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Conjunctions of Among Constraints

Vı́ctor Dalmau

Dept. of Information and Communication Technologies, Universitat Pompeu Fabra

Abstract. Many existing global constraints can be encoded as a con-
junction of among constraints. An among constraint holds if the number
of the variables in its scope whose value belongs to a prespecified set,
which we call its range, is within some given bounds. It is known that
domain filtering algorithms can benefit from reasoning about the inter-
action of among constraints so that values can be filtered out taking into
consideration several among constraints simultaneously. The present pa-
per embarks into a systematic investigation on the circumstances under
which it is possible to obtain efficient and complete domain filtering algo-
rithms for conjunctions of among constraints. We start by observing that
restrictions on both the scope and the range of the among constraints are
necessary to obtain meaningful results. Then, we derive a domain flow-
based filtering algorithm and present several applications. In particular,
it is shown that the algorithm unifies and generalizes several previous
existing results.

1 Introduction

Global constraints play a major role in constraint programming. Very informally,
a global constraint is a constraint, or perhaps more precisely, a family of con-
straints, which is versatile enough to be able to express restrictions that are
encountered often in practice. For example, one of the most widely used global
constraints is the ’All different’ constraint, AllDiff(S) where S = {x1, . . . , xn}
is a set of variables, which specifies that the values assigned to the variables in
S must be all pairwise different. This sort of restriction arises naturally in many
areas, such as for example scheduling problems, where the variables x1, . . . , xn

could represent n activities that must be assigned different times of a common
resource.

Besides is usefulness in simplifying the modeling or programming task, global
constraints also improve greatly the efficiently of propagation-search based solvers.
This type of solver performs a tree search that constructs partial assignments
and enforces some sort of propagation or local consistency that prunes the space
search. Different forms of consistency, including (singleton) bounds consistency,
(singleton, generalized) arc-consistency, path consistency and many others, can
be used in the propagation phase. One of the most commonly used forms of lo-
cal consistency is domain consistency, also called generalized arc-consistency. A
domain consistency algorithm keeps, for every variable v, a list, L(v), of feasible
values, which is updated, by removing a value d from it, when some constraint
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in the problem guarantees that v cannot take value d in any solution. One of
the key reasons of the success of global constraints is that they enable the use
of efficient filtering algorithms specifically tailored for them.

Several constraints studied in the literature including AllDiff[24],GCC[27],
Symmetric-GCC [21], Sequence [6], GlobalSequencing [34], Ordered-

Distribute [28], and CardinalityMatrix [33] can be decomposed as the
conjunction of a simpler family of constraints, called among constraints [6]. An
among constraint has the form Among(S,R,min,max) where S is again a set
of variables called the scope, R is a subset of the possible values, called the range,
and min,max are integers This constraint specifies that the number of variables
in S that take a value in R must be in the range {min, . . . ,max}. For example,
the constraint AllDiff(S) can be expressed as the conjunction of constraints
Among(S, {d1}, 0, 1), . . . ,Among(S, {dk}, 0, 1) where d1, . . . , dk are the set of
all feasible values for the variables in S.

Besides encoding more complex global cardinality constraints, conjunctions
of among constraints, (CAC), appear in many problems, such as Sudoku or latin
squares. In consequence,CACs have been previously studied [10,32,38], specially
the particular case of conjunctions of AllDiff constraints [2,3,9,13,22,23,25].
Although deciding the satisfiability of an arbitrary conjunction of among con-
straints is NP-complete [32] this body of work shows that sometimes there
are benefits in reasoning about the interaction between the among constraints.
Hence, it is important to understand under which circumstances among con-
straints can be combined in order to endow CSP solvers with the ability to
propagate taking into consideration several among constraints simultaneously.
The aim of the present paper is to contribute to this line of research. To this
end we first observe that restrictions on both the scope and the range of the
among constraints are necessary to obtain meaningful results. Then we embark
in a systematic study of which such restrictions guarantee efficient propagation
algorithms. In particular, we introduce a general condition such that every CAC

satisfying it admits an efficient and complete domain filtering algorithm. This
condition basically expresses that the matrix of a system of linear equations
encoding the CAC instance belongs to a particular class of totally unimodu-
lar matrices known as network matrices. This allows to reformulate the domain
filtering problem in terms of flows in a network graph and apply the method-
ology derived by Régin [30,31]. The algorithm thus obtained, although simple,
unifies and generalizes existing domain filtering algorithms for several global con-
straints, including AllDiff, GCC, Sequence, Symmetric-GCC, Ordered-

Distribute as well as for other problems expressed as conjunctions of among
constraints in [29,32]. A nice feature of our approach is that it abstracts out the
construction of the network flow problem, so that when exploring a new CAC

one might leave out the usually messy details of the design of the network graph
and reason purely in combinatorial terms.

Several filtering methods have been obtained by decomposing a global con-
straint into a combination of among constraints. For example the first polynomial-
time filtering algorithm for the Sequence constraint [38] is obtained explicitely
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in this way. However, there have been very few attempts to determine sistemat-
ically which particular conjunctions of among constraints allow efficient filtering
algorithms. The seminal paper in this direction is [31] which identifies several
combinations of among and GCC constraints that admit a complete and effi-
cient domain filtering algorithm (see Section 6 for more details). Our approach
is more general as it subsumes the tractable cases introduced in [31]. Another
closely related work is [29] where two tractable combinations of boolean CACs,
called TFO and 3FO, are identified. The approach in [29] differs from ours in
two aspects: it deals with optimization problem and also considers restricions on
the min and max parameters of the among constraints while we only consider
restriction on the scope and range. A different family of CACs has been inves-
tigated in [10] although the work in [10] focuses in bound consistency instead of
domain consistency.

Other approaches to the design of filtering algorithms for combinations (but
not necessarily conjunctions) of global (but not necessarily among) constraints
are described in [4,7,8]. The method introduced in [4] deals with logical combi-
nations of some primitive constraints but differs substantially from ours in the
sense that it cannot capture a single among constraint. The work reported in
[7,8] does not guarantee tractability.

Several proofs are omiitted due to space restrictions. They can be found in
the Appendix.

2 Preliminaries

A conjunction of among constraints, (CAC) is a tuple (V,D,L, C) where V is
a finite set whose elements are called variables, D is a finite set called domain,
L : V → 2D is a mapping that sends every variable v to a subset of D, which we
call its list, and C is a finite set of constraints where a constraint is an expression
of the form Among(S,R,min,max) where S ⊆ V is called the scope of the
constraint, R ⊆ D is called range of the constraint, and min,max are integers
satisfying 0 ≤ min ≤ max ≤ |S|.

A solution of (V,D,L, C) is a mapping s : V → D such that s(v) ∈ L(v) for
every variable v ∈ V and min ≤ |{v ∈ S | s(v) ∈ R}| ≤ max for every constraint
Among(S,R,min,max) in C.

Example 1. (GCC andAllDiff constraints) The global cardinality constraint1,
GCC [27] corresponds to instances (V,D,L, C) where all the constraints have
the form Among(V, {d},min,max) with d ∈ D. The AllDiff constraint is the
particular case obtained when, additionally, min = 0 and max = 1.

Let I = (V,D,L, C) be a CAC. We say that a value d ∈ D is supported for a
variable v ∈ V if there is a solution s of I with s(v) = d. In this paper we focus in
the following computational problem, which we will call domain filtering: given
a CAC, compute the set of all the non supported values for each of its variables.

1 We want to stress here that a global constraint is not a single constraint but, in fact,
a family of them.
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This definition is motivated by the following scenario: think of (V,D,L, C) as
defining a constraint which is part of a CSP instance that is being solved by a
search-propagation algorithm that enforces domain consistency. Assume that at
any stage of the execution of the algorithm, L encodes the actual feasible values
for each variable in V . Then, the domain filtering problem is basically the task
of identifying all the values that need to be pruned by considering the constraint
encoded by (V,D,L, C).

3 Network hypergraphs

An hypergraph H is a tuple, (V (H), E(H)), where V (H) is a finite set whose
elements are called nodes and E(H) is set whose elements are subsets of V (H),
called hyperedges. An hypergraph is totally unimodular if its incidence matrixM
is totally unimodular, that is, if every square submatrix of M has determinant
0, +1, or −1. In this paper we are concerned with a subset of totally unimodular
hypergraphs called network hypergraphs. In order to define network hypergraph
we need to introduce a few definitions.

An oriented tree T is any directed tree obtained by orienting the edges of
an undirected tree. A path p in T is any sequence x1, e1, x2, . . . , en−1, xn where
x1, . . . , xn are different vertices of T , e1, . . . , en−1 are edges in T and for every
1 ≤ i < n, either ei = (xi, xi+1) or ei = (xi+1, xi). The polarity of an edge
e ∈ E(T ) wrt. p is defined to be +1 (or positive) if e = (xi, xi+1) for some
1 ≤ i < n, −1 (or negative) if e = (xi+1, xi) for some 1 ≤ i < n, and 0 if e
does not appear in p. A path p has positive (resp. negative) polarity if all its
edges have positive (resp. negative) polarity. Paths with positive polarity are also
called directed paths. Since an oriented tree does not contain symmetric edges,
we might represent a path by giving only its sequence of nodes x1, . . . , xn.

We say that an oriented tree T defines an hypergraph H if we can associate
to every hyperedge h ∈ E(H) an edge eh ∈ E(T ) and to every node v ∈ V (H) a
directed path pv in T such that for every v ∈ V (H) and h ∈ E(V ), v ∈ h if and
only if eh belongs to pv. We say that an H is a network hypergraph if there is
an oriented tree that defines it.

Example 2. The hypergraph H with variable-set {v1, . . . , v6} and hyperedge-set
{h1, . . . , h5} given in Figure 1a is a network hypergraph as it is defined by tree
T given in Figure 1b where we have indicated, using labels on the edges, the
edge in T associated to every hyperedge in H . We associate to every variable vi,
1 ≤ i ≤ 6 the directed path s(i−1 mod 2), r, t(i−1 mod 3) in T . It can be readily
checked that under this assignment T defines H .

Sometimes, it will be convenient to assume that the tree T defining H is
minimal in the sense that no tree with fewer nodes defines H . Minimal trees
have the nice property that every edge e in T is associated with some hyperedge
ofH . Indeed, assume that some edge e = (x, y) is not associated to any hyperedge
in H , then one could find an smaller tree T defining H by contracting edge e,
that is, by merging x and y into a new node z that has as in-neighbours the
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Fig. 1b: Oriented tree T

union of all in-neighbours of x and y and, as out-neighbours, the union of all
out-neighbours of x and y.

Since the vast majority of the trees defined in this paper will be oriented
we shall usually drop ’oriented’. So, unless, otherwise explicitly stated, a tree is
always an oriented tree. Finally, we note that one can decide whether a given
hypergraph is a network hypergraph in time O(e3v2) where e is the number of
hyperedges and v is the number of nodes (see chapter 20 in [35] for example).

4 Restricting only the scope or the range

It has been shown by Régin [32] that the domain filtering problem for CACs
is NP-hard. Still, efficient algorithms are known for some particular cases. It
seems natural to start by asking which tractable subcases of the problem can
be explained by considering only the scopes of the constraints. This question
has a close similarity to the study of the so-called structural restrictions of the
CSP (see, for example [18] for a survey) and, not surprisingly, it can be solved
by applying results developed there. Indeed, it follows easily from a result of
Färnquivst and Jonsson [12] that, modulo some mild technical assumptions, if
one allows arbitrary ranges in constraints, then the domain filtering problem
is solvable in polynomial time if and only if the hypergraph of the scopes of
the constraints has bounded tree-width (see Appendix A for precise statement
and the proof). This result, although delineates exactly the border between
tractability and intractability, turns out to be not very useful in explaining the
tractability of global constraints. This is due to the fact that global cardinality
constraints defined by conjunctions of among constraints usually have constraints
with large scopes and the cardinality of the scope in a constraint is a lower bound
on the tree-width of its scope hypergraph.

One can also turn the attention to the range of constraints and inquiry
whether there are tractable subcases of the problem that can be explained only
by the range of the constraints. Here, again the response is not too useful. In-
deed, it is very easy to show (see again Appendix A) that as soon as we allow
some non-trivial range R (that is some range different than the empty set and
than the whole domain) and arbitrary scopes in the among constraints, then the
domain filtering problem becomes NP-complete.

In view of this state of affairs it is meaningful to consider families of con-
junctions of among constraints that are obtained by restricting simultaneously
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the scope and the range of the constraints occurring in them. This is done in the
next section.

5 A flow-based algorithm

Let I = (V,D,L, C) be conjunction of among constraints. We will deal first with
the case in which D is a boolean, say D = {0, 1}. Hence, we can assume that
every constraint Among(S,R,min,max) in C satisfies R = {1} since, if R = {0}
it can be reformulated as Among(S, {1}, |S|−max, |S| −min). We also assume
that L(v) = {0, 1} for every v ∈ V since if L(v) 6= {0, 1} we could obtain easily
an equivalent instance without variable v.

It is easy to construct a system of linear equations whose feasible integer
solutions encode the solutions of I. Let v1, . . . , vn be the variables of I and let
Cj = (Sj , {1},minj,maxj), j = 1, . . . ,m, be its constraints. The system has
variables xi(1 ≤ i ≤ n), yj(1 ≤ j ≤ m) and the following equations:

yj +
∑

vi∈Sj

xi = maxj j = 1, . . . ,m

0 ≤ yj ≤ maxj −minj j = 1, . . . ,m

0 ≤ xi ≤ 1 i = 1, . . . , n

which we express in matrix form as

Mz = a

0 ≤ z ≤ c

with zT = (x1, . . . , xn, y1, . . . , ym) (see Example 3).
If M is totally unimodular then one can perform domain filtering in polyno-

mial time. Indeed, for every vi ∈ V and d ∈ L(v), we might decide whether d is
a supported value for v as follows: add equation xi = d to the system and decide
whether there exists a feasible solution of its linear relaxation using a LP solver.
It follows from total unimodularity (see Theorem 19.1 in [35] for example) that
such a feasible solution exists if and only if d is a support for v.

However, this approach implies invoking O(n) times a LP solver, which might
be too expensive to be practical, since, in addition, a propagation-based algo-
rithm might call a domain filtering algorithm many times during its execution.
To overcome this difficulty we shall require further conditions on the matrix
M . To this end, we define the hypergraph associated to instance I to be the
hypergraph H with V (H) = V and E(H) = {Sj | 1 ≤ j ≤ m}.

Now, assume that H is a network hypergraph defined by a tree T . In this
case, one can use specific and more efficient methods like the network simplex
algorithm (see for example [1]) instead of a general purpose LP solver. However,
it is still possible to do better (and avoid the O(n) calls to the network simplex
algorithm) by transforming it into a maximum flow problem. This idea has been
used in [26] to obtain a domain filtering algorithm for the Sequence constraint.
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More precisely, [26] deals with the particular case of network matrices defined
by a directed path. Our approach draws upon [26] and generalizes it to network
matrices defined by arbitrary trees. This is done as follows.

Let P be the incidence matrix of T . That is, let t1, . . . , tm+1 be an arbitrary
ordering of nodes in T and define P to be the ((m+ 1)×m)-matrix where Pi,j

is +1 if edge eSj
starts at ti, −1 if eSj

ends at ti, and 0 otherwise.
Let r be a m-ary (column) vector and let p be a path in T . We say that r is

the indicator vector of p if for every j = 1, . . . ,m, rj is the polarity of eSj
wrt.

p. The next observation follows directly from the definitions.

Observation 1 Let p be a path in T and let r be its indicator vector. Then, the
ith entry, (Pr)i, of Pr, is +1 if ti is the first node in p, −1 if ti is the last node
in p, and 0 otherwise.

The next two lemmas follow directly from the previous observation.

Lemma 1. P has full rank.

Proof. Let P ′ be the (m × m) matrix obtained by removing the last row
(corresponding to vertex tm+1) and consider the (m × m)-matrix Q such that
for every i = 1, . . . ,m, the ith column of Q, which we shall denote as Q∗,i, is
the indicator vector of the unique path in T starting at ti and entding at tm+1.
It follows from Observation 1 that P ′Q is the identity matrix.

Then, since P has full rank we can obtain an equivalent system PMz = Pa
by multiplying both sides of Mz = a by P . Let N = PM and b = Pa (see
Example 3).

Lemma 2. In every column of N one entry is +1, one entry is −1, and all the
other entries are 0.

