Skip to main content

Solving Constraint Satisfaction Problems Containing Vectors of Unknown Size

  • Conference paper
  • First Online:
Book cover Principles and Practice of Constraint Programming (CP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10416))

Abstract

Constraint satisfaction problems (CSPs) are used to solve real-life problems with inherent structures that contain vectors for repeating sets of variables and constraints. Often, the structure of the problem is a part of the problem, since the number of elements in the vector is not known in advance. We propose a method to solve such problems, even when there is no maximal length provided. Our method is based on constructing a vector size CSP from the problem description, and solving it to get the number of elements in the vector. We then use the vector size to construct and solve a CSP that has a specific number of elements. Experimental results show that this method enables fast solving of problems that cannot be solved or even constructed by existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adir, A., Levy, R., Salman, T.: Dynamic test data generation for data intensive applications. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 219–233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34188-5_19

    Chapter  Google Scholar 

  2. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: Minizinc with strings. arXiv preprint arXiv:1608.03650 (2016)

  3. Bessiere, C.: Arc-consistency in dynamic constraint satisfaction problems. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 221–226, July 1991

    Google Scholar 

  4. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation and solution techniques for random test program generation. IBM Syst. J. 41(3), 386–402 (2002)

    Article  Google Scholar 

  5. Bin, E., Venezian, E.: Solving the address translation problem as a constraint satisfaction problem. In: CP Meets Verifiation Workshop of the 20th International Conference on Principles and Practice of Constraint Programming, September 2014

    Google Scholar 

  6. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)

    MATH  Google Scholar 

  7. Gent, I., Walsh, T.: CSPLib: a problem library for constraints. http://www.csplib.org. Accessed 24 Apr 2017

  8. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_26

    Chapter  Google Scholar 

  9. Gottlob, G., Greco, G., Mancini, T.: Conditional constraint satisfaction: logical foundations and complexity. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, pp. 88–93, January 2007

    Google Scholar 

  10. Katz, Y., Rimon, M., Ziv, A.: Generating instruction streams using abstract CSP. In: Proceedings of the 2012 Design, Automation and Test in Europe Conference, pp. 15–20, March 2012

    Google Scholar 

  11. Keppens, J., Shen, Q.: Compositional model repositories via dynamic constraint satisfaction with order-of-magnitude preferences. J. Artif. Intell. Res. 21, 499–550 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mailharro, D.: A classification and constraint-based frame-work for configuration. Artif. Intell. Eng. Des. Anal. Manuf. J. 12(4), 383–397 (1998)

    Google Scholar 

  14. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction. In: Proceedings of the Eighth National Conference on Artificial Intelligence, pp. 25–32, July 1990

    Google Scholar 

  15. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.: Constraint-based random stimuli generation for hardware verification. AI Mag. 28(3), 13–30 (2007)

    Google Scholar 

  16. Sabin, M., Freuder, E.C., Wallace, R.J.: Greater efficiency for conditional constraint satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 649–663. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_44

    Chapter  Google Scholar 

  17. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution framework for JavaScript. In: IEEE Symposium on Security and Privacy, pp. 513–528, May 2010

    Google Scholar 

  18. Schenner, G., Taupe, R.: Encoding object-oriented models in MiniZinc. In: Fifteenth International Workshop on Constraint Modelling and Reformulation, September 2016

    Google Scholar 

  19. Scott, J.D., Flener, P., Pearson, J.: Constraint solving on bounded string variables. In: Proceedings of the 12th International Conference on Integration of AI and OR Techniques in Constraint Programming, pp. 375–392, May 2015

    Google Scholar 

  20. Soininen, T., Gelle, E., Niemelä, I.: A fixpoint definition of dynamic constraint satisfaction. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 419–433. Springer, Heidelberg (1999). doi:10.1007/978-3-540-48085-3_30

    Google Scholar 

  21. Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint satisfaction problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 88–102. Springer, Heidelberg (1995). doi:10.1007/3-540-60299-2_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Bin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bilgory, E., Bin, E., Ziv, A. (2017). Solving Constraint Satisfaction Problems Containing Vectors of Unknown Size. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66158-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66157-5

  • Online ISBN: 978-3-319-66158-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics