
ar
X

iv
:1

90
2.

04
62

7v
1

 [
cs

.S
E

]
 1

2
Fe

b
20

19

Time-aware Test Case Execution Scheduling for

Cyber-Physical Systems

Morten Mossige1,3, Arnaud Gotlieb2, Helge Spieker2,
Hein Meling3, and Mats Carlsson4

1 ABB Robotics, Bryne, Norway, morten.mossige@uis.no
2 Simula Research Laboratory, Lysaker, Norway, {arnaud,helge}@simula.no⋆

3 University of Stavanger, Stavanger, Norway, hein.meling@uis.no
4 RISE SICS, Kista, Sweden, mats.carlsson@ri.se

Abstract. Testing cyber-physical systems involves the execution of test
cases on target-machines equipped with the latest release of a software
control system. When testing industrial robots, it is common that the
target machines need to share some common resources, e.g., costly hard-
ware devices, and so there is a need to schedule test case execution on
the target machines, accounting for these shared resources. With a large
number of such tests executed on a regular basis, this scheduling be-
comes difficult to manage manually. In fact, with manual test execution
planning and scheduling, some robots may remain unoccupied for long
periods of time and some test cases may not be executed.
This paper introduces TC-Sched, a time-aware method for automated
test case execution scheduling. TC-Sched uses Constraint Programming
to schedule tests to run on multiple machines constrained by the tests’
access to shared resources, such as measurement or networking devices.
The CP model is written in SICStus Prolog and uses the Cumulatives
global constraint. Given a set of test cases, a set of machines, and a set of
shared resources, TC-Sched produces an execution schedule where each
test is executed once with minimal time between when a source code
change is committed and the test results are reported to the developer.
Experiments reveal that TC-Sched can schedule 500 test cases over 100
machines in less than 4 minutes for 99.5% of the instances. In addition,
TC-Sched largely outperforms simpler methods based on a greedy algo-
rithm and is suitable for deployment on industrial robot testing.

1 Introduction

Continuous integration (CI) aims to uncover defects in early stages of software
development by frequently building, integrating, and testing software systems.
When applied to the development of cyber-physical systems (CPS),5 the process
may include running integration test cases involving real hardware components

⋆ These authors are supported by the Research Council of Norway (RCN) through the
research-based innovation center Certus, under the SFI programme.

5 CPS can simply be seen as communicating embedded software systems.

http://arxiv.org/abs/1902.04627v1

on different machines or machines equipped with specific devices. In the last
decade, CI has been recognized as an effective process to improve software quality
at reasonable costs [13, 14, 27, 35].

Different from traditional testing methods, running a test case in CI requires
tight control over the round-trip time, that is, the time from when a source
code change is committed until the success or failure of the build and test pro-
cesses is reported back to the developer [15]. Admittedly, the easiest way to
minimize the round-trip time is simply to execute as many tests as possible in
the shortest amount of time. But the achievable parallelism is limited by the
availability of scarce global resources, such as a costly measurement instrument
or network device, and the compatible machines per test case, targeting different
machine architecture and operating systems. These global resources are required
in addition to the machine executing the test case and thereby require parallel
adjustments of the schedule for multiple machines.

Thus, computing an optimal test schedule with minimal round-trip time is
a challenging optimization problem. Since different test cases have different ex-
ecution times and may use different global resources that are locked during exe-
cution, finding an optimal schedule manually is mostly impossible. Nevertheless,
manual scheduling still is state-of-the-practice in many industrial applications,
besides simple heuristics. In general, successful approaches to scheduling use
techniques from Constraint Programming (CP) and Operations Research (OR),
additionally metaheuristics are able to provide good solutions to certain schedul-
ing problems. We discuss these approaches further in Section 2.

Informally, the optimal test scheduling problem (OTS) is to find an execution
order and assignment of all test cases to machines. Each test case has to be
executed once and no global resource can be used by two test cases at the same
time. The objective is to minimize the overall test scheduling and test execution
time. The assignment is constrained by the compatibility between test cases and
machines, that is, each test case can only be executed on a subset of machines.

This paper introduces TC-Sched, a time-aware method to solve OTS. Using
the Cumulatives [1,5] global constraint, we propose a cost-effective constraint
optimization search technique. This method allows us to 1) automatically filter
invalid test execution schedules, and 2) find among possible valid schedules,
those that minimize the global test execution time (i.e., makespan). To the best
of our knowledge, this is the first time the problem of optimal scheduling test
suite execution is formalized and a fully automated solution is developed using
constraint optimization techniques. TC-Sched has been developed and deployed
together with ABB Robotics, Norway.

An extensive experimental evaluation is conducted over test suites from in-
dustrial software systems, namely an integrated control system for industrial
robots and a product line of video-conferencing systems. The primary goal in
this paper is to demonstrate the scalability of the proposed approach for CI
processes involving hundreds of test cases and tens of machines, which corre-
sponds to a realistic development environment. Furthermore, we demonstrate
the cost-effectiveness of integrating our approach within an actual CI process.

2 Existing Solutions and Related Work

Automated solutions to address the OTS problem are not yet common practice.
In industrial settings, test engineers manually design the scheduling of test case
execution by allocating executions to certain machines at a given time or fol-
lowing a given order. In practice, they manage the constraints as an aggregate
and try to find the best compromise in terms of the time needed to execute the
test cases. Keeping this process manual in CI is paradoxical, since every activity
should, in principle, be automated.