Proof. It is only necessary to show that every column, M∗,k, k = 1, . . . ,m+n of
M is the indicator vector of some directed path in T . If the variable corresponding
to the k-column is xi for some 1 ≤ i ≤ n then by construction M∗,k is the
indicator column of the path associated to vi in T . Otherwise, if the variable
corresponding to column k is yj for some 1 ≤ j ≤ m then M∗,k is the indicator
vector of the directed path containing only edge eSj

.

Hence, matrix N is the incidence matrix of a directed graph G. Note that, by
definition, G contains an edge ek, k = 1, . . . ,m + n for each variable zk and
a node uj, j = 1, . . . ,m + 1 for each row in N (that is, for every node in T ).
Define the capacity of every edge ek to be ck. Then, feasible solutions of the
system correspond precisely to flows where every node uj has a supply/demand
specified by bj (more precisely, node uj has a demand of bj units if bj > 0 and
a suply of −bj units if bj < 0). It is well know that this problem can be reduced
to the (standard) maximum flow problem by adding new source and sink nodes
s, t and edges from s to uj with capacity bj whenever bj > 0 and from uj to t
with capacity −bj whenever bj < 0.
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Example 3. Let I be a boolean instance with variables {v1, . . . , v6} and con-
straints: C1 = Among({v1, v4}, {1}, 0, 1), C2 = Among({v2, v5}, {1}, 0, 1),
C3 = Among({v3, v6}, {1}, 0, 1), C4 = Among({v1, v3, v5}, {1}, 1, 1),
C5 = Among({v2, v4, v6}, {1}, 1, 1).

The specific values for M , a and c of the ILP formulation of I are:

y1 y2 y3 x1 x2 x3 x4 x5 x6

































C1 1 0 0 1 0 0 1 0 0 1
C2 0 1 0 0 1 0 0 1 0 1

M = C3 0 0 1 0 0 1 0 0 1 a = 1
C4 0 0 0 1 0 1 0 1 0 1
C5 0 0 0 0 1 0 1 0 1 1

( )

cT = 1 1 1 1 1 1 1 1 1

Note that since mini = maxi for i = 4, 5 we did not need to add the slack
variables y4 and y5. The hypergraph of this instance is precisely the hypergraph
H in Example 2. In particular, hi is the hypererdge corresponding to the scope
of constraint Ci for i = 1, . . . , 5. The matrix P obtained from the tree T defining
H is:

h1 h2 h3 h4 h5

























t0 −1 0 0 0 0
t1 0 −1 0 0 0
t2 0 0 −1 0 0
s0 0 0 0 1 0
s1 0 0 0 0 1
r 1 1 1 −1 −1

Multiplying M and c by P we obtain:

y1 y2 y3 x1 x2 x3 x4 x5 x6

















































t0 −1 0 0 −1 0 0 −1 0 0 −1
t1 0 −1 0 0 −1 0 0 −1 0 −1

N = PM = t2 0 0 −1 0 0 −1 0 0 −1 b = Pa = −1
s0 0 0 0 1 0 1 0 1 0 1
s1 0 0 0 0 1 0 1 0 1 1
r 1 1 1 0 0 0 0 0 0 1

The feasible solutions of the previous LP correspond to the feasible flows of
the network in Figure 2a, where nodes s0, s1 and r have a supply of one unit of
flow and nodes y0, y1, y2 have a demand of one unit of flow. Figure 2b contains
the result of transforming the network in Figure 2a to a (standard) max flow
problem. In both networks all edges have capacity 1.

It follows from this construction that for every 1 ≤ i ≤ n and every d = {0, 1},
there is a solution s of I with s(vi) = d if and only if there is a saturating flow
(that is, a flow where all the edges leaving s or entering t are at full capacity)
such that the edge associated to xi carries d units of flow. Régin [30,31] has
shown that this later condition can be tested simultaneously for all 1 ≤ i ≤ n
and d ∈ {0, 1} by finding a maximal flow and computing the strongly connected
components of its residual graph. Finding a maximal flow of a network with
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integral capacities can be done in time O(min(v2/3, e1/2)e log(v2/e) log u) using
Goldberg and Rao’s algorithm [17] where v is the number of vertices, e is the
number of edges, and u is the maximum capacity of an edge. Computing the
strongly connected components of the residual graph takes O(v + e) time using
Tarjan’s algorithm [36]. By construction, the network derived by our algorithm
satisfies e ≤ n+ 2m and v ≤ m+ 1. Furthermore, it is not difficult to see that
u ≤ mn. Indeed, note that the capacity of any edge is either some entry, ci, of
vector c or the absolute value of some entry, bi, of vector b. It follows directly
from the definition of c, that all its entries are at most n. As for b, the claim
follows from the fact that b = Pa where, by construction, a has m entries where
every entry is in the range {1, . . . , n} and every entry in P is in {−1, 0, 1}.

Hence, if we define f(n,m) to be min(m2/3, (n+m)1/2)(n+m) log(m2/(n+
m)) logmn) we have:

Lemma 3. There is a domain filtering algorithm for conjunctions of boolean
among constraints whose associated hypergraph is a network hypergraph, which
runs in time O(f(n,m)) where n is the number of variables and m is the number
of constraints, assuming the instance is presented as a network flow problem.

It is customary, when analizying the time complexity of domain filtering to
report, additionally, the so-called time complexity ’down a branch of a search
tree’ which consists in the aggregate time complexity of successive calls to the
algorithm, when at each new call, the list of some of the variables has been
decreased (as in the execution of a propagation-search based solver). It was
observed again by Régin [31] that, in this setting, it is not necessary, to solve
the flow problem from scratch at each call, leading to a considerable redution
in total time. Applying the scheme in [31], we obtain that the time complexity
down a branch of a search tree of our algorithm is O(n(n+m)). We ommit the
details because they are faily standard (see [31]).

There are minor variants (leading to the same asymptotic complexity) ob-
tained by modifying the treatment of the slack variables. Here we will dis-
cuss two of them. In the first variant, used in [26], one encodes a constraint
Cj = (Sj , {1},minj,maxj) with two equations yj +

∑
vi∈Sj

xi = maxj , and

−zj +
∑

vi∈Sj
xi = minj where yj and zj are new slack variables satisfying

0 ≤ yj, zj . This encoding produces a network that has m more nodes and
edges. In a second variant, one encodes a constraint Cj with the equation
−yj +

∑
vi∈Sj

xi = 0 where yj satisfies minj ≤ yj ≤ maxj . Under this encod-
ing, our approach produces a network problem where, instead of having nodes
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with specified suply or demand, we have edges with minimum demand. The
asymptotic time bounds in all variants are identical.

If the instance is not presented as a network flow problem then one would
need to add the cost of transforming the instance into it. However this cost
would be easily amortized as a domain filtering algorithm is invoked several
times during the execution of a constraint solver2. Furthermore, in practical
scenarios, the conjunction of among constraints will encode a global constraint
from a catalog of available global constraints. Hence, it is reasonable to assume
that the formulation of the global constraint as a network flow problem can be
precomputed.

This approach can be generalized to non-boolean domains via boolean en-
coding. The choice of boolean encoding might depend on the particular instance
at hand but for concreteness we will fix one. The canonical booleanization (see
Example 4) of a conjunction I = (V,D,L, C) of among constraints with |D| ≥ 3
is the boolean instance (V ×D,{0,1}, Lb, Cb) where Lb(v, d) = {0, 1} if d ∈ L(v)
and {0} otherwise, and Cb contains:

– Among(S×R, {1},min,max) for every constraintAmong(S,R,min,max) ∈
C, and

– Among({v}×D, {1}, 1, 1) for every variable v ∈ V . This family of constraints
are called non-empty assignment constraints.

That is, the intended meaning of the encoding is that (v, d) ∈ V × D is true
whenever v takes value d.

We define the hypergraph H associated to I to be the hypergraph associ-
ated to the canonical booleanization of I. That is, V (H) is V × D and E(H)
contains hyperedge {(v, d) | v ∈ S, d ∈ R} = S × R for every constraint
Among(S,R,min,max) in C, and hyperedge {(v, d) | d ∈ D} = {v} × D for
every variable v ∈ V . Thus, for arbitrary domains, we have:

Corollary 1. There is a domain filtering algorithm for conjunctions (V,D,L, C)
of among constraints whose associated hypergraph is a network hypergraph, which
runs in time O(f(n,m)) where n =

∑
v∈V |L(v)| and m = |C| + |V |, assuming

the instance is presented as a network flow problem.

