Skip to main content

Categoricity Results for Second-Order ZF in Dependent Type Theory

  • Conference paper
Interactive Theorem Proving (ITP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10499))

Included in the following conference series:

Abstract

We formalise the axiomatic set theory second-order ZF in the constructive type theory of Coq assuming excluded middle. In this setting we prove Zermelo’s embedding theorem for models, categoricity in all cardinalities, and the correspondence of inner models and Grothendieck universes. Our results are based on an inductive definition of the cumulative hierarchy eliminating the need for ordinals and transfinite recursion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, W.: Die widerspruchsfreiheit der allgemeinen mengenlehre. Math. Ann. 114, 305–315 (1937)

    Article  MathSciNet  Google Scholar 

  2. Aczel, P., Macintyre, A., Pacholski, L., Paris, J.: The type theoretic interpretation of constructive set theory. J. Symb. Log. 49(1), 313–314 (1984)

    MathSciNet  Google Scholar 

  3. Barras, B.: Sets in Coq, Coq in sets. J. Formaliz. Reason. 3(1), 29–48 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N.: Sur le théorème de Zorn. Arch. Math. 2(6), 434–437 (1949)

    Article  MathSciNet  Google Scholar 

  5. Hamkins, J.D.: Every countable model of set theory embeds into its own constructible universe. J. Math. Log. 13(02) (2013). http://www.worldscientific.com/doi/abs/10.1142/S0219061313500062

  6. Hrbacek, K., Jech, T.: Introduction to Set Theory, Third Edition, Revised and Expanded. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  7. Kreisel, G.: Two notes on the foundations of set-theory. Dialectica 23(2), 93–114 (1969)

    Article  Google Scholar 

  8. Kunen, K.: Set Theory an Introduction to Independence Proofs. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  9. Paulson, L.C.: Set theory for verification: I. from foundations to functions. J. Autom. Reason. 11(3), 353–389 (1993)

    Article  MathSciNet  Google Scholar 

  10. Scott, D.: Axiomatizing set theory. Proc. Symp. Pure Math. 13, 207–214 (1974)

    Article  MathSciNet  Google Scholar 

  11. Skolem, T.: Some remarks on axiomatized set theory. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Sourcebook in Mathematical Logic, pp. 290–301. toExcel, Lincoln, NE, USA (1922)

    Google Scholar 

  12. Smolka, G., Schäfer, S., Doczkal, C.: Transfinite constructions in classical type theory. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 391–404. Springer, Cham (2015). doi:10.1007/978-3-319-22102-1_26

    Chapter  Google Scholar 

  13. Smolka, G., Stark, K.: Hereditarily finite sets in constructive type theory. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 374–390. Springer, Cham (2016). doi:10.1007/978-3-319-43144-4_23

    Chapter  Google Scholar 

  14. Smullyan, R., Fitting, M.: Set Theory and the Continuum Problem. Dover Books on Mathematics. Dover Publications, Mineola (2010)

    MATH  Google Scholar 

  15. Suppes, P.: Axiomatic Set Theory. Dover Books on Mathematics Series. Dover Publications, Mineola (1960)

    MATH  Google Scholar 

  16. The Coq Proof Assistant. http://coq.inria.fr

  17. Uzquiano, G.: Models of second-order Zermelo set theory. Bull. Symb. Log. 5(3), 289–302 (1999)

    Article  MathSciNet  Google Scholar 

  18. Väänänen, J.: Second-order logic or set theory? Bull. Symb. Log. 18(1), 91–121 (2012)

    Article  MathSciNet  Google Scholar 

  19. Werner, B.: Sets in types, types in sets. In: Abadi, M., Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 530–546. Springer, Heidelberg (1997). doi:10.1007/BFb0014566

    Chapter  Google Scholar 

  20. Williams, N.H.: On Grothendieck universes. Compos. Math. 21(1), 1–3 (1969)

    MathSciNet  MATH  Google Scholar 

  21. Zermelo, E.: Neuer beweis für die möglichkeit einer wohlordnung. Math. Ann. 65, 107–128 (1908)

    Article  MathSciNet  Google Scholar 

  22. Zermelo, E.: Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen Über die Grundlagen der Mengenlehre. Fund. Math. 16, 29–47 (1930)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominik Kirst or Gert Smolka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kirst, D., Smolka, G. (2017). Categoricity Results for Second-Order ZF in Dependent Type Theory. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66107-0_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66106-3

  • Online ISBN: 978-3-319-66107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics