
ar
X

iv
:1

70
6.

08
50

4v
1

 [
cs

.L
O

]
 2

6
Ju

n
20

17

The Bernays–Schönfinkel–Ramsey Fragment

with Bounded Difference Constraints

over the Reals is Decidable

Marco Voigt

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany,

Saarbrücken Graduate School of Computer Science

Abstract

First-order linear real arithmetic enriched with uninterpreted predicate symbols yields an

interesting modeling language. However, satisfiability of such formulas is undecidable, even

if we restrict the uninterpreted predicate symbols to arity one. In order to find decidable

fragments of this language, it is necessary to restrict the expressiveness of the arithmetic part.

One possible path is to confine arithmetic expressions to difference constraints of the form

x− y ⊳ c, where ⊳ ranges over the standard relations <,≤,=, 6=,≥, > and x, y are universally

quantified. However, it is known that combining difference constraints with uninterpreted

predicate symbols yields an undecidable satisfiability problem again. In this paper, it is

shown that satisfiability becomes decidable if we in addition bound the ranges of universally

quantified variables. As bounded intervals over the reals still comprise infinitely many values,

a trivial instantiation procedure is not sufficient to solve the problem.

1 Introduction

It has been discovered about half a century ago that linear arithmetic with additional uninterpreted
predicate symbols has an undecidable satisfiability problem [15]. Even enriching Presburger arith-
metic with only a single uninterpreted predicate symbol of arity one suffices to facilitate encodings
of the halting problem for two-counter machines [5, 10]. These results do not change substantially
when we use the reals as underlying domain instead of the integers. This means, in order to ob-
tain a decidable subfragment of the combination of linear arithmetic with uninterpreted predicate
symbols, the arithmetic part has to be restricted considerably. In this paper, two subfragments
with a decidable satisfiability problem are presented. Both are based on the Bernays–Schönfinkel–
Ramsey fragment (BSR) of first-order logic, which is the ∃∗∀∗ prefix class. Uninterpreted constant
symbols and the distinguished equality predicate are allowed, non-constant function symbols are
not. The arity of uninterpreted predicate symbols is not restricted. We extend BSR in two ways
and call the obtained fragments BSR modulo simple linear real constraints (BSR(SLR)) and BSR
modulo bounded difference constraints (BSR(BD)).

The first clause class—defined in Definition 1 and treated in detail in Section 4—adds con-
straints of the form s ⊳ t, x ⊳ t, and x ⊳ y to BSR clauses, where x and y are real-valued variables
that are implicitly universally quantified, s and t are linear arithmetic terms that are ground, and
⊳ ∈{<,≤,=, 6=,≥, >}. We allow Skolem constants in the ground terms s and t. Since their value
is not predetermined, they can be conceived as being existentially quantified. The constraints
used in this clause fragment are similar to the kind of constraints that appear in the context of
the array property fragment [4] and extensions thereof (see, e.g., [7, 9]). The main differences
are that we use the real domain in this paper instead of the integer domain, and that we allow
strict inequalities and disequations between universally quantified variables. In the presence of
uninterpreted function symbols, strict inequality or disequations can be used to assert that some

1

http://arxiv.org/abs/1706.08504v1

uninterpreted function f is injective. This expressiveness prevents certain instantiation-based ap-
proaches to satisfiability checking from being applicable, e.g. the methods in [4, 9]. In the context
of the array property fragment, this expressiveness even leads to undecidability.