Proof. It just follows from observing that the canonical booleanization of in-
stance (V,D,L, C) has n =

∑
v∈V |L(v)| variables and m = |C|+ |V | constraints.

6 Some applications

The aim of this section is to provide evidence that the kind of CACs covered
by the approach developped in Section 5 are often encountered in practice. To

2 In fact, as shown in [30,31], it is only necessary to solve the max flow problem during
the first invocation so it could be argued that a more realistic bound on the running
time of the algorithm is O(n+m).
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this end, we shall revisit several families of CACs for which domain filtering
have been previously introduced and show how they can solved and, in some
cases generalized, using our algorithm. Furthermore, we shall compare, whenever
possible, the time complexity bounds of our algorithm with other state-of-the-art
algorithms for the same problem. Like other flow-based algorithms, the algorithm
proposed here has very good time complexity down a branch of the search tree.
However, we will only consider in our comparison the cost of calling the algorithm
just once. This is due to the fact that, once the size of the network produced
is under a certain threshold, the total cost down a branch of the search tree is
dominated by the cost of the incremental updates and, hence, it cannot be used to
assess the comparative quality of different flow-based algorithms. Furthermore,
we will try to compare, whenever possible, the parameteres of the obtained
network flow problem (number of nodes, edges, capacities of the edges) instead
of the actual running time since the latter is dependend on the choice of the max-
flow algorithm. Somewhat surprisingly, in many of the cases, even if we did not
attempt any fine-tuning, the network produced by the algorithm is essentially
equivalent to the network produced by specific algorithms.

6.1 Disjoint constraints

As a warm up we shall consider the GCC and AllDiff constraints. We have
seen in Example 1 that both can be formulated as a conjunction (V,D,L, C)
of among constraints of the form Cd = Among(V, {d},mind,maxd), d ∈ D.
Note that both have the same associated hypergraph H with node-set, V ×D,
and edge set E(H) containing hyperedge hv = {v} × D for every v ∈ V , and
hyperedge hd = V × {d}, for every d ∈ D.

It is not difficult to see (see Example 4) that H is defined by the tree T
defined as follows: The node-set of T consists of {r} ∪ V ∪D where r is a new
node. The edge-set of T contains an edge from every v ∈ V to r (associated
to hv) and from r to every node d ∈ D (associated to hd). Consequently, both
GCC and AllDiff are solvable by our algorithm. The network for the GCC

using the abovementioned tree T has e = O(|V ||D|) edges, v = |V | + |D| + 3
nodes, and the maximum capacity, u, of an edge is at most |D||V |. Hence, it
follows that the total running time of our algorithm for the GCC constraint
is O(min(v2/3, e1/2)e log(v2/e) logu). Régin’s algorithm [31] has a O(|V |2|D|)
complexity which is better when |V | ∈ O(|D|2/3) but the comparison between the
two bounds is not very meaningfull because it mainly reflects a different choice
max flow algorithm. Indeed, the network produced by both algorithms are very
similar. In particular, the network obtained using the second variant discussed
after Lemma 3 is essentially the same described in [31]. The only difference
is that the network obtained by our algorithm contains one extra node. In the
particular case of the AllDiff constraint, [30] shows how to produce a bipartite
matching problem that can be solved using specialized algorithms, such as [20],
leading to a total time complexity of O(|V |5/2) which is better than ours.
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Example 4. Consider the constraint AllDiff(s0, s1) where the list of each vari-
able contains the following three values: t0, t1, t2. Then, AllDiff(s0, s1) is en-
coded as a CAC I with the following constraints: Among({s0, s1}, {t0}, 0, 1),
Among({s0, s1}, {t1}, 0, 1), Among({s0, s1}, {t2}, 0, 1).

The canonical booleanization of I has variables {s0, s1} × {t0, t1, t2} and
constraints C1 = Among({s0, s1} × {t0}, {1}, 0, 1), C2 = Among({s0, s1} ×
{t1}, {1}, 0, 1), C3 = Among({s0, s1} × {t2}, {1}, 0, 1), C4 = Among({s0} ×
{t0, t1, t2}, {1}, 1, 1), and C5 = Among({s1}×{t0, t1, t2}, {1}, 1, 1). Observe that
this instance is, under the renaming vi 7→ (si−1 mod 2, ti−1 mod 3), the same
instance than we have considered previously in Example 3. The network flow
problem that our algorithm derives for this instance (see Example 3) is almost
identical to the one derived in [31]. Indeed, the network obtained in [31] does
not have node r and, instead, requires that the demand of nodes t0, t1, t2 is at
most one (instead of exactly one).

A simple analysis reveals that the same approach can be generalized to in-
stances (V,D,L, C) satisfying the following disjointedness condition: for every
pair of constraints Among(S,R,min,max) and Among(S′, R′,min′,max′) in
C, (S × R) ∩ (S′ × R′) = ∅. The tractability of such instances was, to the best
of our knowledge, not known before. The particular case in which R ∩ R′ = ∅
has been previously shown in [32] using a different approach. The proof given in
[32] does not construct a flow problem nor gives run-time bounds so we ommit
a comparison.

6.2 Domains consisting of subsets

Consider the following generalization of our setting where in a CAC (V,D,L, C)
every variable v must be assigned to a subset of L(v) (instead of a single element).
In this case, the semantics of the among constraint need to be generalized as
well. Instead, we will say a constraint Among(S,R,min,max) is satisfied by a
mapping s : V → 2D if min ≤

∑
v∈S |s(v) ∩ R| ≤ max. To avoid confusion we

shall refer to this variant of the among constraint as set among constraint.
For example, the Symmetric-GCC constraint [21] is precisely a conjunc-

tion (V,D,L, C) of set among constraints of the form Among(V, {d},min,max)
where d is a singleton which, additionally, might contain constraints of the form
Among({v}, D,min,max) restricting the size of the image of a variable v.

It is fairly easy to reduce a conjunction of set among constraints I = (V,D,L, C)
to a conjunction of (ordinary) among constraints over a boolean domain. In-
deed, one only needs to construct the instance (V × D,{0,1}, Lb, Cb) where
Lb(v, d) = {0, 1} if d ∈ L(v) and {0} otherwise, and Cb contains Among(S ×
R, {1},min,max) for every constraint Among(S,R,min,max) ∈ C. Note that
the instance thus constructed corresponds exactly to the result of removing the
non-empty assignment constraints to the canonical booleanization of I (now
regarded as a conjunction of ordinary among constraints). It is then easy to
observe that if (V,D,L, C) encodes a Symmetric-GCC constraint then the re-
sulting boolean instance has the same hypergraph, H , than the GCC constraint
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and hence, H is a network matrix. The algorithm in [21] follows closely that
in [31] for the GCC constraints, and, in particular, has the same time bounds.
Consequently the network flow derived by our algorithm is obtained, again, by
adding one extra node with small capacities in the edges to the network intro-
duced in [21].

6.3 The sequence constraint

The Sequence constraint [6] corresponds to instances ({v1, . . . , vn}, D, L, C)
with constraints Among({vi, . . . , vi+k}, R,min,max), i = 1, . . . , n− k for some
fixed integers min,max, k, and fixed R ⊆ D. It is not difficult to see that the
hypergraph of the canonical booleanization of the Sequence constraint is not
a network hypergraph. However, as shown in [26] one obtains an equivalent in-
stance with a network hypergraph using a different encoding in which for every
original variable vi ∈ V , we have a boolean variable xi which is intended to
be true whenever vi takes a value in R and false otherwise. Under this alter-
native encoding we obtain a boolean instance I which consists of constraints
Among({xi, . . . , xi+k}, {1},min,max), i = 1, . . . , n− k. It is shown in [26] that
the hypergraph H of the boolean instance I obtained under this encoding sat-
isfies the so-called consecutive-ones property which implies that H is defined
by a tree T consisting of a single directed path. Indeed, the network flow ob-
tained by our approach is identical to the one derived in [26] if one encodes
Among constraints using the first variant discussed after Lemma 3. Applying
Lemma 3 and noting that, in the particular case of the Sequence constraint,
we have m = O(n) we obtain the bound O(n3/2 log2 n). By inspecting closely
the proof of Lemma 3 this bound can be slightly improved (see Appendix C)
to O(n3/2 logn logmax) coinciding with the bound given in [26], which is not
surprising since both networks are essentially equivalent. To the best of our
knowledge O(n3/2 logn logmax) is the best bound among all complete domain
consisteny algorithms for the problem, jointly with the algorithm proposed in
[37] which, with time complexity O(n2k), offers gives better bounds when k ≪ n.

6.4 TFO model

The TFO model was introduced by Razgon et al. [29] as a generalization of
several common global constraints. Formally, a TFO model is a triple (V, F1, F2)
where V is a finite set of vertices and F1 and F2 are nonempty families of subsets
of V such that two sets that belong to the same family are either disjoint or
contained in each other. Each set Y in F1 ∪ F2 is associated with two non-
negative integers minY ,maxY ≤ |Y |. A subset X of V is said to be valid if
minY ≤ X ∩ Y ≤ maxY for every Y ∈ F1 ∪ F2. The task is to find the largest
valid subset. Although the methods introduced in the present paper can be
generalized to deal as well with optimization version we will consider only now
the feasibility problem consisting in finding a valid subset (or report that none
exists).
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First, note that the existence of a valid subset in a TFO model can be
formulated naturally as a satisfiability problem for a combination of among con-
straints. Indeed, there is a one-to-one correspondence between the valid subsets
of (V, F1, F2) and the solutions of the instance (V, {0, 1}, L, C) where C contains
the constraints Among(Y, {1},minY ,maxY ), Y ∈ F1 ∪ F2, and the list L(v) of
every variable v ∈ V is {0, 1}. The hypergraph H associated to this instance is
(V, F1∪F2). It follows directly from Lemmas 4 and 5 (see Appendix) that H is a
network hypergraph and hence one can use our approach to decide the existence
of a feasible solution of a TFO model. It turns out that the network introduced
in [29] is essentially equivalent to the network flow problem that would be ob-
tained by our approach using the second variant described after Lemma 3. It is
not meaningfull to compare the running time of our algorithm with that of [29]
since it deals with an optimization variant.

6.5 Conjunction of among constraints with full domain

Some global constraints studied in the literature correspond to conjunctions
(V,D,L, C) of among constraints where the scope of every constraint is the full
set V of variables. This class contains, of course, the GCC constraint and also
several others, since we do not require R to be a singleton. For example, the
OrderedDistribute constraint introduced by Petit and Régin [28] can be
encoded as conjunction (V,D,L, C) of among constraint where where the domain
D has some arbitrary (but fixed) ordering d1, . . . , d|D| and in every constraint
Among(S,R,min,max), S = V and R is of the form {di, . . . , d|D|}.

We shall show that the hypergraph of the conjunction of among constraints
defining OrderedDistribute is a network hypergraph. Indeed, with some ex-
tra work we have managed to completely characterize allCAC instances contain-
ing only constraints with full scope that have an associated network hypergraph.

Theorem 1. Let I = (V,D,L, C) be a conjunction of among constraints with
|D| ≥ 3 such that the scope of each constraint is V . Then, the following are
equivalent:

1. The hypergraph of the canonical booleanization of I is a network hypergraph.

2. For every pair of constraints in C, their ranges are disjoint or one of them
contained in the other.

In the particular case of OrderedDistribute constraint, the network ob-
tained by our approach is very related to the network introduced in section ([28],
Section V.A). More precisely, the abovementioned network is essentially equiv-
alent to the network that would be obtained by our approach using the second
variant described after Lemma 3. However, our algorithm is far from optimal.
In particular, a complete filtering algorithm with time complexity O(|V |+ |D|)
is given also in [28].
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6.6 Adding new among constraints to a GCC constraint

Let (V,D,L, C) be a conjunction of among constraints encoding the GCC con-
straint (see Example 1) and assume that we are interested in adding several new
among constraints to it. In general, we might end up with a hard instance but
depending on the shape of the new constraints we might perhaps still preserve
tractability. Which among constraint we might safely add? This question has
been addressed by Régin [32]. In particular, [32] shows that the domain filtering
problem is still tractable whenever:

(a) every new constraint added has scope V and, furthermore, the ranges of
every pair of new constraints are disjoint, or

(b) every new constraint added has rangeD and furthermore, the scopes of every
pair of new constraints are disjoint.

We can explore this question by inquiring which families of constraints can
be added to an instance (V,D,L, C) encoding GCC such that its associate hy-
pergraph is still a network hypergraph. Somewhat surprisingly we can solve
completely this question (see Theorem 2). This is due to the fact that the pres-
ence of the global cardinality constraint restricts very much the shape of the tree
defining the hypergraph of the instance.

Theorem 2. Let I = (V,D,L, C) be a conjunction of among constraints con-
taining a global cardinality constraint with scope V with |D| ≥ 3. Then the
following are equivalent:

1. The hypergraph of the canonical booleanization of I is a network hypergraph.
2. In every constraint in C, the scope is a singleton or V , or the range is a

singleton or D. Furthermore, for every pair Among(S1, R1,min1,max1),
Among(S2, R2,min2,max2) of constraints in C the following two conditions
hold:
(a) If S1 = S2 = V or S1 = S2 = {v} for some v ∈ V then R1 and R2 are

disjoint or one of them is contained in the other.
(b) If R1 = R2 = D or R1 = R2 = {d} for some d ∈ D then S1 and S2 are

disjoint or one of them is contained in the other.

Note that the previous theorem covers cases (a) and (b) from [32] described
at the beginning of this section. The network produced in [32] for the case (a)
is essentially equivalent to the one derived by our approach using the second
variant described after Lemma 3. For the case (b) [32] does not construct a flow
problem nor gives run-time bounds so we ommit a comparison.
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Appendix A: Tractable subcases of the domain filtering
problem restricting only the scope or the range in the
constraints

If I is a set of conjunctions of among constraints, we shall denote byDomFilter(I)
the restriction of the domain filtering problem to instances in I. Our ultimate
goal would be to characterize precisely for which sets I, DomFilter(I) has
efficient algorithms.

The first question that we address is the following: which subcases of the
problem can be explained by considering only the scopes of the constraints? The
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scopes occurring in an instance can be characterized by an hypergraph. More
precisely, let I = (V,D,L, C) be a conjunction of among constraints. The scope
hypergraph of I is the hypergraph H with node set V (H) = V and that contains
an hyperedge for every scope occurring in a constraint in C. Formally,

E(H) = {S | Among(S,R,min,max) ∈ C}

Let H be a (possibly infinite) set of hypergraphs. We denote by Scope(H) the
collection of instances I of the domain filtering problem whose scope hypergraph
belongs to H. Our question can be formalized in the following manner: for which
sets,H, of hypergraphs, is DomFilter(Scope(H)) efficiently solvable? Note that
if I is an instance whose scope hypergraphH is a subhypergraph of someH ′ ∈ H
then we can construct, by adding superfluous new constraints to I, an equivalent
new instance whose scope hypergraph is H ′. Hence, we can assume that H is
closed under taking subhypergraphs.

We shall solve completely this question assuming some mild technical as-
sumptions. In order to state our result we need a few definitions from graph
theory and parameterized complexity. The Gaifman graph of a hypergraph H ,
denoted Gaifman(H) is the graph where the node-set is V (H) and the edge-set
contains all pairs {u, v} such that there is an hyperedge h in H with {u, v} ⊆ h.
A tree-decomposition of a graph G is a pair (T, β) where T is an (ordinary,
not oriented) tree and β : V (T ) → 2V (G) is a mapping such that the following
conditions are satisfied:

1. For every node v ∈ V (G), the set {x ∈ V (T ) | v ∈ β(x)} is non-empty and
connected in T .

2. For every edge {u, v} ∈ E(G), there is a node x ∈ V (T ) such that {u, v} ∈
β(x).

The width of a tree-decomposition (T, β) is max{|β(x)| − 1 | x ∈ V (T )} and
the tree-width of G is defined to be the minimum w such that G has a tree-
decomposition of width w.

We will also need some notions and basic facts from parameterized com-
plexity theory. A parameterized problem over some alphabet Σ is a pair (P, κ)
consisting of a problem P ⊆ Σ∗ and a polynomial time mapping κ : Σ∗ → N,
called its parameter. A parameterized problem (P, κ) over Σ is fixed-parameter
tractable if there is a computable function f : N → N and an algorithm that
decides if a given instance x ∈ Σ∗ belongs to P in time f(κ(x)) · |x|O(1). FPT
denotes the class of fixed-parameter tractable problems. Hence, the notion of
fixed-parameter tractability relaxes the classical notion of polynomial-time solv-
ability, by admitting running times that are exponential in the parameter, which
is expected to be small.

