem class?

An oracle is an abstract black box that can take an input question from a
DTM and output the answer. Oracles can be posited that provide answers to
certain classes of problems, such as halting-problem oracles and NP-problem
oracles. An oracle is usually deemed to provide its answer in one step. (See
Sect. 11.5.4 for a definition of classes P and NP .)

11 Computability and Complexity of Unconventional Computing Devices 191

Oracles can be posited, and their consequent abilities investigated theo-
retically, but they cannot be implemented on a classical computer, since they
provide computational power above that of a DTM.

More recently introduced complexity classes try to capture additional com-
putational power provided by allowing advice strings. An advice string is an
extra input to a DTM that is allowed to depend on the length of the original
input to the DTM, but not on the value of that input. A decision problem
is in the complexity class P/f(n) if there is a DTM that solves the decision
problem in polynomial time for any instance x of size n given an advice string
of length f(n) (not depending on x).

Trivially, any decision problem is in complexity class P/exp. If the input
is of size n, then there are O(2n) possible input values x of size n. An ex-
ponentially large advice string can enumerate the O(2n) yes/no answers to
the decision problem as an exponentially large lookup table.

Advice strings can be posited, and their consequent abilities investigated
theoretically. Given an advice string, it can be implemented along with the
DTM using its advice, since the string could be provided as an input to
the DTM. However, classically, the advice on that string would itself have
to be computed somehow; if the string contains uncomputable advice, then
classically it cannot exist to be provided to the DTM.

11.3.3 Church–Turing thesis

The Church–Turing Thesis (CTT) states that “every number or function
that ‘would naturally be regarded as computable’ can be calculated by a
Turing Machine” (Copeland, 2015). This is a statement about computability,
in terms of a (digital) classical computer.

Vergis et al. (1986) reformulate this thesis in terms of analogue comput-
ers as: “any analogue computer with finite resources can be simulated by
a digital computer”. This is a statement about computability: (finite) ana-
logue computers do not increase what is computable over classical digital
computers.

Hypercomputation seeks to discover approaches that can expand the range
of computable functions beyond those computable by Turing Machines; it
seeks to invalidate the CTT.

192 Hajo Broersma, Susan Stepney, and Göran Wendin

11.4 Hypercomputation

11.4.1 Undecidable problems determined physically?

Hypercomputation is a diverse field with many ideas on how to com-
pute classically uncomputable functions using physical and non-physical ap-
proaches. One of the major proponents of hypercomputation is Jack Copeland
(Copeland, 2004; Copeland, 2015; Copeland and Shagrir, 2011). Arkoudas
(2008) states:

Copeland and others have argued that the CTT has been widely misunderstood by
philosophers and cognitive scientists. In particular, they have claimed that the CTT
is in principle compatible with the existence of machines that compute functions
above the “Turing limit”, and that empirical investigation is needed to determine
the “exact membership” of the set of functions that are physically computable.

Arkoudas (2008) disputes this argument, and claims that it is a category
error to suggest that what is computable can be studied empirically as a
branch of physics, because computation involves an interpretation or repre-
sentation component, which is not a concept of the physical sciences. (See
also Horsman et al. (2014).)

11.4.2 Accelerated Turing Machines

An example of a theoretical hypercomputer is the Zeno Machine (Potgieter,
2006). A Zeno Machine is an Accelerated Turing Machine that takes 1/2n

units of time to perform its n-th step; thus, the first step takes 1/2 units of
time, the second takes 1/4, the third 1/8, and so on, so that after one unit of
time, a countably infinite number of steps will have been performed. In this
way, this machine formally solves the Halting Problem: is it halted at t = 1?.

Such a machine needs an exponentially growing bandwidth (energy spec-
trum) for operation, which is not a physically achievable resource.

Any physical component of such a machine would either run up against
relativistic limits, and be moving too fast, or quantum limits, as it becomes
very small, or both. The model implicitly relies on Newtonian physics.

11.4.3 General relativistic machines

There are various models that use General Relativistic effects to allow the
computer to experience a different (and infinite) proper time from the (finite)
time that the observer experiences. The best known of these is the Malament–
Hogarth spacetime model (Etesi and Németi, 2002; Hogarth, 1992). The un-

11 Computability and Complexity of Unconventional Computing Devices 193

derlying concept is that the computer is thrown into one of these spacetimes,
where it can be observed externally. If a computation does not halt, this can
be determined in a finite time by the observer in the external reference frame,
and so the set-up solves the Halting Problem.

This is an interesting branch of work, as it demonstrates clearly how the
underlying laws of physics in the computer’s material world can affect the
reasoning used about possible computations.

However, there are several practical issues with this set-up. The computer
has to be capable of running for an infinite time in its own reference frame.
Also, the “tape” (memory) of the computer needs to have the potential to
be actually infinite, not merely unbounded. It is not clear that such infinite
time and infinite space can be physically realised.

11.4.4 Real number computation

A model of computation beyond the Turing limit has been formulated by
Siegelmann (1995), involving neural networks with real-valued weights. Dou-
glas (2003) and Douglas (2013) provides a critical analysis. The problem is
the usual one for analogue systems: ultimate lack of precision; in the end
one needs exponential resources. Analogue precision can be converted (by
an ADC, Analogue-Digital Converter) into a corresponding digital range,
which is effectively a memory requirement. NP-problems (see later) require
exponentially growing analogue precision, corresponding to a need for ex-
ponentially growing memory. Hypercomputational problems (computability)
correspond to a need for infinite precision.

Real number hypercomputation (Blum, 2004) relies on physical systems
being measurable to infinite precision. The underlying argument appears to
be: physicists model the physical world using real numbers; real numbers
have infinite precision and so contain infinite information; hence physical
systems have infinite information; this information can be exploited to give
hypercomputation. There are two problems with this argument.

The first problem is that the argument confuses the model and the mod-
elled physical reality. Just because a quantity is modelled using a real num-
ber does not mean that the physical quantity faithfully implements those
real numbers. The real-number model is in some sense ‘richer’ than the mod-
elled reality; it is this extra richness that is being exploited in the theoreti-
cal models of hypercomputation. For example, consider Lotka–Volterra-style
population models (Wangersky, 1978), where a real-valued variable is used
to model the population number, which is in reality a discrete quantity: such
models break down when the continuum approximation is no longer valid.
Fluid dynamics has a continuous model, but in the physical world the fluid
is made of particles, not a continuum, and so the model breaks down. The
Banach–Tarski paradox (Wagon, 1985; Wapner, 2005) proves that it is possi-

194 Hajo Broersma, Susan Stepney, and Göran Wendin

ble to take a sphere, partition it into a finite number of pieces, and reassemble
those pieces into two spheres each the same size as the original; the proof re-
lies on properties of the reals that cannot be exploited to double a physical
ball of material.

Secondly, even if some physical quantity were to contain arbitrary preci-
sion, there is strong evidence that it takes an exponentially increasing time
to extract each further digit of information (see Sect. 11.5.11).

11.4.5 Using oracles, taking advice

Cabessa and Siegelmann (2011) state:

The computational power of recurrent neural networks is intimately related to the
nature of their synaptic weights. In particular, neural networks with static rational
weights are known to be Turing equivalent, and recurrent networks with static real
weights were proved to be [hypercomputational]. Here, we study the computational
power of a more biologically-oriented model where the synaptic weights can evolve
rather than stay static. We prove that such evolving networks gain a [hypercom-
putational] power, equivalent to that of static real-weighted networks, regardless of
whether their synaptic weights are rational or real. These results suggest that evolu-
tion might play a crucial role in the computational capabilities of neural networks.

A proposed rational-number hypercomputer avoids the issue of infinite
precision. The set-up described by Cabessa and Siegelmann (2011) is a neu-
ral network with rational, but changing (‘evolving’), weights. However, the
changing weights are not computed by the network itself, nor are they pro-
vided by any kind of evolutionary feedback with a complex environment.
They are provided directly as input in the form of a sequence of increasing-
precision rational numbers: that is, an advice string.

Any claim of hypercomputation achieved through the use of an oracle or
advice needs to address the feasibility of implementing said oracle or advice.
These can provide hypercomputational power only if they are themselves
Turing-uncomputable,

11.4.6 Conclusion

Hypercomputation models tend to rely on one or more of:

• known incorrect models of physics (usually Newtonian, ignoring relativis-
tic and/or quantum effects)

• physically-instantiated infinities (in time and/or space and/or some other
physical resource)

• physically accessible infinite precision from real numbers
• Turing-uncomputable oracles or advice

11 Computability and Complexity of Unconventional Computing Devices 195

There is currently no evidence that any of these essentially mathemati-
cal hypercomputation models are physically realisable. Their study is inter-
esting, however, because they illuminate the various relationships between
computability and physical (as opposed to mathematical) constraints. For
example, they bring into focus an unconventional computational resource:
precision.

Other facets of hypercomputation, of moving beyond computational para-
digms other than Turing, are discussed in Stepney (2009).

11.5 A brief review of CCOMP complexity

We now move on to discussing super-Turing UCOMPmodels, which deal with
computational complexity. First we briefly review some concepts of classical
complexity theory. Further information can be found in any good textbook
on computational complexity, such as Garey and Johnson (1979) and Sipser
(1997).

11.5.1 Measuring complexity

Complexity in the classical setting of digital computing is typically a mathe-
matically calculated or proven property, rather than an empirically measured
property, for two main reasons.

Firstly, complexity refers to asymptotic properties, as the problem sizes
grow. It would have to be measurable over arbitrarily large problem sizes to
determine its asymptotic behaviour. This is particularly challenging for many
UCOMP devices (including quantum computers) that to date only exist as
small prototypes that can handle only small problem instances.

Secondly, complexity is a worst case property: the complexity of a prob-
lem (or class) is the complexity of the hardest problem instance (or hardest
problem in that class). Some instances can be easy, other instances hard. If
there are very few hard instances, these “pathological” instances may not be
encountered during empirical sampling.

11.5.2 Easy, polynomial time problems

Edmonds (1965) was the first to distinguish good and bad algorithmic proce-
dures for solving decidable problems. He coined the term good algorithm for
an algorithmic procedure that produces the correct solution using a number
of basic computational steps that is bounded from above by a polynomial

196 Hajo Broersma, Susan Stepney, and Göran Wendin

function in the instance size. He also conjectured that there are decidable
problems for which such good algorithms cannot be designed. This conjec-
ture is still open, although there is a lot of evidence for its validity. We come
back to this later.

The algorithms that Edmonds called good, are nowadays usually referred
to as polynomial (time) algorithms, or algorithms with a polynomial (time)
complexity. The corresponding problems are usually called polynomial(ly
solvable) problems, but also referred to as easy, tractable, or feasible prob-
lems.

Define the function f(n) to be the bound on an algorithm’s number of
basic computational steps in the worst case, for an instance of size n. Then
for a polynomial (time) algorithm, f(n) is O(nk), meaning that there exists
a positive integer k and positive constants c and n0 such that f(n) ≤ c · nk

for all n ≥ n0. The n0 is included in the definition because small problem
instances do not determine the complexity: the complexity is characterised
by what happens for large problem instances.

11.5.3 Hard, exponential time problems

Decidable decision problems for which no tractable (polynomial time) algo-
rithm exists are called hard, intractable, or infeasible problems. These usu-
ally allow straightforward exponential algorithms: algorithmic procedures for
solving them have worst case instances that take an exponential number of
computational steps. The function f(n) that bounds the number of compu-
tational steps, in the worst case for an instance of size n, is O(cn), for some
positive constant c.

Similar to the conjecture of Edmonds (1965), it is nowadays widely be-
lieved that there are decision problems for which the only possible algorithmic
procedures for solving them have an exponential complexity.

