
adfa, p. 1, 2017. 
© Springer-Verlag Berlin Heidelberg 2017 

Software Architecture Risk Containers 

Andrew Leigh, Michel Wermelinger, Andrea Zisman 

School of Computing & Communications  
The Open University, Milton Keynes, United Kingdom 

 

Abstract. Our motivation is to determine whether risks such as im-
plementation error-proneness can be isolated into three types of con-
tainers at design time. This paper identifies several container candidates 
in other research that fit the risk container concept. Two industrial case 
studies were used to determine which of three container types tested is 
most effective at isolating and predicting at design time the risk of im-
plementation error-proneness. We found that Design Rule Containers 
were more effective than Use Case and Resource Containers. 

1 Introduction 

According to Bass et al. (2012) 161 historical projects were analysed by Boehm 
and Turner who found that the bigger the project is, the more architecture risk as-
sessment is needed to avoid rework. No results for the comparative performance of 
architecture evaluation methods for isolating risks were found in existing work. Not 
knowing the risk scope limits the ability to estimate the risk impact and cost of miti-
gations. Our proposition is to investigate whether it is more effective to base risk as-
sessment around risk containers that isolate related risk-inducing elements.  

In this paper, we test three types of risk containers for their ability to isolate the 
risk of implementation error-proneness at the design stage, namely Design Rule, 
Use Case and Resource Containers. If container level design metrics that indicate a 
design might be complex to implement (e.g. coupling metrics), can be used to rank 
containers, then containers can be used to predict the areas of greatest risk. If the de-
gree of element sharing between containers is low, they are said to be element isolat-
ing. Furthermore, if containers are risk predicting and element isolating, they must 
also be risk isolating because the elements in the container are inducing the risk, and 
they are not shared with other containers. Risk isolating containers would enable prac-
titioners to identify the risk areas and understand their scope in terms of the affected 
elements. In this paper we address the following research question: 

 
Can the risk of implementation error-proneness be isolated within risk containers 
based on the design time architectural description? 

    
The remainder of this paper is structured as follows. Section 2 lists the existing 

work that most closely fits the risk container concept. Section 3 presents the method 



used to test three types of containers using two industrial case studies. Section 4 pre-
sents analysis of the results. Finally, conclusions are drawn in Section 5. 

2 Background 

We next present existing work that most closely fits the proposed concept of archi-
tecture risk containers. This section is organised by the container types we synthesised 
from the commonalities we found between architecture evaluation techniques. 

Attack Graph Containers are tuples containing nodes that an attacker can interact 
with to exploit a vulnerability in a goal component (Said et al. 2011). UML models 
are used to estimate component failure probability to assess scenario security risks. 
Probabilities assigned to graph elements are used to calculate the probability of failure 
for the goal component. Since the tuple isolates the elements associated with the risk, 
attack graphs fit the risk container concept.    

Design Rule Containers (DRSpaces) proposed by Xiao et al. (2014), are graphs 
based on the key interfaces (design rules) that split an architecture into independent 
modules. The vertices are related classes and the edges are the relationships between 
those related classes. Xiao et al. concluded that if a leading file of a DRSpace is error-
prone, a large proportion of the other DRSpace files are likely to be error-prone, and 
that most error-prone files will be found in just a few DRSpaces. Xiao et al used a 
clustering algorithm called Design Rule Hierarchy (DRH) proposed by Wong et al. 
(2009) to extract DRSpaces from source code. Wong et al. were motivated to develop 
the DRH algorithm to separate modules of related elements in UML designs to max-
imise developer parallelism. Leigh et al. (2016) manually populated DRSpaces from 
UML class diagrams taken from an industrial case study. The term ‘Design Rule Con-
tainers’ is used to standardise terminology in this paper.  

Component Containers contain the classes a component is composed of. Steva-
netic and Zdun (2016) calculated design metrics from UML to indicate the under-
standability of components. Their results show that if the internal relationships of a 
component are difficult to comprehend it might be difficult to maintain and therefore 
the classes it is composed of isolate the risk. Abdelmoez et al. (2006) estimated re-
quirement maturity and traced it to components to determine component change prob-
ability and identify maintainability risks. Goseva-Popstojanova at al. (2003) and 
Yacoub and Ammar (2002) calculated complexity metrics from designs to assess 
reliability risks of components. These contributions suggest maintainability and relia-
bility risks could be isolated within Component Containers.  