The analogous of NP in parameterized complexity is the class W[1] which is
conjectured to contain strictly FPT. We will omit the definition of W[1] since it
is not needed in our proofs and refer the reader to [14].

Theorem 3. Assume FPT 6= W[1]. For every recursively class of hypergraphs
H, DomFilter(Scope(H)) is polynomial-time solvable if and only if there exists
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some natural number w such that the tree-width of the Gaifman graph of every
hypergraph in H is at most w.

Proof. It is well know [11,15] that the set of all CSP instances whose scope
hypergraph has tree-width at most w for some fixed w is solvable in polynomial
time. Hence it only remains to show the ’only if’ part. This follows from a result
of Färnquivst and Jonsson [12]. In order to state it, we need to introduce some
background.

In the list homomorphism problem (for graphs), we are given two graphs G,
J and a mapping L : V (G) → 2V (J) called list. The goal is to decide whether
there exists a mapping h : V (G) → V (J) satisfying the following two conditions:

1. h(v) ∈ L(v) for every v ∈ V (G).
2. (h(v1), h(v2)) ∈ E(J) for every (v1, v2) ∈ E(G).

Such a mapping is called a solution of (G, J, L). Färnquivst and Jonsson have
shown that the parameterized version of the problem (parameterized by the size
of V (G)) is W[1]-hard. Indeed, the problem is W[1]-hard even if the input graph,
G, is guaranteed to belong to a previously fixed G of graphs, provided G has un-
bounded tree-width. Formally, let G be a set of graphs and define p-LHom(G, )
to be the problem:

– INPUT: graphs G, J with G ∈ G, and a mapping L : V (G) → 2V (J).
– PARAMETER: |V (G)|.
– GOAL: Decide whether (G, J, L) has a solution.

We are finally ready to state the theorem from [12] that we shall use.

Theorem 4. (Lemma 3 in [12]) Let C be a recursively class of graphs that does
not have bounded tree-width. Then p-LHom(C, ) is W[1]-hard.

We note here that, in order to simplify the exposition, we have taken the
liberty to adapt the statement in [12]. We are now ready to complete our proof.
Assume, towards a contradiction, that H is a set of hypergraphs with unbounded
tree-width such that DomFilter(Scope(H)) is solvable in polynomial time. Let
G = {Gaifman(H) | H ∈ H}. It follows directly by the assumptions on H that G
has unbounded tree-width and is recursively enumerable. We shall give an FPT
algorithm for p-LHom(G, ).

The algorithm is as follows. Let (G, J, L) be any instance of the list ho-
momorphism problem with G ∈ G. Enumerate the hypergraphs in H until
finding an hypergraph H ∈ H whose Gaifman graph is G. Construct the in-
stance I in Scope(H) where the set of variables is V (H)(= V (G)), the domain is
V (H)×V (J), the list of every node v ∈ V (H) is {v}×L(v), and the constraints
are defined as follows:

– For every (v1, v2) ∈ E(G), and for every (a1, a2) 6∈ E(H), include the con-
straint Among(h,R, 0, 1) where h is any hyperedge in H containing {v1, v2}
and R = {(v1, a1), (v2, a2)}.
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Note that, by construction, the scope hypergraph of I is a subhypergraph of H
and, hence, I is an instance of Scope(H). Since DomFilter(Scope(H)) is, by as-
sumption, solvable in polynomial time then one can also decide the satisfiability
of I is polynomial time. Finally, return ’yes’ if I is satisfiable and ’no’ other-
wise. Note that the time required in finding H depends only on G whereas the
time required in constructing and solving I is polynomial on the size of (G, J, L).
Hence, the algorithm just defined is FPT. It is easy to see that it correctly solves
(G, J, L). Indeed, let s be any mapping s : V (H) → V (H)× V (J) which we can
write as s(v) = (s1(v), s2(v)) with s1 : V (H) → V (H) and s2 : V (H) → V (J).
It follows directly from the construction of I that s is a solution of I if and only
if s1 is the identity (formally, s(v) = v for every v ∈ V (H)) and s2 is a solution
of instance (G, J, L). Hence, I is satisfiable if and only if so is (G, J, L).

It is not difficult to show, following [19], that the condition FPT 6= W[1]
cannot be weakened (for example by requiring, instead, only P 6=NP). Indeed, if
FPT = W[1] then there exists a family H of hypergraphs of unbounded tree-
width such that DomFilter(H) is polynomial-time solvable.

Finally, note that the hardness part of Theorem 3 holds even for conjunctions
of among constraint whose range has cardinality 2. Note, that the hardness
direction does not hold any more if one requires that the among constraints
have range of cardinality 1. Indeed, the AllDiff constraint is encoded by a
conjunction of among constrains whose scope hypergraph can have arbitrary
large tree-width and the range of every constraint is a singleton.

Secondly, we turn our attention to the range and investigate which restric-
tions on the range of among constraints guarantee that the domain filtering
problem is solvable in polynomial time. To this end we can define the range
hypergraph in a similar way to the scope hypergraph and define, for every set H
of hypergraphs, Range(H) to be the set of all conjunctions of among constraints
whose range hypergraph belongs to H. The next theorem, which is straightfor-
ward, shows that all non-trivial hypergraphs give rise to hard problems.

Theorem 5. Assume P6=NP. For every hypergraph H, DomFilter(Range(H))
is polynomial-time solvable if and only every hypergraph H ∈ H has only trivial
hyperedges (that is, if for every H ∈ H and every h ∈ E(H), h = ∅ or h =
V (H)).

Proof. The ’if’ direction is trivial. Indeed, if the range hypergraph of an instance
I has only trivial hyperedges it follows that every among constraint in it is either
superfluous (in the sense that it does not enforce any restriction) or unsatisfiable.
For the ’only if’ direction, assume that H has an hypergraph H with a non
trivial hyperedge h. We define a reduction from One-In-Three Sat which is
the following NP-complete [16] problem:

– INPUT: An hypergraph J where all the hyperedges have cardinality 3.
– GOAL: Decide whether there exists some X ⊆ V (J) such that h ∩ X = 1

for every h ∈ E(J).
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The reduction is as follows: given an instance J , of One-In-Three Sat, con-
struct the instance I = (V,D,L, C) ∈ Range(H) where V = V (J), D = V (H),
L(v) = V (H) for every v ∈ V , and C contains the constraints (S, h, 1, 1) for
every S ∈ E(J). It is easy to see that the range hypergraph of I is H and that
J is satisfiable if and only if so is I.

Appendix B: Proofs of section 6

Basic concepts and results about network hypergraphs

If T is an oriented tree and x ∈ V (T ) we denote by T−(x) (respectively T+(x))
the subtree of T containing all those nodes appear in some directed path ending
(respectively, starting) at x.

A rooted tree is an oriented tree that is obtained from un undirected tree by
fixing a node r, called the root, and orienting all the edges away from the root
or all the edges towards the root.

Lemma 4. For every hypergraph H the following are equivalent:

1. Every pair of hyperedges in H are either disjoint or contained in each other.
2. There exists a rooted tree T that defines H such that the path associated to

every variable ends at the root.

Furthermore, when condition (2) holds we can assume that in every edge e =
(x, y) associated to a minimal hyperedge of H, x has in-degree zero.

Proof. (1 ⇒ 2). Let H be an hypergraph satisfying (1). Let T be the oriented
tree defined in the following way. The node-set of T is E(H) ∪ {r} where r is a
fresh node. For every h ∈ H(T ), T contains an edge from h to h′ where h′ = r if
h is not contained in any other hyperedge of H and h′ is the smallest hyperedge
in H containing h otherwise. Note that T has root r and that if e = (x, y) is an
edge associated to a minimal hyperedge of H , then x has in-degree zero. It is not
difficult to verify that T satisfies condition (2). (2 ⇒ 1). Assume that T is a tree
satisfying condition (2). Let h and h′ be hyperedges in H and let eh = (x, y) and
eh′ = (x′, y′) be their associated edges in T . Consider three cases: (a) there is a
directed path from x to x′, (b) there is a directed path from x′ to x, (c) none of
the previous holds. In case (a) it follows from the fact that the path associated
to every variable ends at the root that every path containing eh contains also
eh′ and hence h ⊆ h′. By the same argument, case (b) implies that h′ ⊆ h.
Finally, in case (c) there is no directed path containing both eh and eh′ and,
consequently, h ∩ h′ = ∅.

Oriented trees can be combined by gluing some of their nodes. Formally,
let T1 and T2 be trees and let r1 and r2 be nodes in T1 and T2 respectively.
Assume, renaming nodes if necessary, that V (T1) ∩ V (T2) = ∅. Then, the result
of gluing r1 and r2 is obtained by, first, computing the disjoint union of T1 and
T2 and, then, merging r1 and r2 into a new node w that has as in-neighbours
the union of all in-neighbours of r1 and r2 and, as out-neighbours, the union of
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all out-neighbours of r1 and r2. It is not difficult to see that the result is again
an oriented tree.

The following technical lemma, which follows directly from the definitions,
will be useful.

Lemma 5. For i = 1, 2, let Hi be an hypergraph, let Ti be a tree defining Hi

and let ri ∈ V (Ti). Assume that V (H1) = V (H2) and that for every v ∈ V (H1)
the following holds: if v ∈ h1 ∩ h2 with h1 ∈ H1 and h2 ∈ H2 then the last node
of the path associated to v in T1 is r1 and the first node of the path associated
to v in T2 is r2. Then, the result of gluing r1 and r2 defines H1 ∪H2.

Proof. Straightforward.

Lemma 6. Let H be an network hypergraph defined by tree T and let J be a
subhypergraph of H with the property that for every a, b ∈ E(J) there exists some
c ∈ J with a ∩ c 6= ∅ and b ∩ c 6= ∅. Then there exists an element r ∈ V (T ) such
that for every h ∈ E(J), eh ∈ E(T−(r)) ∪ E(T+(r))

Proof. For every h ∈ H1 ∪H2, let eh = (x, y) be its associated edge in T and
let us define Th to be the subtree of T with node-set V (T−(x)) ∪ V ((T+(y)).

It follows that V (Ta) ∩ V (Tb) 6= ∅ for every a, b ∈ J . Indeed, let c be the
hyperedge in J such that a ∩ c 6= ∅ and b ∩ c 6= ∅. Then both endpoints of the
edge ec associated to c belong to V (Ta) ∩ V (Tb).

Next we shall use the 2-Helly property of the subtrees of a tree (see for
example [5]).

Lemma 7. (2-Helly property of subtrees) Let T1, . . . , Tn be a collection of sub-
trees of an (undirected) tree T such that for every 1 ≤ i, j ≤ n, V (Ti)∩V (Tj) 6= ∅.
It follows that

⋂
1≤i≤n V (Ti) 6= ∅.

Note that the 2-Helly property stated deals with undirected trees (instead
of oriented trees). However it easily implies that the same property holds for
oriented trees. Hence, it follows that

⋂
h∈J V (Th) 6= ∅. To complete the proof

note that any vertex r in
⋂

h∈J V (Th) satisfies the conditions of the Lemma.

Lemma 8. Let I = (V,D,L, C) be a conjunction of among constraints with
|D| ≥ 3, let H be the hypergraph of its canonical booleanization, let H1 be a set
of at least 2 hyperedges in E(H) where every hyperedge, S × R, in H1 satisfies
S = V and let H2 to be the subset of E(H) containing, for every v ∈ V , the
hyperedge {v} ×D. Then, if H is a network hypergraph then there exists a tree
T defining H and a node r ∈ V (T ) such that for every h ∈ H1, eh ∈ E(T−(r))
and for every h ∈ H2, eh ∈ E(T+(r)).

Proof. Assume that H is a network hypergraph and let T be a tree defining
it. We shall use the following claim.

Claim 1 Let x1, e1, x2, . . . , en−1, xn be a directed path in T , and let ei, ej, ek,
i < j < k be different edges such two of their associated hyperedges belong to H2

and the remaining one to H1. Then, the edge whose associated hyperedge belongs
to H1 is ej.
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Proof. Let hi, hj, hk be the hyperedges associated to ei, ej , and ek respectively
and assume, towards a contradiction, that hi ∈ H1 (the case hk ∈ H1 is sym-
metric). Let (v, d) ∈ hi ∩hk and let p be its associated path. Clearly, p, contains
both ei and ek and hence it must contain also ej in contradiction with the fact
that hj ∩ hk = ∅

For every directed path p = x1, . . . , xn define T (p) to be the subtree of T
induced by V (T−(x1))∪{x1, . . . , xn}∪V (T+(xn)). We define J− (resp. J+) to be
the set containing all h ∈ H1∪H2 with eh ∈ E(T−(x1)) (resp. eh ∈ E(T+(xn))).

The proof proceeds by showing that there exists a tree T defining H and a
directed path p in T satisfying all the following properties:

1. eh ∈ E(T (p)) for every h ∈ H1 ∪H2.
2. J− ∩H1 = ∅ or J− ∩H2 = ∅. Also, J+ ∩H1 = ∅ or J+ ∩H2 = ∅.
3. J− and J+ are non empty.
4. J+ = H2.

Note that if T and p satisfy (1)− (4) then T and r = xn satisfy the Lemma.
Let us show the existence of T and p satisfying the above-mentioned prop-

erties in increasing order:

(1). First, note that J = H1 ∪ H2 satisfies the hypothesis of Lemma 6 and,
hence, it follows that there exists an element r in T such that for every h ∈
H1 ∪H2, eh belongs to T−(r) or T+(r). Hence, the path p consisting of single
node r satisfies (1).

(1) → (2). We claim that every path p = x1, . . . , xn of maximal length
satisfying (1) must satisfy (2) as well. Assume, towards a contradiction, that
ai ∈ J− ∩Hi for i = 1, 2 (the proof for J+ is analogous). For every h ∈ J− let
qh be a directed path in T containing eh and ending at x1. It follows that the
last edge in qa1

and qa2
must be identical since otherwise there could not be a

directed path containing both ea1
and ea2

, which would imply that a1 ∩ a2 = ∅.
Let (y, x1) be the common last edge of qa and qb. Then, applying the same
argument it follows that (y, x1) is also the last edge of qh for every h ∈ J−.
Hence, by adding y at the beginning of y, x1, . . . , xn we obtain another path p
satisfying (1) contradicting the maximality of p.

(1, 2) → (3). It is easy to see that every path p satisfying (1) and (2) has a
subpath that satisfies, additionally, (3).

(1, 2, 3) → (4). It follows from Claim 1 that J− ∩ H2 6= ∅ or J+ ∩ H2 6= ∅.
We can assume, by reversing the direction of the edges in T if necessary, that
J+ ∩ H2 6= ∅. Since, by (2), J+ ∩ H1 = ∅, in order to show (4) it is only
necessary to prove that H2 ⊆ J+. Assume towards a contradiction that there
exists h ∈ H2 \J

+. It follows again by Claim 1 and the fact that H1 is nonempty
that h ∈ J− and hence that H1 ∩ J− = ∅. Let a = V × A, b = V × B be two
different hyperedges in H1. It follows that ea and eb appear in path p and we
can assume wlog. that ea appears before eb in p. We shall prove that B ⊆ A.
Let d ∈ B and let v ∈ V be such that h = {v} ×D. Consider the directed path
q associated to (v, d). Clearly q contains eh and eb and hence q contains ea as
well. Hence (v, d) belongs to (V,A), and hence, d ∈ A. A similar reasoning, using
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now any arbitrary hyperedge in J+ shows that A ⊆ B. Hence we have A = B,
a contradiction. This completes the proof of (4).

Proof of Theorem 1

Let H be the hypergraph of the canonical booleanization of I. Define H1 to
be the set of all hyperedges S × R in H with S = V . Define H2 to be the
hypergraph associated to the non-empty assignment constraints. That is, H2

contains for every v ∈ V , the hyperedge {v}×D. Note that h1∩h2 6= ∅ for every
h1 ∈ H1 and h2 ∈ H2.

(1) ⇒ (2). In what follows we shall assume that |H1| > 1 since otherwise
(2) follows directly. Assume that H is a network hypergraph. It follows that H1

and H2 satisfy the hypothesis of Lemma 8. Then, let T the tree defining H and
r the node in T given by Lemma 8. Note that for every node occurring in any
hyperedge in H1, its associated path p must contain some edge in T+(r) and,
hence, must necessarily contain r as well. Then, condition (2) follows by applying
Lemma 4 to T−(r).