Regression testing [28], i.e. the repeated testing of systems after changes
were made, in CI covers a broad area of research works, including automatic
test case generation [9], test suite prioritization and test suite reduction [14].
There, the idea of controlling the time taken by optimization processes in test
suite prioritization is not new [12]. In test suite prioritization, [38] proposed to
use time-aware genetic algorithms to optimize the order in which to execute the
test cases. Zhang et al. further refined this approach in [39] by using integer
linear programming. On-demand test suite reduction [17] also exploits integer
linear programming for preserving the fault-detection capability of a test suite
while performing test suite reduction. Cost-aware methods are also available for
selecting minimal subsets of test cases covering a number of requirements [16,23].
All these approaches participate in a general effort to better control the time
allocated to the optimization algorithms when they are used in CI processes.
Note however that test suite execution scheduling is different to prioritization or
reduction as it deals with the notion of scheduling in time the execution of all
test cases, without paying attention to any prioritization or reduction.

Scheduling problems have been studied in other contexts for decades and
an extensive body of research exists on resource-constrained approaches. The
scheduling domain is divided into distinct areas such as process execution schedul-
ing in operating systems and scheduling of workforces in a construction project.
The scheduling problem of this paper belongs to a scheduling category named
resource-constrained project scheduling problem (RCPSP; see [7, 8, 18] for an
extensive overview). RCPSP is concerned with finding schedules for resource-
consuming tasks with precedence constraints in a fixed time horizon, such that
the makespan is minimized [18]. From the angle of RCPSP, global resources can
be expressed as renewable resources which are available with exactly one unit
per timestep and can therefore only be consumed by a single job per timestep.

RCPSP has been addressed by both exact methods [22,30,32,36], as well as
heuristic methods [19, 21]. Due to the vast amount of literature, we will focus
on CP/OR-methods most closely related to the work of this paper. The clear
trend in both CP and OR is to solve such problems with hybrid approaches, like,
for instance, the work by Schutt et al. [29] or Beck et al. [3]. Furthermore, dis-
junctive scheduling problems, a subfamily of RCPSP addressing unary resources
(in our terms global resources), have been effectively solved, e.g. by lazy clause
generation [33].

RCPSP is considered to be a generalization of machine scheduling problems

where job shop scheduling (JSS) is one of the best known [20]. JSS is the special

case of RCPSP where each operation uses exactly one resource, and FJSS (flex-
ible job shop scheduling) further extends JSS such that each operation can be
processed on any machine from a given set. The FJSS is known to be NP-hard [4].

While OTS is closely related to FJSS, and efficient approaches to FJSS are
known [6, 31], there are some differences. First, in OTS, execution times are
machine-independent. Second, each job in OTS consists of only one operation,
while in FJSS one job can contain several operations, where there are precedences
between the operations. Finally, some operations additionally require exclusive
access to a global resource, preventing overlap with other operations.

3 Problem Modeling

This section contains a formal definition of the OTS problem for test suite execu-
tion on multiple machines with resource constraints. Based on this definition, we
propose a constraint optimization model using Cumulatives global constraint.

3.1 Optimal Test Case Execution Scheduling

Optimal test case scheduling6 (OTS) is an optimization problem (T ,G,M, d, g, f),
where T is a set of n test cases along with a function d : T −→ N giving each test
case a duration di; a set of global resources G along with a function g : T −→ 2G

that describes which resources are used by each test case; and a set of machines
M and a function f : T −→ 2M that assigns to each test case a subset of ma-
chines on which the test case can be executed. The function d is usually obtained
by measuring the execution time of each test case in previous test campaigns
and by over-approximating each duration to account for small variations between
the different execution machines. OTS is the optimization problem of finding an
execution ordering and assignment of all test cases to machines, such that each
test case is executed once, no global resource is used by two test cases at the
same time, and the overall test execution time, Tt, is minimized. We define Tt as
the time needed to compute the schedule (Ts) plus the time needed to execute
the schedule (C∗), Tt = Ts + C∗. Machine assignment and test case execution
ordering can be described either by a time-discretized table containing a line
per machine or a starting time for each test case and its assignment to a given
machine.

The problem addressed in this paper aims to execute each test case once
while minimizing the total duration of the execution of the test cases. That is,
to find an assignment a : T −→ M and an execution order for each machine to
run its test cases.

In its basic version, the OTS problem includes the following constraints:
Disjunctive scheduling: Two test cases cannot be executed at the same time
on a single machine.
Non-preemptive scheduling: The execution of a test case cannot be tem-
porarily interrupted to execute another test case on the same machine.

6 OTS was part of the Industrial Modelling Competition at CP 2015.

Table 1. Test suite for example.

Test Duration Executable on Use of global resource

1 2 1, 2, 3 -
2 4 1, 2, 3 1
3 3 1, 2, 3 1
4 4 1, 2, 3 1
5 3 1, 2, 3 -
6 2 1, 2, 3 -
7 1 1 -
8 2 2 -
9 3 3 -
10 5 1, 3 2

Non-shared resources: When a test case uses a global resource, no other test
case needing this resource can be executed at the same time.
Machine-independent execution time: The execution time of a test case
is assumed to be independent of the executing machine. This is reasonable for
test cases in which the time is dominated by external physical factors such as a
robot’s motion, the opening of a valve, or sending an Ethernet frame. Such test
cases typically have execution times that are uncorrelated with machine perfor-
mance. In any case, a sufficient over-approximation will satisfy the assumption.