Resource Containers contain the elements dependent on a resource such as a 
component, service or data store. Stevanetic and Zdun (2016) also showed that if the 
component functionality is difficult to comprehend, developers might misunderstand 
how to use it, leading to more errors in dependent code. A Resource Container could 
be used to isolate elements dependent upon the resource component to isolate the risk. 

Scenario Containers contain the elements that support a specific scenario. Wil-
liams and Smith (1998) and Cortellessa et al. (2005) used resource estimates (e.g. 
CPU) to determine whether a scenario is likely to exceed a non-functional require-



ment. Their methods are limited by their dependency on the accuracy of design time 
resource estimates and assumptions about the target platform. Their results suggest 
Scenario Containers could isolate performance related risks at design time. 

Use Case Containers contain the elements that support a specific use case. Musta-
fiz et al. (2008) assign a success probability to each use case step. Use cases are then 
analysed to compare the achievable reliability with the required reliability. The re-
search by Mustafiz et al. and Goseva-Popstojanova et al. suggests reliability risks can 
be isolated to the set of operations or classes that fulfil the use case. 

Despite the methods found being suggestive of risk containers, little evidence 
about their risk isolation properties is provided. No results regarding the comparative 
performance of risk containers types for isolating different risks were found. These 
limitations mean practitioners have no advice for selecting which containers to use for 
specific risks. For example, the work of Abdelmoez et al. (2006), Xiao et al. (2014), 
Leigh et al. (2016), and Stevanovic and Zdun (2016) identifies Design Rule and 
Component Containers as container candidates for maintainability risks. Whilst we 
know something about specific cases where each have been effective, their relative 
performance for isolating risks remains unknown. 

Sections 3 and 4 present our most recent work to understand how effectively dif-
ferent design time risk containers isolate the risk of implementation error-proneness.  

3 Method 

This section describes the method used to test how well three risk container types 
isolate at design time the risk of implementation error-proneness. These three risk 
container types have been chosen due to the different ways they split the architecture. 
Design Rule (DR) Containers group elements subordinate to modularising design 
rules, Use Case (UC) Containers group elements supporting use cases, and the Re-
source Containers group elements that depend upon a database table (as opposed to 
resources such as CPU).  

 
3.1 Risk Container Creation 

DR Containers were constructed using the method described in Leigh et al. (2016). 
Each design rule class was used as a container basis before expansion with subordi-
nate classes by consulting design relationships. For example, in Figure 1 element c2 is 
the basis of DR Container A because it is an abstract class. Elements c3 and c5 are 
then added to that container because they are sub-classes. One UC Container was 
created per use case and included each class referenced by the use case. Note how 
Figure 1 shows that UC Container D contains all the elements on the use case se-
quence diagram. Resource Containers were populated with all elements dependent 
upon a specific database table by seeding with the table encapsulation element and 
recursively adding elements where the encapsulation element is the child of a rela-
tionship. This can be seen in Figure 1 where element c4 is the basis for container D 
and c1 and c3 are added because they are recursively dependent upon c4. Additional 
implementation classes were added to the initially populated containers using strict 



name conventions. This was necessary because each design element was realised by 
an interface and an implementation. Therefore, when an interface was allocated to a 
container its one to one implementation class was also added. Unlike Xiao et al. 
(2014) who used automation, our containers were populated by manual analysis. 

 

 

Figure 1. Example Container Population and Coupling Calculation 

Control containers were created for each container type by randomly allocating the 
same elements in the test containers to the same number of control containers. The 
average number of elements per control container and the average number of contain-
ers per element was approximately the same as the test containers. The control con-
tainers were used to determine whether basing containers on related elements is a 
better indicator of error-proneness than random population. The control containers are 
based on the mean values from ten sets of random assignments per container type. 

Coupling is a significant contributory factor in the complexity of software (Bass et 
al. 2012). Thus, it is expected that containers having elements with greater coupling 
are more likely to be error-prone during implementation. Such a correlation would 
imply that error-proneness has been isolated to a degree. That is because the error-
proneness is associated with coupling stemming from the architectural feature (e.g. 
Design Rule, Use Case or Resource) on which the risk container is based. If the archi-
tectural feature were to be removed, the risk associated with it would be eliminated 
(and potentially replaced with risk attached to substitute features). Thus, the presence 
of a correlation between feature based containers and implementation error-proneness 
implies isolation to the scope of the features on which the containers have been based. 