The BSR(BD) clause class—presented in Definition 2 and in Section 5—adds constraints of
the form x ⊳ c, x ⊳ y and x−y ⊳ c to BSR clauses, where x and y are real-valued variables, c could
be any rational number, and ⊳ ranges over {<,≤,=, 6=,≥, >} again. We refer to constraints of the
form x − y ⊳ c as difference constraints. Already in the seventies, Pratt identified difference con-
straints and boolean combinations thereof as an important tool for the formalization of verification
conditions [14]. Applications include the verification of timed systems and scheduling problems
(see, e.g., [11] for references). As unrestricted combinations of uninterpreted predicate symbols
with difference constraints lead to an undecidable satisfiability problem (once more, two-counter
machines can be encoded in a simple way [17]), we have to further confine the language. Every
difference constraint x− y ⊳ c has to be conjoined with four additional constraints cx ≤ x, x ≤ dx,
cy ≤ y, y ≤ dy , where cx, dx, cy, dy are rationals. This restriction seems to weaken expressiveness
severely. Indeed, it has to, since we aim for a decidable satisfiability problem. Yet, we show in Sec-
tion 6 that BSR(BD) clause sets are expressive enough to formulate the reachability problem for
timed automata. In [13] an encoding of the reachability problem for timed automata in difference
logic (boolean combinations of difference constraints without uninterpreted predicate symbols) is
given, which facilitates deciding bounded reachability, i.e. the problem of reaching a given set of
states within a bounded number of transitions. When using BSR(BD) as a modeling language,
we do not have to fix an upper bound on the number of steps a priori.

The main result of the present paper is that satisfiability of finite BSR(SLR) clause sets and
finite BSR(BD) clause sets is decidable (Theorems 13 and 20), respectively. The proof technique
is very similar for the two fragments. It is partially based on methods from Ramsey theory, which
are briefly introduced in Section 3. The used approach may turn out to be applicable to other
fragments of BSR modulo linear real arithmetic as well.

In order to facilitate smooth reading, long proofs are only sketched in the main text and
presented in full in the appendix. The present paper is an extended version of [16].

2 Preliminaries and notation

Hierarchic combinations of first-order logic with background theories build upon sorted logic with
equality [2, 3, 12]. We instantiate this framework with the BSR fragment and linear arithmetic
over the reals as the base theory. The base sort R shall always be interpreted by the reals R. For
simplicity, we restrict our considerations to a single free sort S, which may be freely interpreted
as some nonempty domain, as usual.

We denote by VR a countably infinite set of base-sort variables. Linear arithmetic (LA) terms
are build from rational constants 0, 1, 12 ,−2,− 3

4 , etc., the operators +,−, and the variables from
VR. We moreover allow base-sort constant symbols whose values have to be determined by an
interpretation (Skolem constants). They can be conceived as existentially quantified. As predicates
over the reals we allow the standard relations <,≤,=, 6=,≥, >.

In order to hierarchically extend the base theory by the BSR fragment, we introduce the free
sort S, a countably infinite set VS of free-sort variables, a finite set ΩS of free (uninterpreted)
constant symbols of sort S and a finite set Π of free predicate symbols equipped with sort infor-
mation. Note that every predicate symbol in Π has a finite, nonnegative arity and can be of a
mixed sort over the two sorts R and S, e.g. P : R × S × R. We use the symbol ≈ to denote
the built-in equality predicate on S. To avoid confusion, we tacitly assume that no constant or
predicate symbol is overloaded, i.e. they have a unique sort.

Definition 1 (BSR with simple linear real constraints—BSR(SLR)). A BSR(SLR) clause has
the form Λ ‖Γ → ∆, where Λ, Γ, ∆ are multisets of atoms satisfying the following conditions. (i)
Every atom in Λ is an LA constraint of the form s ⊳ t or x ⊳ t or x ⊳ y where s, t are ground
(i.e. variable-free) LA terms, x, y ∈ VR, and ⊳ ∈{<,≤, =, 6=,≥, >}. (ii) Every atom in Γ and ∆

2

is either an equation s ≈ s′ over free-sort variables and constant symbols, or a non-equational
atom P (s1, . . . , sm) that is well sorted and where the si range over base-sort variables, free-sort
variables, and free-sort constant symbols.

Definition 2 (BSR with bounded difference constraints—BSR(BD)). A BSR(BD) clause has the
form Λ ‖Γ → ∆, where the multisets Γ, ∆ satisfy Condition (ii) of Definition 1, and every atom
in Λ is an LA constraint of the form x ⊳ c, x ⊳ y, or x − y ⊳ c where c may be any rational
constant (not a Skolem constant), x, y ∈ VR, and ⊳ ∈{<,≤, =, 6=,≥, >}. Moreover, we require
that whenever Λ contains a constraint of the form x − y ⊳ c, then Λ also contains constraints
cx ≤ x, x ≤ dx, cy ≤ y, and y ≤ dy with cx, dx, cy, dy ∈ Q.