There are cases where OTS can be trivially solved, e.g. with only one machine
executing all test cases in sequence. Indeed, the global execution time remains
unchanged, whatever the execution order. Similarly, when there are no global
resources and when test cases can be executed on any available machine, then
simply allocating the longest test cases first to the available execution machine
easily calculates a best-effort solution.

Example Considering the test suite in Table 1, we present a small example. Let
T be the test cases {1, . . . , 10}, G be the global resources {1, 2}, and M be the
machines {1, 2, 3}. The machines on which each test case in T can run is given
in Table 1. This table can be extracted by analyzing the test scripts or querying
the test management. By sharing the same resource 1, test cases 2, 3, 4 cannot
be executed at the same time, even if their execution is scheduled on different
machines. Since test case 7 can only be executed on machine 1, test case 8 on
machine 2, test case 9 on machine 3, and test case 10 on machines 1 or 3, we have
to solve a complex scheduling problem. One possible optimal schedule is given
in Figure 1, where the time needed to execute the test campaign is C∗ = 11. For
this small problem the solving time, Ts, can be assumed to be very short, so the
total execution time will be Tt ≈ C∗.

3.2 The Cumulatives Global Constraint

The Cumulatives global constraint [5] is a powerful tool for modeling cumula-
tive scheduling of multiple operations on multiple machines, where each opera-

t

1 2 3 4 5 6 7 8 9 10 11 12

m. 1

m. 2

m. 3

test 1 test 7 test 2(res. 1) test 3(res. 1)

test 4(res. 1) test 5 test 6 test 8

test 9 test 10(res. 2)

C∗

Fig. 1. An optimal solution to the scheduling problem given in Table 1. Test cases in
light gray require exclusive access to a global resource.

tion can be set up to consume a given amount of a resources, and each machine
can be set up to provide a given amount of resources.

Cumulatives([O1, . . . , On], [c1, . . . , cp])
7 constrains n operations on p ma-

chines such that the total resource consumption on each machine j does not
exceed the given threshold cj at any time [10]. An operation Oi is typically repre-
sented by a tuple (Si, di, Ei, ri,Mi)

8 where Si (resp. Ei) is a variable that denotes
the starting (resp. ending) instant of the operation, di is a constant representing
the total duration of the operation, ri is a constant representing the amount of
resource used by the operation. Si, Ei and Mi are bounded integer variables. Si

and Ei have the domains esti . . . leti, where esti denotes the operation’s earliest
starting time and leti denotes its latest ending time and leti ≥ esti + di. Mi is
bounded by the number of machines available, that is 1, . . . , p. By reducing the
domain of Mi it is possible to force a specific operation to be assigned to only
a subset of the available machines, or even to one specific machine. It is worth
noting that this formalization implicitly uses discrete time instants. Indeed, since
esti and leti are integers, a function associating each time instant to the current
executed operations can automatically be constructed. Formally, if h represents
an instant in time, we have:

rhi =

{

ri if Si ≤ h < Si + di

0 otherwise

Cumulatives holds if and only if, for every operation Oi, Si+di = Ei, and, for
all machines k and instants h,

∑

i|Mi=k r
h
i ≤ ck. In fact, Cumulatives captures

a disjunctive relation between different scenarios and applies deductive reasoning
to the possible values in the domains of its variables. This constraint provides a
cost-effective process for pruning the search space of some impossible schedules.

3.3 Modeling Test Case Execution Scheduling

This section shows how the Cumulatives constraint can be used to model a
schedule. In this small example, we disregard the use of global resources, and

7 In [5] an additional third argument to Cumulatives, Op ∈ {≤,≥} is defined. We
omit it throughout our work and always set Op =≤.

8 Throughout the paper, lower-case characters are used to represent constants and
upper-case characters are used to represent variables.

the constraints that some operations can only be executed on a subset of the
available machines, since that will be covered in Section 3.4. By the schedule
in Figure 1, we have ten operations O = {O1, . . . , O10} and three available
machines. By encoding the data from Table 1, we get O1 = (S1, 2, E1, 1,M1),
O2 = (S2, 4, E2, 1,M2) . . ., O10 = (S10, 5, E10, 1,M10), c1 = 1, c2 = 1, c3 =
1. Note that each operation has a resource consumption of one and all three
machines have a resource capacity of one. This implies that one machine can
only execute one operation at a time. Here, a resource refers to an execution
machine and not to a global resource.

3.4 Introducing Global Resources

As mentioned above, global resources corresponding to physical equipment such
as valves, air sensors, measurement instruments, or network devices, have limited
and exclusive access. To avoid concurrent access from two test cases, additional
constraints are introduced. Note that global resources must not be confused with
the resource consumption or resource bounds of operations and machines.