11.5.4 Complexity classes P and NP

Based on the above distinction between easy and hard problems, the formally
defined complexity class P consists of all decision problems that are tractable,
that admit polynomial algorithms for solving them by a classical Determin-
istic Turing Machine (DTM). A decision problem in P is also referred to as
a problem with a polynomial complexity, or simply as a polynomial problem.
The decision version of TSP described above has no known polynomial time
algorithm to solve it.

Many textbooks, such as Garey and Johnson (1979) and Sipser (1997),
provide a fundamental treatment of complexity class P in terms of Turing

11 Computability and Complexity of Unconventional Computing Devices 197

Machines. There, it is argued that the problems in P are precisely those
problems that can be encoded and decided on a DTM within a number of
transitions between states that is bounded by a polynomial function in the
size of the encoding (number of symbols) of the input.

The class NP can be defined in terms of Turing Machines as consisting of
those problems that can be decided on a Non-deterministic Turing Machine
(NTM) in polynomial time. A DTM has only one possible move at each step,
determined by its state transition function along with its internal and tape
state. In contrast, an NTM has potentially several alternative moves available
at each step, and chooses one of these non-deterministically. The computation
succeeds if at least one sequence of possible choices succeeds.

There are alternative ways to consider the working of an NTM: (i) it uses
angelic non-determinism and always makes the correct choice; (ii) at each
choice point, it ‘branches’ into parallel machines, taking all possible paths
(hence using exponential space). An NTM can be implemented by serialising
this branching approach (Floyd, 1967): if it has chosen a path and discovers
it is the wrong path, it ‘backtracks’ and makes a different choice (hence
potentially using exponential time). Hence a DTM can compute anything an
NTM can compute, although potentially exponentially slower.

An NTM can also be considered as an oracle machine, a black box that
provides candidate solutions for a specific class of problems (see Sect. 11.3.2).
In the terminology used in textbooks like Garey and Johnson (1979) and
Sipser (1997), a decision problem is in the class NP if, for any yes-instance
of the problem there is a candidate solution that can be checked by an al-
gorithmic procedure in polynomial time. So, instead of finding the correct
answer for any instance in polynomial time, it is only required to be able
to verify the correctness of a candidate solution for the yes-answer for any
yes-instance in polynomial time.

The decision version of TSP described above is in NP: the relevant candi-
date solution is a suitable short route, and the length of that given route can
be calculated in polynomial time and checked to be at most x. Interpretation
(i) of the NTM above has it ‘angelically’ making the correct choice at each
city; interpretation (ii) has it exploring all exponential number of possible
paths in parallel.

It is clear that P ⊆ NP : if a problem can be solved in polynomial time,
it can certainly be checked in polynomial time.

It is widely believed that P �= NP (and that is the position we take in
this chapter). Its proof (or disproof) is a fundamental open problem within
mathematics and theoretical computer science (Aaronson, 2017). Many deci-
sion problems have been shown to be in P, but for even more, such as TSP,
it is not known whether they are in P or not.

198 Hajo Broersma, Susan Stepney, and Göran Wendin

11.5.5 NP-complete problems

There are many decision problems for which the complexity status is currently
unknown. To say at least something about their relative complexity, Cook
(1971) and Levin (1973) developed useful machinery, which has led to the
definition of the class of NP-complete problems.

A problem in NP is called NP-complete if it is the hardest of all problems
in NP , in the following sense. Consider two problems P and Q that are both
in NP . Suppose that there exists a polynomial reduction from P to Q, that
is, a polynomial algorithm to transform any instance I of P into an instance
J (of size bounded by a polynomial function in the size of I) of Q in such a
way that I is a yes-instance of P if and only if J is a yes-instance of Q. Then
any polynomial algorithm for solving Q can be transformed into a polynomial
algorithm for solving P . In the sense of polynomial complexity, in such a case
Q is at least as hard to solve as P . If the same holds for Q and any other
problem instead of P in NP, then Q is the hardest of all problems in NP ,
in the above sense. Such a problem Q in NP is an NP-complete problem.

Cook (1971) and Levin (1973) independently showed that there are NP-
complete problems. They each proved that the unrestricted Boolean satis-
fiability problem (SAT) is NP-complete. This was a major breakthrough,
because it allowed many other problems to be shown to be NP-complete,
by using a polynomial reduction from a known NP-complete problem (start-
ing with SAT) to the newly considered problem in NP (Karp, 1972). The
TSP and k-SAT (with k ≥ 3) decision problems (Sect. 11.2.2) are both NP-
complete; the 2-SAT problem is in P.

If a polynomial algorithm exists for any of these NP-complete problems,
then a polynomial algorithm would exist for each of them, by using the re-
duction process used in their proofs of NP-completeness. The existence of
an ever growing number of NP-complete problems for which nobody to date
has been able to develop a polynomial algorithm provides significant evidence
(although not proof) supporting the conjecture P �= NP.

11.5.6 NP-hard problems

For problems other than decision problems, such as the optimisation and
counting problems mentioned earlier, their computational complexity is usu-
ally defined only if they are in NP and contain decision problems in NP
as special cases, and hence are at least as difficult to solve as their decision
counterparts. Such problems are called NP-hard if they are at least as hard
as an NP-complete problem, that is, if a polynomial time algorithm for solv-
ing them would imply a polynomial algorithm for solving an NP-complete
(decision) problem. For a compendium of NP-hard optimisation problems,
see Crescenzi and Kann (2005).

11 Computability and Complexity of Unconventional Computing Devices 199

11.5.7 Other classic complexity classes: PSPACE and
BPP

Since the introduction of the P and NP complexity classes, a whole zoo
of further complexity classes has been defined and studied. Most of these
classes are beyond the scope of this chapter, but we mention a few here that
are relevant in the context of this chapter.

The complexity class PSPACE consists of decisions problems that can be
solved using polynomial space on a DTM, meaning that the number of cells
on the tape of the DTM that are needed to encode and solve a given instance
is bounded by a polynomial function in the length of the input size. Note that
no constraint is put on the time allowed for the solution (other than being
finite). For this class, using an NTM does not add any extra computational
power in terms of space use, because an NTM that uses polynomial space
can be simulated by a DTM that uses (more but still) polynomial space (but
it may use substantially more time).

We clearly have NP ⊆ PSPACE : if a problem can be checked in polyno-
mial time, it cannot use more than polynomial space, since it has to visit all
of that space. It is widely believed that NP �= PSPACE , but again, there is
no proof.

The complexity class BPP (Bounded-error Probabilistic Polynomial) con-
sists of decision problems that can be solved in polynomial time by a
probabilistic Turing Machine (PTM), i.e., a DTM that can make random
choices between different transitions according to some probability distribu-
tion. (This is distinct from an NTM: a probabilistic TM makes a random
choice; an NTM makes the ‘correct’ choice, or all choices, depending on the
interpretation.) The probability that any run of the algorithm gives the wrong
answer to a yes-no question must be less than 1/3.

It is obvious that P ⊆ BPP : if a problem can be solved in polynomial
time, it can be probabilistically solved in polynomial time. In this case, it is
widely believed that P = BPP, but yet again, there is no proof. There is no
known subset relation between BPP and NP , in either direction.

11.5.8 Quantum complexity classes

A quantum TM (QTM), with a quantum processor and quantum tape (mem-
ory) is a model for a quantum computer, computing directly in memory
(Deutsch, 1985).

Problems that can be solved by a QTM in polynomial time belong to the
complexity class BQP (Fig. 11.1) (Complexity Zoo website n.d.; Montanaro,
2016; Watrous, n.d.). BQP is in some sense the quantum analogue of the
classical BPP, but there is a fundamental difference: the PTM proceeds via

200 Hajo Broersma, Susan Stepney, and Göran Wendin

Fig. 11.1 Summary of relationships between computational complexity classes
(https://en.wikipedia.org/wiki/BQP). See text for details.

random choices of unique states of the Finite State Machine reading and
writing on the tape, while the QTM proceeds via quantum simultaneous su-
perposition and entanglement of all the states. Therefore, the QTM proceeds
through the Hilbert state space in a deterministic way via the time evolution
operator defined by the Hamiltonian. The probabilistic aspects emerge when
reading out the results; in some cases this can be done deterministically, in
other cases one has to collect statistics.

Fig. 11.1 shows that BQP is a limited region of the complexity map,
and (probably) does not include the NP-complete class. There, in BQP and
(probably) outside P, we find problems like Shor’s factorisation algorithm
(Shor, 1997), providing exponential speed-up over the best known classical
factorisation algorithm. Classic factorisation is believed to be neither NP-
complete, nor in P. Another example is unstructured database search, which
is classically “easy” (polynomial), but which shows quadratic speed-up with
the Grover quantum search algorithm (Grover, 1996). See Montanaro (2016)
for a recent overview of progress in the field, focusing on algorithms with
clear applications and rigorous performance bounds.

There are further quantum complexity classes. In particular, QMA is
the class where problems proposed by a quantum oracle can be verified in
polynomial time by a quantum computer in BQP (Complexity Zoo website
n.d.; Montanaro, 2016; Watrous, n.d.).

11.5.9 Complexity with advice: P/poly and P/log

The most common complexity class involving advice is P/poly, where the
advice length f(n) can be any polynomial in n. This class P/poly is equal to
the class consisting of decision problems for which there exists a polynomial
size Boolean circuit correctly deciding the problem for all inputs of length

https://en.wikipedia.org/wiki/BQP
https://en.wikipedia.org/wiki/BQP

11 Computability and Complexity of Unconventional Computing Devices 201

n, for every n. This is true because a DTM can be designed that interprets
the advice string as a description of the Boolean circuit, and conversely, a
(polynomial) DTM can be simulated by a (polynomial) Boolean circuit.

Interestingly, P/poly contains both P and BPP and it also contains some
undecidable problems (including the unary version of the Halting Problem).
It is widely believed thatNP is not contained in P/poly, but again there is no
proof for this. If has been shown that NP �⊂ P/poly implies P �= NP . Much
of the efforts towards proving that P �= NP are based on this implication.

The class P/log is similar to P/poly, except that the advice string for
inputs of size n is restricted to have length at most logarithmic in n, rather
than polynomial in n. It is known that NP ⊆ P/log implies P = NP.

Restricting the advice length to at most a logarithmic function of the
input size implies that polynomial reductions cannot be used to show that
a decision problem belongs to the class P/log. To circumvent this drawback
the prefix advice class Full-P/log has been introduced (Balcázar and Hermo,
1998). The difference with P/log is that in Full-P/log each advice string for
inputs of size n can also be used for inputs of a smaller size. Full-P/log is
also known as P/log* in the literature.

11.5.10 Extended Church–Turing thesis

The CTT (Sect. 11.3.3) is a statement about computability. The Extended
Church–Turing Thesis (ECT) is a statement about complexity : any function
naturally to be regarded as efficiently computable is efficiently computable
by a DTM (Dershowitz and Falkovich, 2012). Here “efficiently” means com-
putable by a DTM in polynomial time and space. A DTM is a basic model for
ordinary classical digital computers solving problems tractable in polynomial
time.

Consider the NTM (Sect. 11.5.4). If backtracking is the most efficient way
to implement an NTM with a DTM (that is, if P �= NP), then the ECT
claims that a ‘true’ NTM cannot be implemented.

Vergis et al. (1986) reformulate the ECT in terms of analogue computers
as: “any finite analogue computer can be simulated efficiently by a digital
computer, in the sense that the time required by the digital computer to
simulate the analogue computer is bounded by a polynomial function of the
resources used by the analogue computer”. That is, finite analogue computers
do not make infeasible problems feasible. Thus, finite analogue computers
cannot tractably solve NP-complete problems.

Super-Turing computation seeks to discover approaches that can expand
the range of efficiently computable functions beyond those efficiently com-
putable by DTMs; it seeks to invalidate the ECT.