We omit the empty multiset left of “→” and denote it by � right of “→” (where � at the
same time stands for falsity). The introduced clause notation separates arithmetic constraints
from the free first-order part. We use the vertical double bar “‖” to indicate this syntactically.
Intuitively, clauses Λ ‖Γ → ∆ can be read as

(∧
Λ∧

∧
Γ
)
→

∨
∆, i.e. the multisets Λ,Γ stand for

conjunctions of atoms and ∆ stands for a disjunction of atoms. Requiring the free parts Γ and ∆
of clauses to not contain any base-sort terms apart from variables does not limit expressiveness.
Every base-sort term t 6∈ VR in the free part can safely be replaced by a fresh base-sort variable xt
when an atomic constraint xt = t is added to the constraint part of the clause (a process known
as purification or abstraction [2, 12]).

A (hierarchic) interpretation is an algebra A which interprets the base sort R as RA = R,
assigns real values to all occurring base-sort Skolem constants and interprets all LA terms and
constraints in the standard way. Moreover, A comprises a nonempty domain SA, assigns to each
free-sort constant symbol c in ΩS a domain element cA ∈ SA, and interprets every sorted predicate
symbol P : ξ1 × . . . × ξm in Π by some set PA ⊆ ξA1 × . . . × ξAm. Summing up, A extends the
standard model of linear arithmetic and adopts the standard approach to semantics of (sorted)
first-order logics when interpreting the free part of clauses.

Given an interpretation A and a sort-respecting variable assignment β : VR ∪ VS → RA ∪ SA,
we write A(β)(s) to mean the value of the term s under A with respect to the variable assignment
β. The variables occurring in clauses are implicitly universally quantified. Therefore, given a
clause C, we call A a (hierarchic) model of C, denoted A |= C, if and only if A, β |= C holds for
every variable assignment β. For clause sets N , we write A |= N if and only if A |= C holds for
every clause C ∈ N . We call a clause C (a clause set N) satisfiable if and only if there exists a
model A of C (of N). Two clauses C,D (clause sets N,M) are equisatisfiable if and only if C (N)
is satisfiable whenever D (M) is satisfiable and vice versa.

Given a BSR(SLR) or BSR(BD) clause C, we use the following notation: the set of all constant
symbols occurring in C is denoted by consts(C). The set bconsts(C) (fconsts(C)) is the restriction
of consts(C) to base-sort (free-sort) constant symbols. We denote the set of all variables occurring
in a clause C by vars(C). The same notation is used for sets of clauses.

Definition 3 (Normal form of BSR(SLR) and BSR(BD) clauses). A BSR(SLR) or BSR(BD)
clause Λ ‖Γ → ∆ is in normal form if (1) all non-ground atoms in Λ have the form x ⊳ c, x ⊳ y, or
x− y ⊳ c where c is a rational constant or a Skolem constant, and (2) every variable that occurs in
Λ also occurs in Γ or in ∆. A BSR(SLR) or BSR(BD) clause set N is in normal form if all clauses
in N are in normal form and pairwise variable disjoint. Moreover, we assume that N contains at
least one free-sort constant symbol.

For BSR(SLR) clause sets, we pose the following additional requirement. N can be divided
into two parts Ndef and N ′ such that (a) every clause in Ndef has the form c 6= t ‖ → � where
c is a Skolem constant and t is some ground LA term, and (b) any ground atom s ⊳ t in any
constraint part Λ in any clause Λ ‖Γ → ∆ in N ′ is such that s and t are constants (Skolem or
rational, respectively).

For every BSR(SLR) clause set N there is an equisatisfiable BSR(SLR) clause set N ′ in normal
form. The same holds for BSR(BD) clause sets. Requirement (2) can be established by any proce-
dure for eliminating existentially quantified variables in LA constraints (see, e.g., [6]). Establishing
the other requirements is straightforward.