The Cumulatives constraint does not support native modelling of these
global resources without additional, user-defined constraints. However, there are
ways to model exclusive access to such global resources by means of further
constraints. The naive approach to prevent two operations from overlapping
is to consider constraints over the start and stop time of the operations. For
instance, if O1 and O2 both require exclusive access to a global resource, then
the constraint E1 ≤ S2 ∨ E2 ≤ S1 can be added. A less naive approach is to
use a Disjunctive(Ok) constraint per global resource k, where Ok is the set of
tasks that require that global resource, and Disjunctive prevents any pair of
tasks from overlapping.

Referring to the example in Figure 1, there are ten operations to be scheduled
on three machines, and two global resources, 1 and 2. The basic scheduling con-
straint is set up as explained in Section 3.3. Yet another way to model the global
resources is to treat each resource as a new quasi-machine 1′ corresponding to
c1′ = 1 and 2′ corresponding to c2′ = 1. For each operation requiring a global
resource, we create a “mirrored” operation of the corresponding quasi-machine:
O′

1 = {O′
2, O

′
3, O

′
4} and O′

2 = {O′
10}. Finally, we can express the schedule with

a single constraint: Cumulatives(O∪O′
1 ∪O′

2, [c1, c2, c3, c1′ , c2′]). For each op-
eration in O′

1 and O′
2 we also reuse the same domain variables for start-time,

duration and end-time. The operation O4 will be forced to have the same start-
/end-time as O′

4, while they are scheduled on two different machines 2 and 1′.

4 The TC-Sched Method

This section describes our method, TC-Sched, to solve the OTS problem. It
is a time-constrained cumulative scheduling technique, as 1) it allows to keep
fine-grained control over the time allocated to the constraint solving process
(i.e., time-constrained), 2) it encodes exclusive resource use with constraints

t

1 2 3 4 5 6 7 8 9 10 11 12

m. 1

m. 2

m. 3

m. 1′

m. 2′

test 1 test 7 test 2(res. 1) test 3(res. 1)

test 4(res. 1) test 5 test 6 test 8

test 9 test 10(res. 2)

test 2′(res. 1) test 3′(res. 1)test 4′(res. 1)

test 10′(res. 2)

Fig. 2. Modeling global resources by creating quasi-machines and Cumulatives

(i.e., constraint-based), and 3) it solves the problem by using the Cumulatives

constraint. The TC-Sched method is composed of three elements, namely, the
constraint model described in Section 4.1, the search procedure described in Sec-
tion 4.2, and the time-constrained minimization process described in Section 4.3.

4.1 Constraint Model

We encode the OTS problem with one Cumulatives(O, C) constraint, one
Disjunctive(Ok) constraint per global resource k, using the second scheme from
Section 3.4, and a search procedure able to find an optimal schedule among many
feasible schedules. Each test case i is encoded as an operation (Si, di, Ei, 1,Mi)
as explained in Section 3.2. O is simply the array of all such operations and C
is an array of 1s of length equal to the number of machines. Suppose that there
are three execution machines numbered 1, 2, and 3; then, to say that test i can
be executed on any machine, we just add the domain constraint Mi ∈ {1, 2, 3},
whereas to say that test i can only be executed on machine 1, we replace Mi

by 1. Finally, to complete the model, we introduce the variable MakeSpan rep-
resenting the completion time of the entire schedule and seek to minimize it.
MakeSpan is lower bounded by the ending time of each individual test case. The
generic model is captured by:

Cumulatives(O, C)∧

∀ global resource k : Disjunctive(Ok)∧

∀ 1 ≤ i ≤ n : Mi ∈ f(i)∧

∀ 1 ≤ i ≤ n : Ei ≤ MakeSpan ∧

Label(Minimize(MakeSpan), [S1,M1, . . . , Sn,Mn])

(1)

Note that the ending times depend functionally on the starting times. Thus, a
solution to the OTS problem can be obtained by searching among the starting
times and the assignment of test cases to execution machines.

4.2 Search Procedure

Our search procedure is called test case duration splitting, and is a branch-and-
bound search that seeks to minimize the Makespan . The procedure makes two
passes over the set of test cases. A key idea is to allocate the most demanding
test cases first. To this end, the test cases are initially sorted by decreasing ri
where ri is the number of global resources used by test case i, breaking ties by
choosing the test case with the longest duration di.

In Phase 1, two actions are performed on each test case. First, in order to
avoid a large branching factor in the choice of start time and to effectively fix
the relative order among the tasks on the same machine or resource, we split
the domain of the start variable, forcing an obligatory part of the corresponding
task, as described in [34, Section 3.6]. Next, in order to balance the load on the
machines, we choose machines in round-robin fashion. These two choices are of
course backtrackable, to ensure completeness of the search procedure.

Note that at the end of Phase 1, the constraint system effectively forms a
directed acyclic graph where every node is a task and every arc is a precedence
constraint induced by the relative order. It is well known that such constraint
systems can be solved without search by topologically sorting the start variables
and assigning each of them to its minimal value. This is Phase 2 of the search.

In this procedure, the load-balancing component has shown to be particularly
effective in a CI context and makes the first solution found a good compromise
between solving and execution time of the schedule, which is one of the key fac-
tors in CI. Our preliminary experiments concluded, that the presented strategy
provided the best compromise between cost and solution quality. Furthermore,
we tried a more precise but costlier load-balancing scheme, but it did not signifi-
cantly improve the quality. We also tried to sort the tests by decreasing di·(ri+1),
which did not significantly improve the quality, either.