Quantum computing (QCOMP) can provide exponential speed-up for a
few classes of problems (see Sect. 11.5.8), so the ECT is believed to have

202 Hajo Broersma, Susan Stepney, and Göran Wendin

been invalidated in this case (Aaronson, 2013a; Aaronson, 2013b): quantum
computing can provide certain classes of super-Turing power (unless P =
NP). We can extend the ECT to: “any function naturally to be regarded as
efficiently computable is efficiently computable by a Quantum Turing Ma-
chine (QTM)”, and then ask if any other form of UCOMP can invalidate
either the original ECT, or this quantum form of the ECT.

11.5.11 Physical oracles and advice

An interesting question in UCOMP is whether a physical system can be
implemented that acts as some specific oracle or advice, that is, whether it is
possible to build a physical add-on to a classical computer that can change
the computability or complexity classes of problems.

A range of analogue devices have been posited as potential physical ora-
cles. Their analogue physical values may be (theoretically) read with infinite,
unbounded, or fixed precision, resulting in different (theoretical) oracular
power.

Beggs and coauthors (see Ambaram et al. (2017) and references therein)
have made a careful analysis of using a range of idealised physical experi-
ments as oracles, in particular, studying the time it takes to interact with the
physical device, as a function of the precision of its output. More precision
takes more time. In each system they analyse, they find that the time needed
to extract the measured value of the analogue system increases exponentially
with the number of bits of precision of the measurement. They conjecture
that

for all “reasonable” physical theories and for all measurements based on them, the
physical time of the experiment is at least exponential, i.e., the time needed to access
the n-th bit of the parameter being measured is at least exponential in n.

The kind of physical analogue devices that Ambaram et al. (2017) analyse
tend to use a unary encoding of the relevant value being accessed via physical
measurement, for example, position, or mass, or concentration. So each extra
digit of precision has to access an exponentially smaller range of the system
being measured. See Fig. 11.2.

Similar points apply when discussing the input size n when analysing such
devices: if the UCOMP device uses a unary encoding of the relevant param-
eter values, as many do, the input size n is exponentially larger than if a
binary encoding were used.

Beggs et al. (2014) use such arguments to derive an upper bound on the
power of such hybrid analogue-digital machines, and conjecture an associated
“Analogue-digital Church–Turing Thesis”:

No possible abstract analogue-digital device can have more computational capabil-
ities in polynomial time than BPP//log*.

11 Computability and Complexity of Unconventional Computing Devices 203

0.0 0.11 0.100 0.1011 0.10100

Fig. 11.2 Encoding a real number value as a position on a line. Extraction of each extra
digit of precision requires access to an exponentially smaller region of the line.

Note that this conjecture refers to abstract (or idealised) physical devices,
analogous to the way a DTM is also an abstract idealised device. Physical
issues such as thermodynamic jitter and quantum uncertainty have still to be
considered. Note also that the logarithmic advice has to be encoded somehow
into the analogue device.

Blakey (2014) and Blakey (2017) has made a careful analysis of “unconven-
tional resources” such as precision (measurement and manufacturing), energy,
and construction material, and has developed a form of “model-independent”
complexity analysis, that considers such unconventional resources in addition
to the classical ones of space and time. Indeed, Blakey’s analysis shows that
the exponential cost of measurement precision is itself outweighed by the infi-
nite manufacturing precision required for certain devices. Blakey’s approach
to analysing unconventional resources enables a formalisation of “the intu-
ition that the purported [hypercomputational] power of these computers in
fact vanishes once precision is properly considered”.

11.5.12 Complexity as a worst case property

NP-completeness is a worst case analysis: a problem is NP-complete if it has
at least one instance that requires exponential, rather than polynomial, com-
putation time, even if all the remaining instances can be solved in polynomial
time.

Cheeseman et al. (1991) note that for many NP-complete problems, typi-
cal cases are often easy to solve, and hard cases are rare. They show that such
problems have an “order parameter”, and that the hard problems occur at
the critical value of this parameter. Consider 3-SAT (Sect. 11.2.2); the order
parameter is the average number of constraints (clauses) per Boolean literal,
m/n. For low values the problem is underconstrained (not many clauses com-
pared to literals, so easily shown to be satisfiable) and for high values it is
overconstrained (many clauses compared to literals, so easily shown to be un-
satisfiable). Only near a critical value do the problems become exponentially
hard to determine.

Such arguments demonstrate that we cannot ‘sample’ the problem space to
demonstrate problem hardness; complexity is not an experimental property.
In particular, demonstrating that a device or process, engineered or natural,
can solve some (or even many) NP-complete problem instances tractably is

204 Hajo Broersma, Susan Stepney, and Göran Wendin

not sufficient to conclude that it can solve allNP-complete problem instances
tractably.

The limitations that NP-completeness imposes on computation probably
hold for all natural analogue systems, such as protein folding, the human
brain, etc. (Bryngelson et al., 1995). As noted above, just because Nature
can efficiently solve some instances of problems that are NP-complete does
not mean that it can solve all NP-complete problem instances (Bryngelson
et al., 1995). To find the lowest free energy state of a general macromolecule
has been shown to be NP-complete (Unger and Moult, 1993). In the case of
proteins there are amino acid sequences that cannot be folded to their global
free energy minimum in polynomial time either by computers or by Nature.
Proteins selected by Nature and evolution will represent a tractable subset of
all possible amino acid sequences.

11.5.13 Solving hard problems in practice

Apart from trying to show that P = NP, there are other seemingly more
practical ways to try to cope with NP-complete or NP-hard problems.

If large instances have to be solved, one approach is to look for fast al-
gorithms, called heuristics, that give reasonable solutions in many cases. In
some cases there are approximation algorithms for optimisation problems
with provable approximation guarantees. This holds for the optimisation vari-
ant of the TSP restricted to instances for which the triangle equality holds
(the weight of edge uv is at most the sum of the weights of the edges uw and
wv, for all distinct triples of vertices u, v, w), and where one asks for (the
length of) a shortest tour. This variant is known to be NP-hard, but simple
polynomial time heuristics have been developed that yield solutions within a
factor of 1.5 of the optimal tour length (Lawler et al., 1985).

For many optimisation problems even guaranteeing certain approximation
bounds is an NP-hard problem in itself. This also holds for the general TSP
(without the triangle inequality constraints) if one wants to find a solution
within a fixed constant factor of the optimal tour length (Lawler et al., 1985).

A more recent approach tries to capture the exponential growth of solution
algorithms in terms of a function of a certain fixed parameter that is not the
size of the input. The aim is to develop a solution algorithm that is polynomial
in the size of the input but maybe exponential in the other parameter. For
small values of the fixed parameter the problem instances are tractable, hence
the term fixed parameter tractability (the class FPT) for such problems
(Downey and Fellows, 1999).

An example is k-SAT (Sect. 11.2.2), parameterised by the number n of
Boolean literals. A given formula of size N with n literals can be checked by
brute force in time O(2nN), so linear in the size of the instance.

11 Computability and Complexity of Unconventional Computing Devices 205

A related concept is that of preprocessing (data reduction or kernelisation).
Preprocessing in this context means reducing the input size of the problem
instances to something smaller, usually by applying reduction rules that take
care of easy parts of the instances. Within parameterised complexity theory,
the smaller inputs are referred to as the kernel. The goal is to prove that
small kernels for certain NP-complete or NP-hard problems exist, and can
be found in polynomial time. If small here means bounded by a function that
only depends on some fixed parameter associated with the problem, then this
implies that the problem is fixed parameter tractable.

The above definitions focus on worst case instances of the (decision) prob-
lems. It is not clear whether this is always a practical focus. There is a famous
example of a class of problems in P – Linear Programming – for which empir-
ical evidence shows that an exponential algorithm (the Simplex Method) for
solving these problems very often yields faster solutions in practice than the
polynomial algorithm (the Ellipsoid Method) developed subsequently (Pa-
padimitriou, 1994).

For many algorithms, a worst case analysis gives limited insight into their
performance, and can be far too pessimistic to reflect the actual performance
on realistic instances. Recent approaches to develop a more realistic and
robust model for the analysis of the performance of algorithms include average
case analysis, smoothed analysis, and semi-random input models. All of these
approaches are based on considering instances that are to a certain extent
randomly chosen.

11.5.14 No Free Lunch theorem

Wolpert and Macready (1997) prove “no free lunch” (NFL) theorems related
to the efficiency of search algorithms. They show that when the performance
of any given search algorithm is averaged over all possible search landscapes,
it performs no better than random search. This is because, whatever algo-
rithm is chosen, if it exploits the structure of the landscape, there are always
deceptive search landscapes that lead it astray. The only way not to be de-
ceived is to search randomly. A problem of size n has a search space of size
O(2n), and so the best classical search algorithm, where the performance is
averaged over all the O(22

n

) possible landscapes, is O(2n).
This does not mean that there are no search algorithms better than random

search over certain subsets of search landscapes: algorithms that exploit any
structure common across the subset can perform better than random. More
generally, if some search landscapes are more likely than others, algorithms
that can exploit that information can do better (Wolpert, 2012).

Natural processes such as Darwinian evolution, which may be interpreted
as a form of search algorithm, are almost certainly exploiting the structure
of their search landscapes. This has consequences for nature-inspired search

206 Hajo Broersma, Susan Stepney, and Göran Wendin

algorithms, such as evolutionary algorithms, if they are to be exploited on ‘un-
natural’ landscapes. See also the comments on protein folding in Sect. 11.5.12.

11.6 Quantum information processing

Quantum computers are able to solve some problems much faster than clas-
sical computers (Complexity Zoo website n.d.; Montanaro, 2016; Shor, 1997;
Watrous, n.d.). However, this does not say much about solving computational
problems that are hard for classical computers. If one looks at the map of com-
putational complexity (Fig. 11.1), classifying the hardness of computational
(decision) problems, one finds that the BQP class of quantum computation
covers a rather limited space, not containing really hard problems. One may
then ask what is the fundamental difference between CCOMP and QCOMP,
and what kind of problems are hard even for a quantum computer (Aaronson,
2005; Aaronson, 2008; Aaronson, 2009; Aaronson, 2013b)?

11.6.1 Digital quantum computation

The obvious difference between CCOMP and QCOMP is that CCOMP is
based on classical Newtonian physics and special and general relativity, while
QCOMP is based on quantum physics, as illustrated in Figs. 11.3a,b. Digi-
tal CCOMP progresses by gate-driven transitions between specific classical
memory configurations of an N-bit register R(tk), each representing one out
of 2N instantaneous configurations.

QCOMP, on the other hand, progresses by gate-driven transitions between
specific quantum memory states |Ψ(tk)〉, each representing instantaneous su-
perposition of 2N configurations. The quantum memory states are coher-
ent amplitudes with well-defined phase relations. Moreover, the states of the
qubits can be entangled, i.e., not possible to write as a product of states. In
the case of two qubits, the canonical example of entanglement is that of Bell
states: non-entangled product states are |00〉 or |11〉 or (|0〉+ |1〉)(|0〉+ |1〉) =
|00〉+|01〉+|10〉+|11〉. The Bell states |00〉±|11〉 and |0〉±|10〉 are clearly not
product states, and represent in fact maximum entanglement of two qubits.
This can be generalised to more qubits, e.g., the Greenberger–Horne–Zeilinger
(GHZ) “cat state”: |000〉+ |111〉. This entanglement represents non-classical
correlations, at the heart of the exponential power of QCOMP. Entanglement
allows us to construct maximally entangled superpositions with only a linear
amount of physical resources, e.g., a large cat state: 1√

2
(|0......00〉+ |1.....11〉).

This is what allows us to perform non-classical tasks and provide quantum
speed-up (Horodecki et al., 2009; Jozsa and Linden, 2003).

11 Computability and Complexity of Unconventional Computing Devices 207

Fig. 11.3 a. Comparison of CCOMP and QCOMP. (left) CCOMP: irreversible gates
with arithmetic-logic unit (ALU) and memory separated. The memory is the storage,
with classical bits 0,1 representing the poles on the Bloch unit sphere. Classical gates are
basically hardwired, irreversible and performed in the ALU. Gates are clocked. (right)
QCOMP: Computing in memory – the memory is the computer. Quantum bits (qubits)
α|0〉+ β|1〉 span the entire Bloch sphere. Quantum gates are reversible and performed on
the “memory” qubits by software-controlled external devices. Gates are not clocked.

QCOMP is basically performed directly in memory. One can regard the
qubit memory register as an array of 2-level quantum transistors, memory
cells, where the gates driving and coupling the transistors are external clas-
sical fields controlled by classical software run on a CCOMP. This empha-
sises that a quantum computer can only implement a polynomial number
of gates, and that the name of the game is to devise efficient decomposi-
tions of the time-evolution operator in terms of universal gates. The goal is
of course to construct single-shot multi-qubit gates implementing long se-
quences of canonical elementary gates to synthesise the full time-evolution
operator U = exp(−iHt) (Fig. 11.3).

QCOMP depends, just like CCOMP, on encoding/decoding, error correc-
tion, and precision of measurement and control. To go beyond BQP essen-
tially takes non-physical oracle resources, or unlimited precision, requiring
exponential resources and ending up in QMA or beyond.

208 Hajo Broersma, Susan Stepney, and Göran Wendin

Fig. 11.3 b. Comparison of CCOMP and QCOMP (ctd). (left) The time evolution of
the state of the quantum computer is implemented by the unitary time evolution opera-
tor U, which can be broken down into elementary gates (like NOT, Hadamard, CNOT,
C-Rotation). (right) The quantum state is, in general, an entangled superposition of all
configurations of the memory register. Entanglement implies that the state is not a product
state, containing non-classical correlations that provide polytime solution of certain prob-
lems that take exponential time for classical computers. The quantum gates are operated
by a classical computer, which means that a quantum computer can only solve problems
that take at most a polynomial number of gates to solve. A universal set of quantum gates
(Hadamard (square-root of bit flip), X (bit flip), CNOT, and T (general rotation)) guaran-
tees the existence of a universal QCOMP, like a UTM, but may likewise need exponential
resources.

11.6.2 Quantum simulation

Feynman (1982) was among the first to point out that quantum systems
need to be described by quantum systems. Electronic structure calculation
with full account of many-body interactions is QMA-hard (Aaronson, 2009;
Schuch and Verstraete, 2009; Whitfield et al., 2013). Therefore, taking an ex-
ample from biochemistry, to efficiently compute the properties of a catalysing
enzyme or the workings of a ribosome will require a quantum simulator to
achieve the precision needed in reasonable time.

A QCOMP emulator/simulator is basically an analogue machine: an en-
gineered qubit-array where the interactions between qubits (memory cells)
are implemented by substrate-defined or externally induced local and global
couplings. The static or quasi-static (adiabatic) interactions can be tuned
to implement specific Hamiltonians describing physical models or systems
(or even something unphysical), and time-dependent driving will imple-

11 Computability and Complexity of Unconventional Computing Devices 209

ment dynamic response. All the interactions provide together an effective
time-dependent Hamiltonian and a corresponding time-evolution operator
U = exp[−iHeff (t) t]. The induced time-evolution will be characteristic
for the system and can be analysed (measured) to provide deterministic or
statistical answers to various questions. Note that there is no fundamental
difference between digital and analogue QCOMP: if we drive the qubits by,
e.g., fast external microwave pulse trains, we can design the time-evolution
operator U to generate the specific elementary universal 1q and 2q gates of
the quantum circuit model.

Quantum simulation of physical systems (Brown et al., 2010; Georgescu
et al., 2014; Wendin, 2017) is now at the focus of intense engineering and
experimental efforts (Barends et al., 2015; Barends et al., 2016; Barreiro et
al., 2011; Blatt and Roos, 2012; Boixo et al., 2016b; Cirac and Zoller, 2010;
Lanyon et al., 2010; O’Malley et al., 2016; Peruzzo et al., 2014; Salathe et
al., 2015; Wang et al., 2015) and software development (Bauer et al., 2016;
Bravyi and Gosset, 2016; Häner et al., 2016; Häner et al., 2018; Reiher et
al., 2017; Valiron et al., 2015; Wecker and Svore, 2014). Materials science
and chemistry will present testing grounds for the performance of quantum
simulation and computing in the coming years.

11.6.3 Adiabatic quantum optimisation (AQO)

AQO is the analogue version of quantum computing and simulation. It starts
from the ground state of a simple known Hamiltonian and slowly (adiabati-
cally) changes the substrate parameters into describing a target Hamiltonian,
manoeuvring through the energy landscape, all the time staying in the ground
state. The final state and the global minimum then present the solution to
the target problem (Farhi et al., 2014; Farhi and Harrow, 2014). AQO is
potentially an efficient approach to quantum simulation but has so far been
limited to theoretical investigations, e.g., with applications to quantum phase
transitions and speed limits for computing. Possibly there is a Quantum No-
Free-Lunch theorem stating that digital quantum gate circuits need quantum
error correction and AQO needs to manoeuvre adiabatically through a com-
plicated energy landscape, and in the end the computational power is the
same.

11.6.4 Quantum annealing (QA)

QA is a version of quantum optimisation where the target Hamiltonian (often
a transverse Ising Hamiltonian) is approached while simultaneously lowering
the temperature. This is the scheme upon which D-Wave Systems have de-

210 Hajo Broersma, Susan Stepney, and Göran Wendin

veloped their QA processors, the most recent one built on a chip with a 2000
qubit array and a special cross-bar structure. Despite indications of quan-
tum entanglement and tunnelling within qubit clusters (Boixo et al., 2016a;
Denchev et al., 2016), there is no evidence for quantum speed-up (Rønnow
et al., 2014; Zintchenko et al., 2015) – so far optimised classical algorithms
running on modest classical computers can simulate the quantum annealer.

11.6.5 Quantum machine learning (QML)

QML is an emerging field, introducing adaptive methods from machine lan-
guage (ML) classical optimisation and neural networks to quantum networks
(Aaronson, 2015b; Biamonte et al., 2016; Schuld et al., 2015; Wiebe et al.,
2014; Wiebe et al., 2015; Wittek, 2016). One aspect is using ML for opti-
mising classical control of quantum systems. Another, revolutionary, aspect
is to apply ML methods to quantum networks for quantum enhanced learn-
ing algorithms. The field is rapidly evolving, and we refer to a recent review
(Biamonte et al., 2016) for an overview of progress and for references.

11.7 Computational power of classical physical systems
and unconventional paradigms

As already mentioned in the Introduction, and discussed to some extent, there
is a veritable zoo of UCOMP paradigms (European Commission, 2009). Here
we claim that the only decisive borderline is the one that separates classi-
cal problems (Newtonian Physics and Relativity) from problems governed
by Quantum Physics, which includes some combinatorial problems profiting
from the Quantum Fourier Transform (QFT). Quantum information process-
ing and class BQP is discussed in Sect. 11.6. In this section we focus on a few
classical problems of great current interest, representative for the polynomial
class P.

There are further issues of measuring the complexity of problems running
on UCOMP devices. The actions of the device might not map well to the
parameters of time, space, and problem size needed for classical complexity
analysis. And the computation may use resources not considered in classical
complexity analysis, for example, the time needed to read out a result.

11 Computability and Complexity of Unconventional Computing Devices 211

11.7.1 DNA computing

Computing with DNA or RNA strands was first investigated theoretically.
Bennett (1982) imagines a DTM built from RNA reactions:

The tape might be a linear informational macromolecule analogous to RNA, with

an additional chemical group attached at one site to encode the head state [. . .] and

location. Several hypothetical enzymes (one for each of the Turing Machine’s tran-
sition rules) would catalyse reactions of the macromolecule with small molecules in
the surrounding solution, transforming the macromolecule into its logical successor.

Shapiro (2012) proposes a more detailed design for a general purpose polymer-
based DTM. Qian et al. (2010) describe a DNA-based design for a stack ma-
chine. These designs demonstrate that general purpose polymer-based com-
puting is possible, at least in principle. None of these designs challenge the
ECT: they are all for DTMs or equivalent power machines.

Adleman (1994) was the first to implement a form of DNA computing
in the wetlab, with his seminal paper describing the solution to a 7-node
instance of the Hamiltonian path problem. This is an NP-complete decision
problem on a graph: is there a path through a graph that visits each node
exactly once? Adleman’s approach encodes the graph nodes and edges using
small single strands of DNA, designed so that the edges can stick to the
corresponding vertices by complementary matching. Sufficient strands are
put into a well mixed system, and allowed to stick together. A series of
chemical processes are used to extract the resulting DNA, and to search for
a piece that has encoded a solution to the problem. The time taken by these
processes is linear in the number of nodes, but the number of strands needed
to ensure the relevant ones meet and stick with high enough probability
grows exponentially with the number of nodes (Adleman, 1994). Essentially,
this set-up needs enough DNA to construct all possible paths, to ensure that
the desired solution path is constructed. So this algorithm solves the problem
in polynomial time, by using massive parallelism, at the cost of exponential
DNA resources (and hence exponential space). Hartmanis (1995) calculates
that this form of computation of the Hamiltonian path on a graph with 200
nodes would need a mass of DNA greater than that of the earth.

Lipton (1995) critiques Adleman’s algorithm, because it is “brute force” in
trying all possible paths. He describes a (theoretical) DNA algorithm to solve
the NP-complete SAT problem (Sect. 11.2.2). For a problem of n Boolean
variables and m clauses, the algorithm requires a number of chemical process-
ing steps linear in m. However, it also requires enough DNA to encode “all
possible n-bit numbers” (that is, all possible assignments of the n Boolean
variables), so it also requires exponential DNA resources.

So these special-purpose forms of DNA computing, focussed on NP-
complete problems, trade off exponential time for exponential space (mas-
sively parallel use of DNA resources). Additionally, it is by no means clear
that the chemical processing and other engineering facilities would remain

212 Hajo Broersma, Susan Stepney, and Göran Wendin

polynomial in time once the exponential physical size of the reactants kicks
into effect.

Other authors consider using the informational and constructive properties
of DNA for a wide range of computational purposes. For example, implemen-
tations of tiling models often use DNA to construct the tiles and program
their connections.

The Wang tile model (Wang, 1961) has been used to show theorem proving
and computational capabilities within, e.g., DNA computing. It was intro-
duced by Wang, who posed several conjectures and problems related to the
question whether a given finite set of Wang tiles can tile the plane. Wang’s
student Robert Berger showed how to emulate any DTM by a finite set of
Wang tiles (Berger, 1966). Using this, he proved that the undecidability of
the Halting Problem implies the undecidability of Wang’s tiling problem.

Later applications demonstrate the (computational) power of tiles; see,
e.g., Yang (2013, Chap. 6). In particular, NP-complete problems like k-SAT
have been solved in linear time in the size of the input using a finite number of
different tiles (Brun, 2008). The hidden complexity lies in the exponentially
many parallel tile assemblies (the computation is nondeterministic and each
parallel assembly executes in time linear in the input size).

As for the latter example, in each of these models the complexity properties
need to be carefully established. Properties established in one implementation
approach may not carry over to a different implementation. For example,
Seelig and Soloveichik (2009) consider molecular logic circuits with many
components arranged in multiple layers built using DNA strand displacement;
they show that the time-complexity does not necessarily scale linearly with
the circuit depth, but rather can be quadratic, and that catalysis can alter
the asymptotic time-complexity.

11.7.2 Networks of evolutionary processors

An “Accepting Hybrid Network of Evolutionary Processors” (AHNEP) is a
theoretical device for exploring language-accepting processes. Castellanos et
al. (2001) describe the design. It comprises a fully connected graph. Each
graph node contains: (i) a simple evolutionary processor that can perform
certain point mutations (insertion, deletion, substitution) on data, expressed
as rewrite rules; (ii) data in the form of a multiset of strings, which are
processed in parallel such that all possible mutations that can take place do
so. In particular, if a specified substitution may act on different occurrences
of a symbol in a string, each occurrence is substituted in a different copy
of the string. For this to be possible, there is an arbitrarily large number of
copies of each string in the multiset. The data moves through the network; it
must pass a filtering process that depends on conditions of both the sender
and receiver.

11 Computability and Complexity of Unconventional Computing Devices 213

Castellanos et al. (2001) demonstrate that such networks of linear size
(number of nodes) can solve NP-complete problems in linear time. Much
subsequent work has gone into variants (Margenstern et al., 2005), and de-
termining bounds on the size of such networks. For example, Manea and
Mitrana (2007) find a constant size network of 24 nodes that can solve NP
problems in polynomial time; Loos et al. (2009) reduce that bound to 16
nodes. Alhazov et al. (2014) prove that a 5 node AHNEP is computationally
complete.

Note that some of the papers referenced demonstrate that AHNEPs can
solve NP-complete problems in polynomial time. They manage to do so in
the same way the DNA computers of the previous section do: by exploiting
exponential space resources. The set-up exploits use of an exponentially large
data set at each node, by requiring an arbitrarily large number of each string
be present, so that all possible substitutions can occur in parallel.

11.7.3 Evolution in materio

Evolution in materio (EiM) is a term coined by Miller and Downing (2002)
to refer to material systems that can be used for computation by manipulat-
ing the state of the material through external stimuli, e.g., voltages, currents,
optical signals and the like, and using some fixed input and output channels
to the material for defining the wanted functionality. In EiM, the material is
treated as a black box, and computer-controlled evolution (by applying ge-
netic algorithms or other optimisation techniques, using a digital computer)
is used to change the external stimuli (the configuration signals) in such a
way that the black box converges to the target functionality, i.e., the ma-
terial system produces the correct output combinations, representing solu-
tions to the problem when certain input combinations, representing problem
instances of the problem, are applied. Experimental results show that this
approach has successfully been applied to different types of problems, with
different types of materials (Broersma et al., 2016), but mainly for either
small instances of problems or for rather simple functionalities like Boolean
logic gates. Interestingly, using EiM, reconfigurable logic has been evolved in
a stable and reproducible way on disordered nanoparticle networks of very
small size, comparable to the size that would be required by arrangements of
current transistors to show the same functionality (Bose et al., 2015).

It is impossible and it would not be fair to compare the complexity of the
solution concept of EiM to that of classical computation. First of all, apart
from the (digital) genetic algorithms or other optimisation techniques that
are used to manipulate the system, there is no algorithmic procedure involved
in the actual computation. The material is not executing a program to solve
any particular problem instance; instead, a set of problem instances and their
target outputs are used in the evolutionary process of configuring the mate-

214 Hajo Broersma, Susan Stepney, and Göran Wendin

rial. In that sense, the material is more or less forced to produce the correct
(or an approximate solution that can be translated into a correct) solution
for that set of problem instances. If this is not the whole set of possible in-
stances, there is no guarantee that the material outputs the correct solution
for any of the other problem instances. In fact, since fitness functions are
used to judge the quality of the configurations according to the input-output
combinations they produce, even the correctness of the output for individ-
ual instances that are used during the evolutionary process is questionable,
unless they are checked one by one at the end of this process. In a way, for
problems with an unbounded number of possible instances, the EiM approach
can be regarded as a heuristic without any performance guarantees for the
general problem. So, it is not an alternative to exact solution concepts from
classical computation, and hence it cannot claim any particular relevance for
(exactly) solving NP-hard or NP-complete problems, let alone undecidable
problems.

Secondly, in EiM the time it takes for the evolutionary process to con-
verge to a satisfactory configuration of the material for solving a particular
problem is the crucial measure in terms of time complexity. After that, the
material system does, in principle, produce solutions to instances almost in-
stantaneously. In a sense, this evolutionary process can be regarded as a kind
of preprocessing, but different from the preprocessing that is used in classi-
cal computation to decrease the size of the instances, an important concept
in the domain of FPT. Clearly, there are issues with scalability involved in
EiM. It is likely that a limited amount of material, together with a limited
amount of input and output channels, and a limited amount of configura-
tion signals, has a bounded capability of solving instances of a problem with
an unbounded number of possible instances. It seems difficult to take all of
these aspects into account in order to define a good measure for the capa-
bility of EiM to tackle hard problems. Such problems are perhaps not the
best candidates for the EIM approach. Instead, it might be better to focus
future research on computational tasks that are difficult to accomplish with
classical computational devices; not difficult in the sense of computational
complexity but in the sense of developing and implementing the necessary
computer programs to perform the tasks. One might think of classification
tasks like speech, face and pattern recognition.

11.7.4 Optical computing

It is possible to use optical systems to compute with photons rather than elec-
trons. Although this is a somewhat unconventional computational substrate,
the computation performed is purely classical.

Some authors suggest more unconventional applications of optical compo-
nents. Woods and Naughton (2005) and Woods and Naughton (2009) discuss

11 Computability and Complexity of Unconventional Computing Devices 215

a form of spatial optical computing that encodes data as images, and com-
putes by transforming the images through optical operations. These include
both analogue and digital encodings of data.

Reif et al. (1994) describe a particular idealised ray tracing problem cast
as a decision problem, and show that it is Turing-uncomputable. They also
note that the idealisations do not hold in the physical world:

Theoretically, these optical systems can be viewed as general optical computing

machines, if our constructions could be carried out with infinite precision, or perfect

accuracy. However, these systems are not practical, since the above assumptions do
not hold in the physical world. Specifically, since the wavelength of light is finite, the
wave property of light, namely diffraction, makes the theory of geometrical optics
fail at the wavelength level of distances.

Blakey (2014) has furthermore formalised the intuition that the claimed hy-
percomputational power of even such idealised computers in fact vanishes
once precision is properly considered.

Wu et al. (2014) construct an optical network than can act as an oracle for
the Hamiltonian path decision problem. Their encoding approach addresses
the usual precision issue by having exponentially large delays; hence, as they
say, it does not reduce the complexity of the problem, still requiring exponen-
tial time. They do however claim that it can provide a substantial speed-up
factor over traditional algorithms, and demonstrate this on a small example
network. However, since the approach explores all possible paths in parallel,
this implies an exponential power requirement, too.

11.7.5 MEM-computing

MEM-computing has been introduced by Traversa and Di Ventra (2015),
Traversa and Di Ventra (2017), and Traversa et al. (2015) as a novel non-
Turing model of computation that uses interacting computational memory
cells – memprocessors – to store and process information in parallel on the
same physical platform, using the topology of the interaction network to form
the specific computation.

Traversa and Di Ventra (2015) introduce the Universal Memcomputing
Machine (UMM), and make a strong claim:

We also demonstrate that a UMM has the same computational power as a non-
deterministic Turing machine, namely it can solve NP-complete problems in poly-
nomial time. However, by virtue of its information overhead, a UMM needs only an
amount of memory cells (memprocessors) that grows polynomially with the prob-
lem size. . . . Even though these results do not prove the statement NP = P within
the Turing paradigm, the practical realization of these UMMs would represent a
paradigm shift from present von Neumann architectures bringing us closer to brain-
like neural computation.

The UMM is essentially an analogue device. Traversa and Di Ventra (2015)
state:

216 Hajo Broersma, Susan Stepney, and Göran Wendin

a UMM can operate, in principle, on an infinite number of continuous states, even

if the number of memprocessors is finite. The reason being that each memprocessor
is essentially an analog device with a continuous set of state values

then in a footnote acknowledge:

Of course, the actual implementation of a UMM will limit this continuous range to

a discrete set of states whose density depends on the experimental resolution of the

writing and reading operations.

Traversa et al. (2015) present an experimental demonstration with 6 mem-
processors solving a small instance of the NP-complete version of the subset
sum problem in only one step. The number of memprocessors in the given
design scales linearly with the size of the problem. The authors state:

the particular machine presented here is eventually limited by noise—and will thus
require error-correcting codes to scale to an arbitrary number of memprocessors

Again, the issue is an analogue encoding, here requiring a Fourier trans-
form of an exponential number of frequencies, and accompanying exponential
requirements on precision, and possibly power. As we have emphasised ear-
lier (Sect. 11.5.1), complexity is an asymptotic property, and small problem
instances do not provide evidence of asymptotic behaviour. See also Saun-
ders (2016) for a further critique of this issue. Traversa et al. (2015) state
that this demonstration experiment “represents the first proof of concept of
a machine capable of working with the collective state of interacting mem-
ory cells”, exploring the exponentially large solution space in parallel using
waves of different frequencies. Traversa et al. (2015) suggest that this is sim-
ilar to what quantum computing does when solving difficult problems such
as factorisation. However, although quantum computing is a powerful and
physical model, there is no evidence that it can efficiently solve NP-hard
problems. The power of quantum computing is quantum superposition and
entanglement in Hilbert space, not merely classical wave computing using
collective coherent classical states. The oracles needed for a quantum com-
puter to solve problems in QMA most likely do not exist in the physical
world. Aaronson (2005) examines and refutes many claims to solving NP-
hard problems, demonstrating the different kinds of smuggling that are used,
sweeping the eventual need for exponential resources under (very large) car-
pets. This is also underlined in Aaronson (2015a), a blog post providing an
extended critique of the claims in Traversa et al. (2015).

In order to address these scaling limitations of the analogue UMM,
Traversa and Di Ventra (2017) present their Digital Memcomputing Ma-
chine (DMM). They claim that DMMs also have the computational power
of nondeterministic Turing machines, able to solve NP-complete problems
in polynomial time with resources that scale polynomially with the input
size. They define a dynamical systems model of the DMM, and prove sev-
eral properties of the model. They provide the results of several numerical
simulations of a DMM circuit solving small instances of an NP-complete

11 Computability and Complexity of Unconventional Computing Devices 217

problem, and include a discussion of how their results suggest, though do not
prove, that P = NP. The computational power of the DMM is claimed to
arise from its “intrinsic parallelism” of operation. This intrinsic parallelism
is a consequence of the DMM components communicating with each other
in an analogue manner during a computational state transition step. The
DMM is digital insofar as it has a digital state at the beginning and end
of a computational step. However, its operation has the same fundamentally
analogue nature as the UMM during the intrinsically parallel execution of a
computational step, and so all the issues of precision and noise will still need
to be addressed before any super-Turing properties can be established.

11.7.6 Brain computing

The brain is generally considered to be a natural physical adaptive informa-
tion processor subject to physical law; see, e.g., Bassett and Gazzaniga (2011),
Chesi and Moro (2014), Juba (2016), and Schaul et al. (2011). As such it must
essentially be a classical analogue “machine”, and then the ECT states that
it can, in principle, be simulated efficiently by a digital classical computer.

This “limitation” of the brain is not always accepted, however, especially
by philosophers. Leaving aside far-fetched quantum-inspired models, brain-
inspired models sometimes assume that the brain is able to efficiently solve
NP-hard problems, see e.g. Traversa et al. (2015), and therefore can serve
as a model for super-Turing computing beyond classical digital DTMs. The
underlying idea is likely that (human) intelligence and consciousness are so
dependent on processing power that classical digital computers cannot effi-
ciently model an intelligent self-conscious brain – such problems must neces-
sarily be NP-hard.