Tightly coupled elements are more likely to change together when software is de-
veloped and maintained due to the ripple effect. As stated by Bass et al. (2012), ‘re-
ducing the strength of coupling between two modules A and B will decrease the ex-
pected cost of any medication that affects A’ (p. 122). Therefore, a more precise an-
swer to our research question can be obtained by determining to what degree contain-
ers share elements and how much of the coupling is between elements in the same 
container. That is because if containers are risk isolating the architectural elements 



should exist in few containers and elements should have less coupling to other ele-
ments outside of their own container. 

As per Figure 1, design coupling is calculated for all elements in the container for 
relationships like aggregation, composition and dependencies if the element is the 
relationship parent, and generalisations if the element is the child. This metric indi-
cates how tightly coupled container members are to other elements in the architecture. 

Error-proneness is defined as the files having more confirmed bugs per thousand 
lines of released code (KLOC) than a threshold. We used again the 75th percentile of 
bugs per KLOC as the threshold (Leigh et al. 2016). Bug identifiers were extracted 
from the Subversion commit messages for each implementation file. 

Using our method, we can compare the container types tested by how well they 
implicitly isolate error-proneness based on correlation between design time container 
level coupling and implementation error-proneness, and how well they explicitly iso-
late individual architectural elements and internal coupling. Thus, a strong and signif-
icant correlation between coupling and error-proneness, in combination with high 
isolation metrics, would answer the research question affirmatively. 
 
3.2 Metric Calculation 

The following risk container type metrics were used to test their relative capability 
for predicting the risk of implementation error-proneness and being element isolating: 

─ Number of Containers (N): number of containers the design has been split into. 
─ Percent Container Coverage (PCC): percentage of all implementation elements 

that were allocated to risk containers. This metric indicates how much of the im-
plementation was represented in the design. 

─ Spearman’s rank correlation ρ and confidence level α between design coupling 
and implementation error-proneness: Spearman’s rank correlation coefficient ρ 
and confidence level α is computed to indicate the association between container 
level coupling and percentage of error-prone files. The correlation indicates how 
well the container type predicts and implicitly isolates error-proneness. 

─ Mean Containers Per Class (CPC-M): mean number of containers each element 
has been allocated to. This metric indicates the average amount of element sharing 
between containers and represents the degree of element isolation. 

─ Upper Quartile Containers Per Class (CPC-UQ): 75th percentile of containers 
each element has been allocated to. This metric is used to confirm the degree of el-
ement isolation within containers. 

─ Mean Percent Internal Coupling (IC-M): mean percentage of container level cou-
pling that is between two elements inside the same container. This metric indicates 
the degree of coupling isolated within containers. 

─ Upper Quartile Internal Coupling (IC-UQ): 75th percentile percentage of contain-
er level coupling that is between two elements inside the same container. This met-
ric is used to confirm the degree of coupling isolated within containers. 

─ Percent Single Neat Container Change Sets (NCC): percentage of Subversion 
change sets that fit neatly inside a single risk container. This metric indicates how 
well containers isolate source code edits made to change the software and fix bugs. 



4 Analysis 

Two cases studies from the same software company have been used to evaluate our 
method. The company prefers to remain anonymous, but their name is registered with 
the Open University in an intellectual property agreement. 

4.1 Case Study 1 – API 

The first case study is a bespoke Application Programming Interface (API) that en-
ables clients to integrate with a database in an enterprise solution. The architectural 
description of the API is a UML model and the implementation contains 87.85 KLOC 
of object-oriented Java code. Table 1 shows the API results. 

 

 
Table 1. Case Study 1 Results 
 

DR Containers have the strongest (ρ) and most significant (α) correlation. The ran-
dom assignment of elements to containers resulted in a negative correlation for the 
control DR Containers. DR Containers had the lowest mean containers per class 
(CPC-M). On average, each element is allocated to just over one DR Container. This 
contrasts with UC Containers and Resource Containers where each element is allocat-
ed on average to approximately 5 and 8 containers respectively. The 75th percentile 
(CPC-UQ) confirms that elements are distributed across fewer DR Containers than 
UC and Resource Containers. The mean percentage of coupling where both related 
elements are inside the same container (IC-M) is greatest for Resource Containers and 
DR Containers. However, the 75th percentile (IC-UQ) is greater for DR Containers 
which suggests they typically have less external coupling than Resource Containers. 