4.3 Time-constrained Minimization

The third necessary ingredient of the TC-Sched method is to perform branch-
and-bound search under a time contract. That is, to settle on the schedule with
the shortest MakeSpan found when the time contract ends. When the number
of test cases grows to be several hundred, finding a globally optimal schedule
may become an intractable problem,9 but in practical applications it is often
sufficient to find a “best-effort” solution. This leads to the important question
to select the most appropriate contract of time for the minimization process, as
the time used to optimize the schedule is not available to actually execute the
schedule. We address this question in the experimental evaluation.

5 Implementation and Exploitation

This section details our implementation of the TC-Sched method and its inser-
tion into CI. We implemented the TC-Sched method in SICStus Prolog [11].

9 The general cumulative scheduling problem is known to be NP-hard [2].

TC-Sched
Test case
execution

Repository

m1

mm

Fig. 3. Integration of TC-Sched into a CI process. The test case schedule solved by
TC-Sched is transmitted for execution to the machines in the machine pool, M. The
results including actual test case durations are then feed back into the repository.

The Cumulatives constraint is available as part of the clpfd library [10]. The
clpfd library also provides an implementation of the time-constrained branch-
and-bound with the option to express individual search strategy (see Section 4.2).
Using clpfd, a generic constraint model for the TC-Sched method is designed,
which takes an OTS problem as input and returns an (quasi-)optimal schedule.

Since TC-Sched is designed to run as part of a CI process, we describe how it
can be integrated within the CI environment. Because CI environments change
and test cases and agents are constantly added or removed, TC-Sched has to be
provided with a list of test cases and available machines at runtime. Further-
more, an estimation of the test case durations on the available agents has to be
provided. This can either be gathered from historical execution data and then
(over-)estimated to account for differences in execution machines, or, for some
kinds to test suites, they are fixed and can be precisely given [26], e.g. for robotic
applications where the duration is determined by the movement of the robot.

A test campaign in a CI cycle is typically initiated upon a successful build of
the software being tested. As a first step, all machines available for test execu-
tion are identified and updated with the newly built software. Then, TC-Sched
takes as input the test cases of the test campaign and the previous test case exe-
cution times from the storage repository. After TC-Sched calculated an optimal
schedule, that schedule is handed over to a dedicated dispatch server which is re-
sponsible for distributing the test cases to the physical machines and the actual
execution. Finally, after the test execution finished, the overall result of the test
campaign is reported back to the users and the storage repository is updated
with the latest test case execution times. Of course, minimizing the round-trip

time leads to earlier notifications of the developers in case the software system
fails and helps to improve the development cycle in CI.

6 Experimental Evaluation

This section presents our findings from the experimental evaluation of TC-Sched.
To this end, we address the following three research questions:
RQ1: How does the first solution provided by TC-Sched compare with simpler
scheduling methods in terms of schedule execution time? This research question

states the crucial question of whether using complex constraint optimization is
useful despite simpler approaches being available at almost no cost to implement.
RQ2: For TC-Sched, will an increased investment in the solving time in TC-
Sched reduce the overall time of a CI cycle? This question is about finding the
most appropriate trade-off between the solving time and the execution time of
the test campaign in the proposed approach.
RQ3: In addition to random OTS problem instances, can TC-Sched efficiently
and effectively handle industrial case studies? These cases can lead to structured
problems which exhibit very different properties than random instances.

All experiments were performed on a 2.7 GHz Intel Core i7 processor with
16 GB RAM, running SICStus Prolog 4.3.5 on a Linux operating system.

6.1 Experimental Artifacts

To answer RQ1, we implemented two scheduling methods, referred to as the
random method and the greedy method.

The random method works as follows: It first picks a test case at random
and then picks a machine at random such that no resource constraint is violated.
Finally, the test case is assigned the lowest possible starting time on the selected
machine. The greedy method is more advanced. At first, it assigns test cases
by decreasing resource demands. Afterwards, test cases without any resource
demands are assigned to the remaining machines. For each assignment, the ma-
chine that can provide the earliest starting time is selected. Note that none of
the two methods can backtrack to improve upon the initial solution.

The reason we have chosen to compare with these two methods is threefold:
1) As explained in Section 2, we are not aware of any previously published work
related to test case execution scheduling, which means that there is no baseline
to compare against; 2) From cooperation with our industrial partners, we know
that this is, in the best case, the industrial state of the art (i.e., non-optimal
schedules computed manually); 3) We manually checked the results on simple
schedules and found them to be satisfactory, so they are a suitable comparison.

To answer our research questions, we have considered randomly generated
benchmarks and industrial case studies. Although there are benchmark test
suites for both JSS and FJSS, e.g., [37] or [4], they cannot be used as a com-
parison baseline. Furthermore, as our method approaches testing applications, a
thorough evaluation on data from the target domain is justifiable.

We generated a benchmark library containing 840 OTS instances.10 The li-
brary is structured by data collected from three different real-world test suites,
provided by our industrial partners: a test suite for video conferencing systems
(VCS) [24], a test suite for integrated painting systems (IPS) [26], and a test
suite for a mobile application called TV-everywhere.

VCS is a test suite for testing commercial video conferencing systems, devel-
oped by CISCO Systems, Norway. It contains 132 test cases and 74 machines.