The view of this chapter’s authors is that our brain (actually any animal
brain) is a powerful but classical information processor, and that its workings
remain to be found out. The fact that we have no real understanding of the
difference between a conscious and unconscious brain is most likely not to be
linked to the lack of processing capacity.

One side of the problem-solving capacity of the brain is demonstrated in
game playing, as illustrated by the performance of the AlphaGo adaptive
program of Google DeepMind (Silver et al., 2016), run on a digital computer
and winning over both the European and the world champions (Metz, 2016),
beating the human world champion 4–1 in a series of Go games. AlphaGo is
adaptive, based on deep neural networks (machine learning) and tree search,
probably representing a significant step toward powerful artificial intelligence
(AI). Since the human champion no doubt can be called intelligent, there is
some foundation for ascribing some intelligence to the AlphaGo adaptive pro-
gram. The problem of characterising artificial intelligence can be investigated
via game playing (Schaul et al., 2011).

218 Hajo Broersma, Susan Stepney, and Göran Wendin

Games present NP-hard problems when scaled up (Viglietta, 2012).
Aloupis et al. (2015) have proved the NP-hardness of five of Nintendo’s
largest video game franchises. In addition, they prove PSPACE-completeness
of the Donkey Kong Country games and several Legend of Zelda games.

For AlphaGo not only to show some intelligence, but also be aware of it,
i.e., aware of itself, is of course quite a different thing. This does not neces-
sarily mean that consciousness presents a dramatically harder computational
task. But it then needs mechanisms for self-observation and at least short-
term memory for storing those observations. When AlphaGo then starts de-
scribing why it is making the various moves, thinking about them (!), and
even recognising its errors, then one may perhaps grant it some consciousness,
and perhaps even intuition.

The argument that the brain violates the ECT appears to rest on the
fact that brains can solve certain problems that are uncomputable or NP-
hard. However, this argument confuses the class of problems that have these
properties with the individual instances that we can solve. So, for example,
despite our being able to prove whether certain programs terminate, there is
no evidence that we can prove whether any program terminates.

We hold that the brain is a natural, physical, basically analogue infor-
mation processor that cannot solve difficult instances of NP-hard problems.
Therefore intelligence, consciousness, intuition, etc. must be the result of nat-
ural computation processes that, in principle, can be efficiently simulated by
a classical digital computer, given some models for the relevant brain cir-
cuitry. The question of polynomial overhead is a different issue. Perhaps it
will be advantageous, or even necessary, to emulate some brain circuits in
hardware in order to get reasonable response times of artificial brain mod-
els. Such energy-efficient neuromorphic hardware is already emerging (Esser
et al., 2016; Merolla et al., 2014) and may soon match human recognition
capabilities (Maass, 2016).

11.7.7 Conclusion

These discussed forms of unconventional physically realisable computing are
unable to solve NP-hard problems in polynomial time, unless given access
to an uncomputable oracle or some “smuggled” exponential resource, such
as precision, material, or power. So, hard instances of NP problems cannot
be solved efficiently. Various approaches to solving NP-hard problems re-
sult in at best polynomial speed-up. The quantum class BQP does indicate
that quantum computers can offer efficiency improvements for some problems
outside the NP-complete class (always assuming P �= NP).

11 Computability and Complexity of Unconventional Computing Devices 219

11.8 Overall conclusions and perspectives

We have provided an overview of certain claims of hypercomputation and
super-Turing computation in a range of unconventional computing devices.
Our overview covers many specific proposals, but is not comprehensive. Nev-
ertheless, a common theme emerges: all the devices seem to rely on one or
another unphysical property to work: infinite times or speeds, or infinite pre-
cision, or uncomputable advice, or some unconsidered exponential physical
resource.

There is value in examining a wide range of unconventional theoretical
models of computation, even if those models turn out to be unphysical. After
all, even the theoretical model that is the DTM is unphysical: its unbounded
memory tape, necessary for its theoretical power, cannot be implemented in
our finite bounded universe. Our physical digital computers are all finite state
machines. Claims about physical implementability of models more powerful
than the DTM, when the DTM itself is unphysical, need to be scrutinised
carefully, and not in the realm of mathematics (their theoretical power), but
rather in that of physics (their implementable power).

One issue that UCOMP helps foreground is this existence of physical con-
straints on computational power (Aaronson, 2005; Aaronson, 2009; Aaronson,
2013b; Aaronson, 2015a; Denef and Douglas, 2007; Potgieter, 2006). That
there might be such physical limits to computational power may be difficult
to accept, judging from a wealth of publications discussing and describing
how to efficiently solve NP-hard problems with physical computers. How-
ever, as we have argued in this chapter, there is no convincing evidence that
classical (non-quantum) computational devices (whether analogue or digi-
tal, engineered or evolved) can be built to efficiently solve problems outside
classical complexity class P.

The Laws of Thermodynamics, which address energy conservation and en-
tropy increase, express bounds on what is physically possible. A consequence
of these laws is that perpetual motion machines are physically impossible, and
any purported design will have a flaw somewhere. These are laws of physics,
not provable mathematical theorems, but are well-evidenced. The laws are
flexible enough that newly discovered phenomena (such as the convertibility
of mass and energy) can be accommodated.

The CTT and ECT appear to play an analogous role in computation. They
express bounds on what computation is physically possible. A consequence of
these bounds, if they are true, is that hypercomputing and super-Turing com-
puting are physically impossible. And they are similarly flexible that newly
discovered phenomena (such as quantum computing) can be accommodated.
This demonstrates a fundamental and deep connection between computation
and the laws of physics: computation can be considered as a natural science,
constrained by reality, not as an abstract branch of mathematics (Horsman
et al., 2017).

220 Hajo Broersma, Susan Stepney, and Göran Wendin

The CTT and ECT can be expressed in a, slightly tongue-in-cheek, form
echoing the laws of thermodynamics:

1st Law of Computing: You cannot solve uncomputable or NP-hard prob-
lems efficiently unless you have a physical infinity or an efficient oracle.
2nd Law of Computing: There are no physical infinities or efficient oracles.
3rd Law of Computing: Nature is physical and does not solve uncomputable
or NP-hard problems efficiently.
Corollary: Nature necessarily solves uncomputable or NP-hard problems
only approximately.

This raises the question: what can UCOMP do? Given that UCOMP does
not solve uncomputable or even NP-hard problems (and this also applies to
quantum computing), what is the future for UCOMP? Instead of simply try-
ing to do conventional things faster, UCOMP can focus on novel applications,
and novel insights into computation, including:

• Insight into the relationship between physics and computation
• New means for analogue simulation/optimisation
• Huge parallelisation
• Significant polynomial speed-up
• Novel forms of approximate solutions
• Cost-effective solutions
• Solutions beyond the practical capability of digital HPC
• Solutions in novel physical devices, for example, programmed synthetic
biological cells

UCOMP offers many things. But it does not offer hypercomputing or
super-Turing computing realisable in the physical world.

Acknowledgements

H.B. acknowledges funding from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement number 317662
(the FP7 FET NASCENCE project). S.S. acknowledges partial funding by
the EU FP7 FET Coordination Activity TRUCE (Training and Research in
Unconventional Computation in Europe), project reference number 318235.
G.W. acknowledges support by the European Commission through the FP7
SYMONE and Horizon 2020 RECORD-IT projects, and by Chalmers Uni-
versity of Technology.

11 Computability and Complexity of Unconventional Computing Devices 221

References

Aaronson, Scott (2005). “NP-complete problems and physical reality”. ACM
SIGACT News 36(1):30–52.

Aaronson, Scott (2008). “The Limits of Quantum Computers”. Scientific
American 298(3):62–69.

Aaronson, Scott (2009). “Computational complexity: Why quantum chem-
istry is hard”. Nature Physics 5(10):707–708.

Aaronson, Scott (2013a). Quantum Computing Since Democritus. Cambridge
University Press.

Aaronson, Scott (2013b). “Why Philosophers Should Care About Computa-
tional Complexity”. Computability: Gödel, Turing, Church, and Beyond.
Ed. by B. J. Copeland, C. J. Posy, and O. Shagrir. MIT Press.

Aaronson, Scott (2015a). Memrefuting. www.scottaaronson.com/blog/?p=
2212.

Aaronson, Scott (2015b). “Read the fine print”. Nature Physics 11:291–293.
Aaronson, Scott (2017). “P =? NP”. www.scottaaronson.com/papers/pnp.pdf.
Adamatzky, Andrew, ed. (2017). Advances in Unconventional Computing, vol

1. Springer.
Adleman, Leonard M. (1994). “Molecular computation of solutions to com-

binatorial problems”. Science 266:1021–1024.
Alhazov, A., R. Freund, and Y. Rogozhin (2014). “Five nodes are sufficient

for hybrid networks of evolutionary processors to be computationally com-
plete”. UCNC 2014. Vol. 8553. LNCS. Springer, pp. 1–13.

Aloupis, G., E. D. Demaine, A. Guo, and G. Viglietta (2015). “Classic Nin-
tendo games are (computationally) hard”. Theoretical Computer Science
586:135–160.

Ambaram, Tânia, Edwin Beggs, José Félix Costa, Diogo Poças, and John
V. Tucker (2017). “An Analogue-Digital Model of Computation: Turing
Machines with Physical Oracles”. Advances in Unconventional Computing,
vol 1. Ed. by Andrew Adamatzky. Springer, pp. 73–115.

Arkoudas, K. (2008). “Computation, hypercomputation, and physical sci-
ence”. Journal of Applied Logic 6(4):461–475.

Balcázar, José and Montserrat Hermo (1998). “The Structure of Logarithmic
Advice Complexity Classes”. Theoretical Computer Science 207:217–244.

Barends, R., L. Lamata, J. Kelly, L. Garćıa-Álvarez, A. G. Fowler, A.
Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J.
O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E. Solano,
and John M. Martinis (2015). “Digital quantum simulation of fermionic
models with a superconducting circuit”. Nature Commun. 6:7654.

Barends, R., A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras,
R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A.

http://www.scottaaronson.com/blog/?p=2212
http://www.scottaaronson.com/papers/pnp.pdf
http://www.scottaaronson.com/blog/?p=2212

222 Hajo Broersma, Susan Stepney, and Göran Wendin

Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C.
Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, E. Solano, H. Neven, and John M. Martinis (2016).
“Digitized adiabatic quantum computing with a superconducting circuit”.
Nature 534:222–226.

Barreiro, J. T., M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M.
Hennrich, C. F. Roos, P. Zoller, and R. Blatt (2011). “An open-system
quantum simulator with trapped ions”. Nature 470:486–491.

Bassett, D. S. and M. S. Gazzaniga (2011). “Understanding complexity in
the human brain”. Trends in Cognitive Sciences 15(5):200–209.

Bauer, Bela, Dave Wecker, Andrew J. Millis, Matthew B. Hastings, and
Matthias Troyer (2016). “Hybrid Quantum-Classical Approach to Cor-
related Materials”. Phys. Rev. X 6(3):031045.

Beggs, Edwin, José Félix Costa, Diogo Poças, and John V. Tucker (2014).
“An Analogue-Digital Church-Turing Thesis”. International Journal of
Foundations of Computer Science 25(4):373–389.

Bennett, Charles H. (1982). “The thermodynamics of computation—a re-
view”. International Journal of Theoretical Physics 21(12):905–940.

Berger, Robert (1966). “The undecidability of the domino problem”.Memoirs
of the American Mathematical Society 66:1–72.

Biamonte, Jacob, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan
Wiebe, and Seth Lloyd (2016). Quantum Machine Learning. eprint: arXiv:
1611.09347[quant-ph].

Blakey, Ed (2014). “Ray tracing – computing the incomputable?” Proc DCM
2012. Ed. by B. Löwe and G. Winskel. Vol. 143. EPTCS, pp. 32–40.