The percentage of Subversion change sets fitting neatly inside a single container 
(NCC) is greatest for DR Containers. This result is expected because DR Containers 
have the highest IC-M/IC-UQ and lowest CPC-M/CPC-UQ, which suggests that DR 
Containers better isolate the related source code files developers must edit when mak-
ing changes or fixing bugs in the software. All test containers have stronger correla-
tion and are more risk isolating than their corresponding control containers. 

In Leigh et al. (2016) we asked developers to nominate areas of the API that were 
difficult to implement and maintain. We observed that 2 of 3 nominations fitted neatly 
inside a DR Container. It is worth noting that none of the nominations could be 
matched to the API UC Containers. Some elements belonging to the nominated areas 
could be matched to Resource Containers but a Resource Container that fitted the 

API	Case	Study
Container	Type N PCC ρ α CPC-M CPC-UQ IC-M IC-UQ NCC
Control	DR	Containers 13 80.90 -0.05 >0.100 1.08 1.00 9.03 12.48 26.40
Control	UC	Containers 36 12.13 0.38 0.025 5.29 6.60 12.66 17.24 0.49
Control	Resource	Containers 23 32.81 0.04 >0.100 6.37 9.00 24.09 28.53 0.00
DR	Containers 13 80.89 0.85 0.001 1.08 1.00 35.33 55.56 41.33
UC	Containers 36 12.13 0.71 0.001 4.74 5.00 18.52 23.08 2.22
Resource	Containers 23 30.81 0.63 0.001 7.77 8.00 37.37 41.54 0.00

API	Case	Study
Risk	PredictingCoverage Element	Isolating



whole nomination could not be found. This further strengthens the evidence for DR 
Containers being the most isolating container type in the API case study. 

4.2 Case Study 2 – Server 

The second case study is concerned with the Server side modules of a COTS data 
management application. The Server architecture is documented in MS Word docu-
ments and the implementation contains 333.55 KLOC of procedural Oracle PL/SQL 
code. Table 2 shows the Server results. 
 

 
Table 2. Case Study 2 Results 
 

DR Containers again had the strongest (ρ) and most significant (α) correlation. The 
strong correlation observed for UC Containers in the API case study was not repro-
duced. DR Containers again have the lowest mean CPC-M and CPC-UQ indicating 
elements are shared between fewer DR Containers than UC and Resource Containers. 
DR Containers also have the highest IC-M and IC-UQ which again suggests DR Con-
tainers have less coupling to external elements. The change set isolating results for the 
API were not reproduced in the Server because NCC is approximately the same for 
the test containers as their corresponding controls.  

In both case studies DR Containers cover more of the design (PCC) than UC and 
Resource Containers. This means more of the risk was isolated into DR Containers. 
The much lower PCC values calculated for the server were due to more time having 
passed since the design was produced. This meant more implementation elements 
were present that were not documented in the design. 

5 Conclusion 

This paper presents the results of testing three types of risk containers to determine 
their relative efficacy at isolating the risk of implementation error-proneness at design 
time. The three types tested were Xiao et al.’s (2014) DRSpaces, adapted to split the 
architectural design by modularising design rules, and two novel containers that group 
elements supporting use cases, and elements dependent upon databases.  

Results from two industrial projects suggest DR Containers are the most effective 
at isolating the risk of implementation error-proneness at design time. This is due to 
them having the strongest correlation between container level design coupling and 
implementation error-proneness and least amount of element sharing and external 
coupling in both case studies. The results strengthen our previous evidence (Leigh et 