10 All generated instances are available in CSPLib, a library of test problems for con-
straint solvers [25]

Table 2. Randomly generated test suites.

of tests 20 30 40 50 100 500

#
m
a
ch

in
es 100 - - - - - TS11

50 - - - - TS8 TS12

20 - TS2 TS4 TS6 TS9 TS13

10 TS1 TS3 TS5 TS7 TS10 TS14

The duration of test cases varies from 13 seconds to 4 hours, where the vast ma-
jority has a duration between 100 s and 800 s. The IPS test suite aims at testing
a distributed paint control system for complex industrial robots, developed at
ABB Robotics, Norway. It contains 33 test cases, with duration ranging from 1 s
to 780 s, and 16 distinct machines. There are two global resources for this test
suite, an airflow meter and a simulator for an optical encoder. TV-everywhere is
a mobile application that allows users to watch TV on tablets, smart phones, and
laptops. Its test suite only contains manual test cases, but, in our benchmark,
it serves as a useful example of a test suite with a large number of constraints
limiting the number of possible machines for each test case.

Based on data from the three industrial test suites, we composed 14 groups
of test suites, denoted TS1-TS14, with randomized assignments of test cases to
machines and exclusive usages of global resources. Let |T | be the number of test
cases, and |M | be the number of machines, and |R| = {3, 5, 10} be the number
of resources. Table 2 gives an overview of the groups of test suites. For test suite
TSx, we write TSxR3, TSxR5, or TSxR10 to indicate the number of resources.

For each of the 14 ·3 variants, we generated 20 random test suites. The dura-
tion of each test case was chosen randomly between 1 s and 800 s, and each test
case had a 30% chance of using a global resource. The number of resources was
chosen randomly between 1 and |R|. A total of 80% of the tests were considered
to be executable on all machines, while the remaining 20% were executable on
a smaller subset of machines. For these tests, the number of machines on which
each test case could be executed was selected randomly between 1% and 40%
of the number of available machines. This means that a test case was executable
either on all machines (part of the 80% group) or only on at most 40% of the
machines. In total, we generated 14 · 3 · 20 = 840 different test suites.

6.2 RQ1: How does TC-Sched compare with simpler scheduling?

To compare our TC-Sched method with the greedy and random methods, we
recorded the first solution, C∗

f , found by TC-Sched. We also recorded the last
solution, C∗

l . This is either a proved optimal solution, or the best solution found
after 5 minutes of solving time. For each of the 840 test suites, we computed the
differences between the random and greedy, C∗

f and greedy, and C∗
l and greedy,

where greedy is the baseline of 100%. The results show that random is 30%-
60% worse than greedy, which means that random can clearly be discarded from
further analysis. Our findings are summarized in Figure 4, showing the difference

TS1

R3 5 10

TS2

R3 5 10

TS3

R3 5 10

TS4

R3 5 10

TS5

R3 5 10

TS6

R3 5 10

TS7

R3 5 10

TS8

R3 5 10

TS9

R3 5 10

TS10

R3 5 10

TS11

R3 5 10

TS12

R3 5 10

TS13

R3 5 10

TS14

R3 5 10

80

100

120

D
iff
e
re
n
c
e
fr
o
m

g
re
e
d
y

[%
]

Fig. 4. The differences in schedule execution times produced by the different methods
for test suites TS1–TS14, with greedy as the baseline of 100%. The blue is the difference
between the first solution C∗

f and greedy and the red shows the difference between the
final solution C∗

l and greedy .

between TC-Sched and greedy. For all test suites but the hardest subset of TS1
and some instances of TS2, C∗

f is better than greedy. We also observe that for
larger test suites, i.e., TS11-TS14, there is only a marginal difference between
C∗

f and C∗
l . Hence, running the solver for a longer time has only little benefit.

Furthermore, to evaluate the effectiveness of the test case duration splitting
search strategy, we compared it to standard strategies available in SICStus Pro-
log’s clpfd with the same constraint model on the test suites TS1 and TS14.
The search first enumerates on the machine assignments increasingly, i.e. with-
out load-balancing, and afterwards assigns end times via domain splitting by
bisecting the domain, starting from the earliest end times. As variable selection
strategies, we tested both the default setting, selecting the leftmost variable, and
a first-fail strategy, selecting the variable with the smallest domain. Additionally,
we tried sorting the variables by decreasing resource usage.

All variants of the standard searches performed substantially worse than
test case duration splitting, with first-fail search on sorted variables being the
best. After finding an initial solution, further improvements are rare and the
makespan of the final solution is in average 4 times larger compared to using
test case duration splitting with the same time contract of 5 minutes.

6.3 RQ2: Will longer solving time reduce the total execution time?

RQ2 aims at finding an appropriate trade-off between the time spent in solving
the constraint model, Ts, and the time spent in executing the schedule, C∗. As
mentioned in Section 1, the round-trip time is critical in CI and has to be kept
low. It is therefore crucial to determine the most appropriate timeout for the
constraint optimizer. The ultimate goal being to generate a schedule which is
quasi-optimal w.r.t. total execution time, Tt = Ts + C∗.

As mentioned above, TC-Sched can be given a time-contract for finding a
quasi-optimal solution when minimizing the execution time of the schedule. More
precisely, with this time-constrained process four outcomes are possible.