Blakey, Ed (2017). “Unconventional Computers and Unconventional Com-
plexity Measures”. Advances in Unconventional Computing, vol 1. Ed. by
Andrew Adamatzky. Springer, pp. 165–182.

Blatt, R. and C. F. Roos (2012). “Quantum simulations with trapped ions”.
Nature Physics 8:277–284.

Blum, L. (2004). “Computing over the reals: Where Turing Meets Newton”.
Notices of the AMS 51(9):1024–1034.

Boixo, S., V. N. Smelyanskiy, A. Shabani, S. V. Isakov, M. Dykman, V. S.
Denchev, M. Amin, A. Smirnov, M. Mohseni, and H. Neven (2016a).
“Computational Role of Multiqubit Tunneling in a Quantum Annealer”.
Nature Commun. 7:10327.

Boixo, Sergio, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan
Ding, Zhang Jiang, John M. Martinis, and Hartmut Neven (2016b). Char-
acterizing Quantum Supremacy in Near-Term Devices. eprint: arXiv:1608.
00263[quant-ph].

Bose, S. K., C. P. Lawrence, Z. Liu, K. S. Makarenko, R. M. J. van Damme,
H. J. Broersma, and W. G. van der Wiel (2015). “Evolution of a designless
nanoparticle network into reconfigurable Boolean logic”. Nature Nanotech-
nology 10:1048–1052.

11 Computability and Complexity of Unconventional Computing Devices 223

Bravyi, S. and D. Gosset (2016). “Improved Classical Simulation of Quantum
Circuits Dominated by Clifford Gates”. Phys. Rev. Lett. 116:250501.

Broersma, H . J., J. F. Miller, and S. Nichele (2016). “Computational Matter:
Evolving Computational Functions in Nanoscale Materials”. Advances in
Unconventional Computing Volume 2: Prototypes, Models and Algorithms.
Ed. by A. Adamatzky, pp. 397–428.

Brown, K. L., W. J. Munro, and V. M. Kendon (2010). “Using Quantum
Computers for Quantum Simulation”. Entropy 12:2268–2307.

Brun, Yuriy (2008). “Solving satisfiability in the tile assembly model with a
constant-size tileset”. Journal of Algorithms 63(4):151–166.

Bryngelson, J. D., J. Nelson Onuchic, N. D. Socci, and P. G. Wolynes (1995).
“Funnels, pathways, and the energy landscape of protein folding: A syn-
thesis”. Proteins: Structure, Function and Bioinformatics 21(3):167–195.

Cabessa, J. and H. T. Siegelmann (2011). “Evolving recurrent neural net-
works are super-Turing”. Proc. IJCNN 2011. IEEE, pp. 3200–3206.

Castellanos, Juan, Carlos Mart́ın-Vide, Victor Mitrana, and José M. Sempere
(2001). “Solving NP-complete problems with networks of evolutionary pro-
cessors”. IWANN 2001. Vol. 2084. LNCS. Springer, pp. 621–628.

Chaitin, Gregory J. (1975). “A Theory of Program Size Formally Identical
to Information Theory”. Journal of the ACM 22(3):329–340.

Chaitin, Gregory J. (2012). “How Much Information Can There Be in a Real
Number?” Computation, Physics and Beyond. Springer, pp. 247–251.

Cheeseman, Peter, Bob Kanefsky, and William M Taylor (1991). “Where
the Really Hard Problems Are”. Proc. IJCAI 1991. Morgan Kaufmann,
pp. 331–337.

Chesi, C. and A. Moro (2014). “Computational complexity in the brain”.
Measuring Grammatical Complexity. Ed. by F. J. Newmeyer and L. B.
Preston. Oxford University Press, pp. 264–280.

Cirac, J. I. and P. Zoller (2010). “Goals and opportunities in quantum sim-
ulation”. Nature Phys. 8:264–266.

Complexity Zoo website (n.d.). complexityzoo.uwaterloo.ca/Complexity Zoo.
Cook, Stephen (1971). “The complexity of theorem proving procedures”. Pro-

ceedings of the Third Annual ACM Symposium on Theory of Computing
:151–158.

Copeland, B. J. (2004). “Hypercomputation: philosophical issues”. Theoret-
ical Computer Science 317(1–3):251–267.

Copeland, B. J. (2015). “The Church-Turing Thesis”. The Stanford Encyclo-
pedia of Philosophy. Ed. by Edward N. Zalta. Summer 2015.

Copeland, B. J. and O. Shagrir (2011). “Do accelerating Turing machines
compute the uncomputable?” Minds and Machines 21(2):221–239.

Crescenzi, P. and V. Kann (2005). A compendium of NP optimization prob-
lems. www.nada.kth.se/∼viggo/problemlist/compendium.html.

Denchev, V. S., S. Boixo, S. V. Isakov, N. Ding, R. Babbush, J. Martinis
V. Smelyanskiy and, and H. Neven (2016). “What is the Computational
Value of Finite Range Tunneling?” Phys. Rev. X 6:031015.

http://www.nada.kth.se/%E2%88%BCviggo/problemlist/compendium.html

224 Hajo Broersma, Susan Stepney, and Göran Wendin

Denef, F. and M. R. Douglas (2007). “Computational complexity of the land-
scape: Part I”. Annals of Physics 322(5):1096–1142.

Dershowitz, N. and E. Falkovich (2012). “A Formalization and Proof of the
Extended Church-Turing Thesis”. EPTCS 88:72–78.

Deutsch, David (1985). “Quantum Theory, the Church-Turing Principle and
the Universal Quantum Computer”. Proceedings of the Royal Society A
400(1818):97–117.

Douglas, Keith (2003). “Super-Turing Computation: A Case Study Analysis”.
www . philosopher - animal . com/papers / take6c . pdf. MA thesis. Carnegie
Mellon University.

Douglas, Keith (2013). “Learning to Hypercompute? An Analysis of Siegel-
mann Networks”. Computing Nature: Turing Centenary Perspective. Ed.
by G. Dogic-Crnkovic and R. Giovagnoli. Springer, pp. 201–211.

Downey, Rod G. and Michael R. Fellows (1999). Parameterized Complexity.
Springer.

Edmonds, Jack (1965). “Paths, trees and flowers”. Canadian J. of Math. 17
:449–467.

Esser, S. K., P. A. Merolla, A. S. Cassidy J. V. Arthur and, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch,
C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S. Modha
(2016). “Convolutional networks for fast, energy-efficient neuromorphic
computing”. PNAS 41(113):668–673.

Etesi, Gábor and István Németi (2002). “Non-Turing Computations Via
Malament–Hogarth Space-Times”. International Journal of Theoretical
Physics 41(2):341–370.

European Commission (2009). “Unconventional Formalisms for Computa-
tion”. Expert Consultation Workshop.

Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann (2014). A Quantum
Approximate Optimization Algorithm. eprint: arXiv:1411.4028[quant-ph].

Farhi, Edward and Aram W. Harrow (2014). Quantum Supremacy through
the Quantum Approximate Optimization Algorithm. eprint: arXiv : 1602 .
07674[quant-ph].

Feynman, R. P. (1982). “Simulating Physics with Computers”. Int. J. Theor.
Phys. 21(6/7):467–488.

Floyd, Robert W. (1967). “Nondeterministic Algorithms”. Journal of the
ACM 14(4):636–644.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman.

Georgescu, I. M., S. Ashhab, and Franco Nori (2014). “Quantum simulation”.
Rev. Mod. Phys. 86:153–185.

Grover, L. K. (1996). “A fast quantum mechanical algorithm for database
search”. Proc. 28th Annual ACM Symposium on the Theory of Computing.
ACM Press, pp. 212–219.

http://www.philosopher-animal.com/papers/take6c.pdf

11 Computability and Complexity of Unconventional Computing Devices 225

Häner, Thomas, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias
Troyer (2016). “High Performance Emulation of Quantum Circuits”. Proc.
SC 2016. eprint: arXiv:1604.06460[quant-ph].

Häner, Thomas, Damian S Steiger, Krysta Svore, and Matthias Troyer (2018).
“A software methodology for compiling quantum programs”. Quantum
Science and Technology 3(2):020501.

Hartmanis, Juris (1995). “The structural complexity column: On the Weight
of Computations”. Bulletin of the European Association for Theoretical
Computer Science. EATCS 55:136–138.

Hogarth, Mark L. (1992). “Does General Relativity Allow an Observer to
View an Eternity in a Finite Time?” Foundations of Physics Letters 5
:173–181.

Horodecki, R., P. Horodecki, M. Horodecki, and K. Horodecki (2009). “Quan-
tum entanglement”. Rev. Mod. Phys 81(2):865–942.

Horsman, C., Susan Stepney, Rob C. Wagner, and Viv Kendon (2014). “When
does a physical system compute?” Proceedings of the Royal Society A
470(2169):20140182.

Horsman, Dominic, Susan Stepney, and Viv Kendon (2017). “The Natural
Science of Computation”. Communications of ACM 60(8):31–34.

Jozsa, R. and N. Linden (2003). “On the role of entanglement in quantum-
computational speed-up”. Proc. R. Soc. Lond. A 459:2011–2032.

Juba, B. (2016). “Computational complexity and the Function-Structure-
Environment Loop of the Brain”. Closed-Loop Neuroscience. Ed. by A. El
Hady. Academic Press, pp. 131–144.

Karp, Richard M. (1972). “Reducibility Among Combinatorial Problems”.
Complexity of Computer Computations. Ed. by R. E. Miller and J. W.
Thatcher. Plenum, pp. 85–103.

Konkoli, Z. and G. Wendin (2014). “On information processing with net-
works of nano-scale switching elements”. Int. Journal of Unconventional
Computing 10(5–6):405–428.

Lanyon, B. P., J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida,
I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A.
Aspuru-Guzik, and A. G. White (2010). “Towards quantum chemistry on
a quantum computer”. Nature Chemistry 2:106–111.

Lawler, Eugene L., Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B.
Shmoys (1985). The Traveling Salesman Problem: A Guided Tour of Com-
binatorial Optimization. Wiley.

Levin, Leonid (1973). “Universal search problems”. Problems of Information
Transmission 9(3):(in Russian), 115–116.

Li, Ming and Paul Vitányi (1997). An Introduction to Kolmogorov Complexity
and Its Applications. 2nd edn. Springer.

Lipton, Richard J. (1995). “DNA solution of hard computational problems”.
Science 268(5210):542–545.

Lloyd, Seth (2000). “Ultimate physical limits to computation”. Nature
406(6799):1047–1054.

226 Hajo Broersma, Susan Stepney, and Göran Wendin

Loos, Remco, Florin Manea, and Victor Mitrana (2009). “Small universal
accepting networks of evolutionary processors with filtered connections”.
11th International Workshop on Descriptional Complexity of Formal Sys-
tems. Ed. by J. Dassow, G. Pighizzini, and B. Truthe. EPTCS 3, pp. 173–
182. eprint: arXiv:0907.5130[cs.FL].

Maass, Wolfgang (2016). “Energy-efficient neural network chips approach
human recognition capabilities”. PNAS 113(41):11387–11389.

Manea, F. and V. Mitrana (2007). “All NP-problems can be solved in poly-
nomial time by accepting hybrid networks of evolutionary processors of
constant size”. Information Processing Letters 103(3):112–118.

Margenstern, Maurice, Victor Mitrana, and Mario J Pérez-Jiménez (2005).
“Accepting Hybrid Networks of Evolutionary Processors”. Proc. DNA
2004. Vol. 3384. LNCS. Springer, pp. 235–246.

Merolla, P. A., J. V. Arthur, A. S. Cassidy R. Alvarez-Icaza and, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I.
Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P.
Risk, R. Manohar, and D. S. Modha (2014). “A million spiking-neuron
integrated circuit with a scalable communication network and interface”.
Science (345):668–673.