(2) ⇒ (1). We note that this is a particular case of direction (2) ⇒ (1) in
Theorem 2. Still we include a proof since we think it might help the reader to
understand the basic idea before embarking in the more complicated proof in
2. This direction follows easily from Lemma 4 and Lemma 5. Assume that (2)
holds. Then it follows from Lemma 4 that there exists a rooted tree T1 defining
H1 such that, additionally, the path associated to every variable in V (H) ends
at the root, r1, of T1. Also, note that every two hyperedges in H2 have an empty
intersection which implies again by Lemma 4 that there exists a rooted tree T2

defining H2 such that the path associated to every variable v ∈ V (H) starts at
the root, r2, of T2. Then, it follows from Lemma 5 that by gluing r1 and r2 in
T1 and T2 we obtain the tree defining H .

Proof of Theorem 2

Let H be the hypergraph of the canonical booleanization of I.
(1) ⇒ (2). Define H1 to be the set containing, for every d ∈ D, the hyperedge

V ×{d}. Every such hyperedge is in H because we are assuming that the instance
contains a global cardinality constraint. Furthermore, define H2 to be the set
containing all non-empty assignment constraints. That is H2 contains for every
v ∈ V , the hyperedge {v} × D. Notice that if a = V × {d} belongs to H1 and
b = {v}×D belongs to H2 then a∩ b is non empty as it contains (v, d). Assume
that H is a network hypergraph. It follows that H1 and H2 satisfy the hypothesis
of Lemma 8 and let T be the tree defining H and r the vertex in V (T ) given by
Lemma 8.

We claim that for every hyperedge h ∈ H , eh belongs to E(T−(r))∪E(T−(r))
Indeed, if it is not the case then there exists some hyperedge h = S×R such that
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its associated edge eh has one endpoint y in V (T−(r))∪V (T+(r)) and the other,
x, outside. Assume that y ∈ V (T−(r)) (the case y ∈ V (T+(r)) is symmetric). It
follows that eh = (y, x) since otherwise eh would be included in E(T−(r)). Let
(v, d) ∈ S × R and let p be the direct path in T associated to (v, d). This path
must include eh and also the edge associated to V × {d}, but this is impossible
since both edges must appear with different polarity because the edge associated
to V × {d} belongs to V (T+(r)).

For every d ∈ D, let (xd, yd) be the edge in T associated to hyperedge V ×{d}
and let Td be T−(xd). Also, define T1 to be the subtree of T that contains all
the nodes x that belong to a path starting at xd for some d ∈ D and ending at
r.

For every v ∈ V , let (xv , yv) be the edge in T associated to hyperedge {v}×D
and let Tv be T+(yv). Also, define T2 to be the subtree of T that contains all the
nodes x that belong to a path starting at r and ending at yv for some v ∈ D.

Let (v, d) ∈ V ×D and let p be the directed path in T associated to (v, d).
Clearly p must contain the edges associated to V ×{d} and {v}×D and, hence,
also r. It also follows that for every hyperedge, h ∈ E(H), containing (v, d),
eh belongs to Ti with i ∈ {d, v, 1, 2}. It follows that every edge e ∈ E(T ) is
contained in some of the trees Ti, i ∈ D ∪ V ∪ {1, 2} we have just defined and
hence we can infer the shape of H by considering separately the shape of the
hypergraphs defined by each one of the trees. Then (1) ⇒ (2) follows from the
following lemma.

Lemma 9. Let e (resp. e′) be an edge in T , let h = S ×R (resp. h′ = S′ ×R′)
be the hyperedge in H associated to e (resp. e′). Then the following holds:

1. If there exists d ∈ D such that e, e′ ∈ E(Td) then R = R′ = {d}. Further-
more, S and S′ are disjoint or contained one in another.

2. If e, e′ ∈ E(T1) then S = S′ = V . Furthermore, R and R′ are disjoint or
contained one in another.

3. If there exists v ∈ V such that e, e′ ∈ E(Tv) then S = S′ = {v}. Furthermore,
R and R′ are disjoint or contained one in another.

4. If e, e′ ∈ E(T2) then R = R′ = D. Furthermore, S and S′ are disjoint or
contained one in another.

Proof. By symmetry we only need to prove the first two cases:

1. We first show that R = {d} (the same argument shows that R′ = {d}. Let
(v, d′) be any node in h and let p be its associated directed path in T . Since
p contains r, it must contain the edge associated to V × {d}, which implies
that d′ = d. Hence, R = {d}. The fact that S and S′ are disjoint or contained
one in another follows from applying Lemma 4 to Td. Note that we use that
the path associated to every node in V × {d} must necessarily include xd.

2. We first show that S = V (the same argument shows that S′ = V ). Let p
be the directed path associated to any variable (v, d) ∈ S × R. This path
contains xd and r which implies that every path associated to a variable
in V × {d} contains also eh. It follows that V × {d} ⊆ S × R and, hence,
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S = V . The fact S and S′ are disjoint or contained one in another follows
by applying Lemma 4 to T1. Note that we use that the associated path of
every node in V ×D must necessarily include r.

(1) ⇐ (2). This follows easily from Lemma 4 and Lemma 5. For every d, let
Hd be the subhypergraph of H containing all the hyperedges S × R ∈ E(H)
with R = {d} and S 6= V . It follows from Lemma 4 that there is a rooted tree
Td defining Hd such that, additionally, all the paths associated to variables in
V (H) finish at the root of Td, which we will denote by rd. Similarly, let H1

be the subhypergraph of H containing all the hyperedges S × R ∈ E(H) with
S = V . Again, by Lemma 4 there is a rooted tree T1 with root, say, r1 defining
H1. For every d ∈ D, let us denote by (xd, yd) the edge in T1 associated to
V × {d}. Lemma 4 guarantees that xd has in-degree 0 which implies that the
paths associated to every node in V × {d} start at xd and end at r1. It follows
then from Lemma 5 that we can obtain a tree defining H1 ∪

⋃
d∈D Hd (that

is, the subgraph of H containing all hyperedges S × R ∈ E(H) where S = V
or R is a singleton) by taking the disjoint union of T1 along with all the trees
Td and gluing rd with xd for every d ∈ D. The obtained tree, which we will
call T ′

1 is rooted at r1 and has the additional property that every path in T ′
1

associated to a variable in V (H) ends at the root r1. A symmetric argument
shows that there exists a tree T ′

2 with root r2 that defines the subhypergraph of
H containing all hyperedges S × R ∈ E(H) where R = D or V is a singleton
such that, additionally, every path in T ′

1 associated to a variable in V (H) starts
at the root r2. Then, it follows that by gluing r1 and r2 in T ′

1 and T ′
2 we obtain

a tree defining H . This finishes the proof.
We note that direction (1 ⇒ 2) in Theorems 1 and 2 does not hold for

boolean domains due to the fact that the proof assumes the canonical encoding.
However, the direction (2 ⇒ 1) holds also for boolean domains.

Appendix C: Proof of the O(n3/2 logn logmax) bound for
the Sequence constraint

Recall from Section 6.3 that a Sequence constraint is encoded as a boolean
CACwith constraints:Among({xi, . . . , xi+k}, {1},min,max) where i = 1, . . . , n−
k andmin,max, k are fixed integers. Our goal is to improve the boundO(n3/2 log2 n)
given in Section 6.3 to O(n3/2 logn logmax).To this end we note, inspecting the
proof of Lemma 3, that in the logmn factor appearing in the function f(n,m),
mn is has been obtained by bounding the quantity u (where u is the maximum
capacity of the edges in the network constructed by the algorithm) by O(log n).
We shall show that in the particular case of the Sequence constraint we can
obtain a better bound. In particular, we will see that u ≤ max (and hence
log u ≤ logmax), which suffices to obtain our desired bound.

Recall the definitions of a, b, c, T , and P from the proof of Lemma 3 and
recall also that the capacity of every edge in the network constructed by our
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algorithm is either an entry of vector c, which in the particular case of the
Sequence constraint, is either max − min or 1 (and, hence, at most max),
or the absolute value of an entry of vector b = Pa. In the particular case of
the Sequence constraint, all entries of a are max. Also, recall that the tree T
defining a the hypergraph of a Sequence constraint is a directed path which
implies that every row of P has at most one +1, at most one −1, and the rest
of entries are 0. It follows that every entry in b is in {−max, 0,max} and we are
done.
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