No solution with proof : TC-Sched proves that the OTS problem has no so-
lution due to unsatisfiable constraints.
No solution without proof : TC-Sched was not able to find a solution within
the given time. Thus, there could be a solution, but it has not been found.
Quasi-optimal solution: At the end of the time-contract, a solution is re-
turned, but TC-Sched was interrupted while trying to prove its optimality. Such
a best-effort solution is usually sufficient in the examined industrial settings.
Optimal solution: Before the end of the time-contract, TC-Sched returns an
optimal solution along with its proof. This is obviously the most desired result.

Each solution i generated by TC-Sched can be represented by a tuple (C∗
i , Ts,i)

where C∗
i is the makespan of solution i and Ts,i is the time the solver spent

finding solution i. The goal of RQ2 is to find the value of Ts,i that minimizes
(C∗

i + Ts,i), ∀ i and use this value as the time-contract.

To answer RQ2, we executed TC-Sched on all 840 test suites, with a time-
contract of 5 minutes. During this process, we recorded all intermediate search
results to calculate the optimal value of Ts for each test suite.

Figure 5 shows the distribution in solving time for the first solution found by
TC-Sched, the last solution and also how the optimal value of Ts is distributed.
For the group of 600 test suites containing up to 100 test cases (TS1-TS10),
the results show that a solution that minimizes the total execution time, noted
Tt, is found in Ts < 5 s for 96.8% of the test suites. If we extend the search
time to Ts < 10 s, the number grows to 98% of the test suites. For this group,
the worst case optimal solving time was Ts = 122.3 s. We see that a solution is
always found in less than 0.1 s. For the group of 240 test suites containing 500
test cases (TS11-TS14), the results show that a solution that minimizes Tt is
found in Ts < 120 s for 97.5% of the test suites. A solution minimizing Tt is
found in less than 240 s for all test suites, except one instance with Tt = 264 s.

An increased investment in the solving part does not seem to necessarily pay
off if one considers the total execution time. The reported experiments give hints
to evaluate and select the optimal test contract for the solving part.

6.4 RQ3: Can TC-Sched efficiently solve industrial OTS problems?

To answer RQ3, we consider two of the three industrial case studies, namely,
IPS and VCS. These case studies are composed of automated test scripts, which
makes the application of the TC-Sched method especially pertinent.

In both case studies, the guaranteed optimal solution is already found as
the first solution in less than 200 ms. This avoids the necessity to compromise
between C∗ and Ts for these industrial applications.

When applying TC-Sched to the IPS test suite, we find the optimal solution,
C∗ = 780 s, at Ts = 10 ms. For the VCS test suite, the optimal solution,
C∗ = 14637 s is found at Ts = 160 ms.

In summary, TC-Sched can easily be applied to both VCS and IPS, and in
both cases, the best result is achieved when C∗ is minimized and Ts is neglected.

TS1

R3 R5 R10

TS2

R3 R5 R10

TS3

R3 R5 R10

TS4

R3 R5 R10

TS5

R3 R5 R10

TS6

R3 R5 R10

TS7

R3 R5 R10

0.1

1

S
o
lv
in
g
ti
m
e
T
s
[s
]

TS8

R3 R5 R10

TS9

R3 R5 R10

TS10

R3 R5 R10

TS11

R3 R5 R10

TS12

R3 R5 R10

TS13

R3 R5 R10

TS14

R3 R5 R10

1

10

60

500

S
o
lv
in
g
ti
m
e
T
s
[s
]

Fig. 5. The black boxes show the distribution in solving time, Ts, for the first solution
found by TC-Sched. The blue boxes show the distribution in Ts where the total execu-
tion time, Tt, is optimal. Finally, the red boxes show the distribution in Ts for the last
solution found by TC-Sched, which can be the optimal value or the last value found
before timeout. The timeout was set to 5min.

7 Conclusion

This paper introduced TC-Sched, a time-aware method for solving the optimal
test suite scheduling (OTS) problem, where test cases can be executed on multi-
ple execution machines with non-shareable global resources. TC-Sched exploits
the Cumulatives global constraint and a time-aware minimization process, and
a dedicated search strategy, called test case duration splitting. To our knowledge,
the OTS problem is rigorously formalized for the first time and a method is pro-
posed to solve it in CI applications. An experimental evaluation performed over
840 generated test suites revealed that TC-Sched outperforms simple scheduling
methods w.r.t. total execution time. More specifically, we showed that automatic
optimal scheduling of 500 test cases over 100 machines is reachable in less than
4 minutes for 99.5% instances of the problem. By considering trade-offs between
the solving time and the total execution time, the evaluation allowed us to find
the best compromise to allocate time-contracts to the solving process. Finally,
by using TC-Sched with two industrial test suites, we demonstrated that finding
the guaranteed optimal test execution time is possible and that TC-Sched can
effectively solve the OTS problem in practice.