Server	Case	Study
Container	Type N PCC ρ α CPC-M CPC-UQ IC-M IC-UQ NCC
Control	DR	Containers 9 12.50 -0.07 >0.100 1.14 1.00 7.45 6.25 23.48
Control	UC	Containers 68 5.60 0.03 >0.100 6.16 9.70 0.04 0.00 3.26
Control	Resource	Containers 16 9.48 0.02 >0.100 2.64 5.20 9.19 10.99 0.00
DR	Containers 9 12.50 0.92 0.001 1.14 1.00 48.61 100.00 23.19
UC	Containers 68 5.60 0.32 0.005 5.69 8.00 0.00 0.00 3.26
Resource	Containers 16 9.48 0.31 0.250 2.77 6.00 15.14 6.00 0.00

Server	Case	Study
Coverage Risk	Predicting Element	Isolating



al., 2016) that DR Containers can be used for design time assessment of software 
architectures for the risk of implementation error-proneness, based on UML class 
diagrams or module dependency graphs. 

Whilst DR Containers are the most effective of the three container types tested, 
even more effective risk containers may remain to be found. Further investigation is 
also needed to understand why the high number of change sets fitting neatly inside a 
single DR Container in the API was not observed in the Server case study. Further-
more, work is required to determine whether container based risk assessment is gen-
eralizable for other risks, and if so, whether the same containers or others work best, 
and at which levels of architecture abstraction different container types are effective. 
More work is also required to determine how meaningful different container types are 
to software practitioners and how durable they are throughout the software develop-
ment life-cycle. These questions represent opportunities for future work. 

6 References 

1. Abdelmoez, W.M., Goseva-Popstojanova, K. and Ammar, H.H. (2006). Methodology for 
maintainability-based risk assessment. In RAMS'06. Annual Reliability and Maintainabil-
ity Symposium, IEEE, pp. 337-342. 

2. Bass, L., Clement, P. and Kazman, R. (2012). Software Architecture in Practice, 3rd Ed., 
Addison Wesley, Reading, USA, pp. 121-124 and p. 280. 

3. Cortellessa, V., Goseva-Popstojanova, K., Appukkutty, K., Guedem, A.R., Hassan, A., 
Elnaggar, R., Abdelmoez, W. and Ammar, H.H. (2005). Model-based performance risk 
analysis. IEEE Transactions on Software Engineering, 31(1), pp. 3-20. 

4. Goseva-Popstojanova, K., Hassan, A., Guedem, A., Abdelmoez, W., Nassar, D.E.M., 
Ammar, H. and Mili, A. (2003). Architectural-level risk analysis using UML. IEEE trans-
actions on software engineering, 29(10), pp. 946-960. 

5. Leigh, A., Wermelinger, M. and Zisman, A. (2016). An Evaluation of Design Rule Spaces 
as Risk Containers. In Proc. of the 13th Working Int. Conf. on Software Architecture 
(WICSA), IEEE, pp. 295-298. 

6. Mustafiz, S., Sun, X., Kienzle, J. and Vangheluwe, H. (2008). Model-driven assessment of 
system dependability. Journal of Software and Systems Modelling, 7(4), pp. 487-502. 

7. Said, F.H., Ammar, H.H., Valenti, M.C., Ross, A. and Lai, H.J. (2011). Security-based 
Risk Assessment for Software Architecture. West Virginia University Libraries, pp 1-126. 

8. Stevanetic, S. and Zdun, U. (2016). Exploring the Understandability of Components in Ar-
chitectural Component Models using Component Level Metrics and Participants’ Experi-
ence. In 19th Int. ACM SIGSOFT Symposium on Component-Based Software Engineer-
ing (CBSE), IEEE, pp. 1-6. 

9. Williams, L.G. and Smith, C.U. (1998). Performance evaluation of software architectures. 
In Proc. of the 1st Int. workshop on Software and performance, ACM, pp. 164-177. 

10. Wong, S., Cai, Y., Valetto, G., Simeonov, G. and Sethi, K. (2009). Design rule hierarchies 
and parallelism in software development tasks. In Proc. of the 24th Int. Conf. on Automat-
ed Software Engineering (ASE), ACM, pp. 197–208.  

11. Xiao, L., Cai, Y. and Kazman, R. (2014). Design rule spaces: A new form of architecture 
insight. In Proc. of the 36th Int. Conf. on Software Engineering, ACM, pp. 967-977. 

12. Yacoub, S.M. and Ammar, H.H. (2002). A methodology for architecture-level reliability 
risk analysis. IEEE Transactions on Software engineering, 28(6), pp. 529-547. 