Metz, C. (2016). Google’s AI Wins Fifth And Final Game Against Go Genius
Lee Sedol. www.wired.com/2016/03/googles-ai-wins-fifth-final-game-go-
genius-lee-sedol/.

Miller, Julian F. and Keith Downing (2002). “Evolution in materio: Looking
beyond the silicon box”. Proc. NASA/DoD Evolvable Hardware Workshop,
pp. 167–176.

Montanaro, A. (2016). “Quantum algorithms: an overview”. npj Quantum
Information 2:15023.

Moore, Gordon (1965). “Cramming More Components onto Integrated Cir-
cuits”. Electronics Magazine 38(8):114–117.

O’Malley, P. J. J., R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R.
Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, A. Megrant,
J. Y. Mutus, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner,
T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik,
and J. M. Martinis (2016). “Scalable Quantum Simulation of Molecular
Energies”. Phys. Rev. X 6:031007.

Ouyang, Q., P. D. Kaplan, S. Liu, and A. Libchaber (1997). “DNA solution
of the maximal clique problem”. Science 278:446–449.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.
Peruzzo, A., J. McClean, P. Shadbolt, M-H Yung, X-Q Zhou, P.J. Love, A.

Aspuru-Guzik, and J.L. O’Brien (2014). “A variational eigenvalue solver
on a photonic quantum processor”. Nature Comm. 5:4213.

Potgieter, P. H. (2006). “Zeno machines and hypercomputation”. Theoretical
Computer Science 358(1):23–33.

http://www.wired.com/2016/03/googles-ai-wins-fifth-final-game-go-genius-lee-sedol/
http://www.wired.com/2016/03/googles-ai-wins-fifth-final-game-go-genius-lee-sedol/

11 Computability and Complexity of Unconventional Computing Devices 227

Qian, Lulu, David Soloveichik, and Erik Winfree (2010). “Efficient Turing-
Universal Computation with DNA Polymers”.DNA Computing and Molec-
ular Programming. Vol. 6518. LNCS. Springer, pp. 123–140.

Rado, Tibor (1962). “On non-computable functions”. The Bell System Tech-
nical Journal 41(3):877–884.

Reif, J., J. Tygar, and Y. Akitoshi (1994). “Computability and complexity
of ray tracing”. Discrete and Computational Geometry 11(3):265–288.

Reiher, Markus, NathanWiebe, Krysta M. Svore, Dave Wecker, and Matthias
Troyer (2017). “Elucidating Reaction Mechanisms on Quantum Comput-
ers”. 114(29):7555–7560.

Rønnow, T. F., Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M.
Martinis, D. A. Lidar, and M. Troyer (2014). “Defining and detecting
quantum speedup”. Science 334(6195):420–424.

Salathe, Y., M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potocnik,
A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A.
Wallraff (2015). “Digital quantum simulation of fermionic models with a
superconducting circuit”. Phys. Rev. X 5:021027.

Saunders, Daniel (2016). “A Survey and Discussion of Memcomputing Ma-
chines”. djsaunde.github.io/survey-discussion-memcomputing.pdf.

Schaul, Tom, Julian Togelius, and Jürgen Schmidhuber (2011). Measuring
intelligence through games. eprint: arXiv:1109.1314[cs.AI].

Schuch, N. and F. Verstraete (2009). “Computational complexity of interact-
ing electrons and fundamental limitations of density functional theory”.
Nature Physics 5:732–735.

Schuld, M., I. Sinayskiy, and F. Petruccione (2015). “An introduction to
quantum machine learning”. Contemporary Physics 56(2):172–185.

Seelig, G. and D. Soloveichik (2009). “Time-complexity of multilayered DNA
strand displacement circuits”. DNA Computing and Molecular Program-
ming. Ed. by R. Deaton and A. Suyama. Vol. 5877. LNCS. Springer,
pp. 144–153.

Shapiro, Ehud (2012). “A mechanical Turing machine: blueprint for a bio-
molecular computer”. Interface focus 2:497–503.

Shor, P. W. (1997). “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer”. SIAM Journal of Computing
26:1484–1509.

Siegelmann, H. (1995). “Computation beyond the Turing limit”. Science
268(5210):545–548.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis (2016).
“Mastering the game of Go with deep neural networks and tree search”.
Nature 529(7587):484–489.

228 Hajo Broersma, Susan Stepney, and Göran Wendin

Sipser, Michael (1997). Introduction to the Theory of Computation. PWS
Publishing.

Stepney, Susan (2009). “Non-Classical Hypercomputation”. International
Journal of Unconventional Computing 5(3–4):267–276.

Traversa, Fabio L. and Massimiliano Di Ventra (2015). “Universal Memcom-
puting Machines”. IEEE transactions on neural networks and learning
systems 26(11):2702–2715.

Traversa, Fabio L. and Massimiliano Di Ventra (2017). “Polynomial-time
solution of prime factorization and NP-complete problems with digital
memcomputing machines”. Chaos 27(2):023107.

Traversa, Fabio L., C. Ramella, F. Bonani, and Massimiliano Di Ventra
(2015). “Memcomputing NP-complete problems in polynomial time us-
ing polynomial resources and collective states”. Science Advances 1(6)
:e1500031.

Turing, Alan M. (1937). “On Computable Numbers, with an Application to
the Entscheidungsproblem”. Proc. London Mathematical Society s2-42(1)
:230–265.

Unger, R. and J. Moult (1993). “Finding the lowest free energy conformation
of a protein is an NP-hard problem: Proof and implications”. Bulletin of
Mathematical Biology 55(6):1183–1198.

Valiron, B., N. J. Ross, P. Selinger, D. S. Alexander, and J. M. Smith (2015).
“Programming the Quantum Future”. Communications of the ACM 58(8)
:52–61.

Vergis, A., K. Steiglitz, and B. Dickinson (1986). “The complexity of analog
computation”. Mathematics and Computers in Simulation 28(2):91–113.

Viglietta, G. (2012). “Gaming Is a Hard Job, But Someone Has to Do It!” Fun
with Algorithms. Ed. by E. Kranakis, D. Krizanc, and F. Luccio. Vol. 7288.
LNCS. Springer, pp. 357–367.

Wagon, Stan (1985). The Banach–Tarski Paradox. Cambridge University
Press.

Wang, Hao (1961). “Proving theorems by pattern recognition–II”. Bell Sys-
tem Technical Journal 40(1):1–41.

Wang, Y., F. Dolde, J. Biamonte, R. Babbush, V. Bergholm, S. Yang, I.
Jakobi, P. Neumann, A. Aspuru-Guzik, J.D. Whitfield, and J. Wrachtrup
(2015). “Quantum simulation of helium hydride cation in a solid-state spin
register”. ACS Nano 9:7769.

Wangersky, Peter J. (1978). “Lotka-Volterra Population Models”. Annual
Review of Ecology and Systematics 9:189–218.

Wapner, Leonard M. (2005). The Pea and the Sun: a mathematical paradox.
A K Peters.

Watrous, J. (n.d.). “Quantum computational complexity”. Encyclopedia of
Complexity and Systems Science. Ed. by R. A. Meyers. Springer, pp. 7174–
7201.

11 Computability and Complexity of Unconventional Computing Devices 229

Wecker, Dave and Krysta M. Svore (2014). LIQUi| >: A Software Design Ar-
chitecture and Domain-Specific Language for Quantum Computing. eprint:
arXiv:1402.4467[quant-ph].

Wendin, G. (2017). “Quantum information processing with superconducting
circuits: a review”. Reports on Progress in Physics 80:106001.

Whitfield, J. D., P. J. Love, and A. Aspuru-Guzik (2013). “Computational
complexity in electronic structure”. Physical Chemistry Chemical Physics
15:397–411.

Wiebe, Nathan, Ashish Kapoor, and Krysta M. Svore (2014). Quantum Deep
Learning. eprint: arXiv:1412.3489[quant-ph].

Wiebe, Nathan, Ashish Kapoor, and Krysta M. Svore (2015). “Quantum
algorithms for nearest-neighbor methods for supervised and unsupervised
learning”. Quantum Information and Computation 15(3-4):316–356.

Wittek, Peter (2016). Quantum Machine Learning: What Quantum Comput-
ing Means to Data Mining. Academic Press.

Wolpert, David H. (2012). What the no free lunch theorems really mean; how
to improve search algorithms. Working Paper 2012-10-017. SFI.

Wolpert, David H. and William G. Macready (1997). “No Free Lunch Theo-
rems for Optimization”. IEEE Trans. Evol. Comp 1(1):67–82.

Woods, Damien and Thomas J. Naughton (2005). “An optical model of com-
putation”. Theoretical Computer Science 334:227–258.

Woods, Damien and Thomas J. Naughton (2009). “Optical computing”. Ap-
plied Mathematics and Computation 215(4):1417–1430.

Wu, Kan, Javier Garćıa de Abajo, Cesare Soci, Perry Ping Shum, and Niko-
lay I Zheludev (2014). “An optical fiber network oracle for NP-complete
problems”. Light: Science & Applications 3(2):e147.

Yang, J. C.-C. (2013). “Computational complexity and decidability of tileabil-
ity”. PhD thesis. UCLA. url: www-users.math.umn.edu/∼jedyang/papers/
yang-thesis.pdf.

Zintchenko, I., E. Brown, and M. Troyer (2015). “Recent developments in
quantum annealing”. www.scottaaronson.com/troyer.pdf.

http://www.scottaaronson.com/troyer.pdf
http://www-users.math.umn.edu/%E2%88%BCjedyang/papers/yang-thesis.pdf
http://www-users.math.umn.edu/%E2%88%BCjedyang/papers/yang-thesis.pdf

	Chapter 11 Computability and Complexity of Unconventional Computing Devices
	11.1 Introduction
	11.2 Computational problems and problem solving
	11.2.1 Difficulty
	11.2.2 Decision, optimisation, and counting problems
	11.2.3 Terminology

	11.3 A brief review of CCOMP computability
	11.3.1 Undecidable problems, uncomputable functions
	11.3.2 Oracles and advice
	11.3.3 Church–Turing thesis

	11.4 Hypercomputation
	11.4.1 Undecidable problems determined physically?
	11.4.2 Accelerated Turing Machines
	11.4.3 General relativistic machines
	11.4.4 Real number computation
	11.4.5 Using oracles, taking advice
	11.4.6 Conclusion

	11.5 A brief review of CCOMP complexity
	11.5.1 Measuring complexity
	11.5.2 Easy, polynomial time problems
	11.5.3 Hard, exponential time problems
	11.5.4 Complexity classes P and NP
	11.5.5 NP-complete problems
	11.5.6 NP-hard problems
	11.5.7 Other classic complexity classes: PSP ACE and BPP
	11.5.8 Quantum complexity classes
	11.5.9 Complexity with advice: P/poly and P/log
	11.5.10 Extended Church–Turing thesis
	11.5.11 Physical oracles and advice
	11.5.12 Complexity as a worst case property
	11.5.13 Solving hard problems in practice
	11.5.14 No Free Lunch theorem

	11.6 Quantum information processing
	11.6.1 Digital quantum computation
	11.6.2 Quantum simulation
	11.6.3 Adiabatic quantum optimisation (AQO)
	11.6.4 Quantum annealing (QA)
	11.6.5 Quantum machine learning (QML)

	11.7 Computational power of classical physical systems and unconventional paradigms
	11.7.1 DNA computing
	11.7.2 Networks of evolutionary processors
	11.7.3 Evolution in materio
	11.7.4 Optical computing
	11.7.5 MEM-computing
	11.7.6 Brain computing
	11.7.7 Conclusion

	11.8 Overall conclusions and perspectives
	Acknowledgements
	References