Further work includes consideration of test case priorities, non-unitary share-
able global resources, as well as explicit symmetry breaking in the model. Addi-
tional evaluation and comparison against heuristic methods, such as evolutionary
algorithms, or Mixed-Integer Linear Programming could extend the presented
work and support the integration of TC-Sched in practical CI processes.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex schedul-
ing and placement problems. Mathematical and Computer Modelling 17(7), 57–73
(1993)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems, vol. 39. Springer Science & Busi-
ness Media (2001)

3. Beck, J.C., Feng, T.K., Watson, J.P.: Combining constraint programming and lo-
cal search for job-shop scheduling. INFORMS Journal on Computing 23(1), 1–14
(2011)

4. Behnke, D., Geiger, M.J.: Test instances for the flexible job shop scheduling prob-
lem with work centers. Tech. Rep. RR-12-01-01, Helmut-Schmidt University, Ham-
burg, Germany (2012)

5. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: CP 2002. LNCS, vol. 2470, pp. 63–79. Springer (2002)

6. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations research 41(3), 157–183 (1993)

7. Brucker, P., Knust, S.: Complex Scheduling (GOR-Publications). Springer-Verlag
New York, Inc., Secaucus, NJ, USA (2006)

8. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: Notation, classification, models, and methods. European Jour-
nal of Operational Research 112(1), 3–41 (1999)

9. de Campos, J., Arcuri, A., Fraser, G., de Abreu, R.: Continuous test generation:
Enhancing continuous integration with automated test generation. In: ASE 2014.
pp. 55–66. Väster̊as, Sweden (2014)

10. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: PLILP 1997. LNCS, vol. 1292, pp. 191–206 (1997)

11. Carlsson, M., et al.: SICStus Prolog user’s manual, release 4. Tech. rep., SICS -
Swedish Institute of Computer Science (2007)

12. Do, H., Mirarab, S., Tahvildari, L., Rothermel, G.: The effects of time constraints
on test case prioritization: A series of controlled experiments. IEEE Trans. on Soft.
Eng. 36(5), 593–617 (2010)

13. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration: Improving Software
Quality and Reducing Risk. Pearson Education (2007)

14. Elbaum, S., Rothermel, G., Penix, J.: Techniques for improving regression testing
in continuous integration development environments. In: FSE 2014 (2014)

15. Fowler, M., Foemmel, M.: Continuous integration (2006),
http://martinfowler.com/articles/continuousIntegration.html

16. Gotlieb, A., Marijan, D.: Flower: Optimal test suite reduction as a network maxi-
mum flow. In: ISSTA 2014. pp. 171–180. San José, CA, USA (2014)

17. Hao, D., Zhang, L., Wu, X., Mei, H., Rothermel, G.: On-demand test suite reduc-
tion. In: ICSE 2012. pp. 738–748 (2012)

18. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research
207(1), 1–14 (2010)

19. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics
for the resource-constrained project scheduling problem. European Journal of Op-
erational Research 127(2), 394–407 (2000)

http://martinfowler.com/articles/ continuousIntegration.html

20. Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project
scheduling: a survey of recent developments. Computers & Operations Research
25(4), 279–302 (1998)

21. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Re-
search 174(1), 23–37 (2006)

22. Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with
calendars. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 262–278. Springer
(2015)

23. Lin, C., Tang, K., Kapfhammer, G.: Test suite reduction methods that decrease
regression testing costs by identifying irreplaceable tests. Information and Software
Technology 56, 1322–1344 (2014)

24. Marijan, D., Gotlieb, A., Sen, S.: Test case prioritization for continuous regression
testing: An industrial case study. In: ICSM 2013. Eindhoven, The Netherlands
(2013)

25. Mossige, M.: CSPLib problem 073: Test scheduling problem.
http://www.csplib.org/Problems/prob073

26. Mossige, M., Gotlieb, A., Meling, H.: Using CP in automatic test generation for
ABB Robotics’ paint control system. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol.
8656. Springer (2014)

27. Orso, A., Rothermel, G.: Software testing: a research travelogue (2000–2014). In:
FOSE 2014. pp. 117–132. Hyderabad, India (2014)

28. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large software sys-
tems. In: FSE 2014. pp. 241–251. ACM Press, Newport Beach, CA, USA (2004)

29. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why Cumulative Decompo-
sition Is Not As Bad As It Sounds. In: CP 2009. LNCS, vol. 5732, pp. 746–761
(2009)

30. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present
value for resource-constrained project scheduling. In: CPAIOR 2012. LNCS, vol.
7514, pp. 362–378. Springer (2012)

31. Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628–644. Springer (2013)

32. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. Journal of Scheduling 16(3), 273–289 (2013)

33. Siala, M., Artigues, C., Hebrard, E.: Two clause learning approaches for disjunctive
scheduling 9255, 393–402 (2015)

34. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey,
P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer (2008)

35. Stolberg, S.: Enabling agile testing through continuous integration. In: AGILE
2009. pp. 369–374. IEEE (2009)

36. Szeredi, R., Schutt, A.: Modelling and Solving Multi-mode Resource-Constrained
Project Scheduling. In: CP 2016. LNCS, vol. 9892, pp. 877–878. Springer (2016)

37. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64(2), 278–285 (1993)

38. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Time-aware test suite
prioritization. In: ISSTA 2006. pp. 1–12. Portland, Maine, USA (2006)

39. Zhang, L., Hou, S., Guo, C., Xie, T., Mei, H.: Time-aware test-case prioritization
using integer linear programming. In: ISSTA 2009. pp. 213–224. Chicago, IL, USA
(2009)

http://www.csplib.org/Problems/prob073

	Time-aware Test Case Execution Scheduling for Cyber-Physical Systems