3

For two sets R,Q ⊆ R we write R < Q if r < q holds for all r ∈ R and q ∈ Q. Given a real r,
we denote the integral part of r by ⌊r⌋, i.e. ⌊r⌋ is the largest integer for which ⌊r⌋ ≤ r. By fr(r)
we denote the fractional part of r, i.e. fr(r) := r − ⌊r⌋. Notice that fr(r) is always nonnegative,
e.g. fr(3.71) = 0.71, whereas fr(−3.71) = 0.29. Given any tuple r̄ of reals, we write fr(r̄) to mean
the corresponding tuple of fractional parts, i.e. fr

(
〈r1, . . . , rµ〉

)
:=

〈
fr(r1), . . . , fr(rµ)

〉
. We use the

notation ⌊r̄⌋ in a component-wise fashion as well.
We write [k] to address the set {1, . . . , k} for any positive integer k > 0. Finally, P denotes

the power set operator, i.e. for any set S, P(S) denotes the set of all subsets of S.

3 Basic tools from Ramsey theory

In this section we establish two technical results based on methods usually applied in Ramsey
theory. We shall use these results later on to prove the existence of models of a particular kind
for BSR(SLR) or BSR(BD) clause sets that are finite and satisfiable. These models meet certain
uniformity conditions. In order to construct them, we rely on the existence of certain finite subsets
of R that are used to construct prototypical tuples of reals. These finite subsets, in turn, have
to behave nicely as well, since tuples that are not distinguishable by BSR(SLR) or BSR(BD)
constraints are required to have certain uniformity properties.

A tuple 〈r1, . . . , rm〉 ∈ Rm is called ascending if r1 < . . . < rm. A coloring is a mapping
χ : S → C for some arbitrary set S and some finite set C. For the most basic result of this section
(Lemma 4), we consider an arbitrary coloring χ of m-tuples of real numbers and stipulate the
existence of a finite subset Q ⊆ R of a given cardinality n such that all ascending m-tuples of
elements from Q are assigned the same color by χ.

Lemma 4. Let n,m > 0 be positive integers. Let χ : Rm → C be some coloring. For every set
R ⊆ R of sufficient size (either infinite or finite with sufficiently many elements) there exists a
subset Q ⊆ R of cardinality n such that all ascending tuples 〈r1, . . . , rm〉 ∈ Qm are assigned the
same color by χ.

adaptation of the proof of Ramsey’s Theorem on page 7 in [8]. For n < m the lemma is trivially
satisfied, since in this case Qm cannot contain ascending tuples. Hence, we assume n ≥ m. In
order to avoid technical difficulties when defining the sequence of elements sm−1, sm, sm+1, . . .
below, we assume for the rest of the proof that R is finite but sufficiently large. This assumption
does not pose a restriction, as we can always consider a sufficiently large subset of R.

We proceed by induction on m ≥ 1. The base case m = 1 is easy, since χ can assign only

finitely many colors to elements in R and thus some color must be assigned at least
⌊ |R|
|C|

⌋
times.

Hence, if R contains at least n|C| elements, we find a uniformly colored subset Q of size n. Suppose
m > 1. At first, we pick the m − 2 smallest reals s1 < . . . < sm−2 from R and set Sm−2 := R \
{s1, . . . , sm−2}. Thereafter, we simultaneously construct two sufficiently long but finite sequences
sm−1, sm, sm+1, . . . and Sm−1, Sm, Sm+1, . . . as follows:
Given Si, we define si+1 to be the smallest real in Si.
Given Si and the element si+1, we define an equivalence relation ∼i on the set S′

i := Si \ {si+1}
so that s ∼i s

′ holds if and only if for every sequence of indices j1, . . . , jm−1 with 1 ≤ j1 <
. . . < jm−1 ≤ i + 1, we have χ(sj1 , . . . , sjm−1

, s) = χ(sj1 , . . . , sjm−1
, s′). This equivalence relation

partitions S′
i into at most |C|(

i+1

m−1) equivalence classes. We choose one such class with largest
cardinality to be Si+1.

By construction of the sequence s1, s2, s3, . . ., we must have χ(sj1 , . . . , sjm−1
, sk) = χ(sj1 , . . . ,

sjm−1
, sk′) for every sequence of indices j1 < . . . < jm−1 and all indices k, k′ ≥ jm−1 + 1. Please

note that this covers all ascending m-tuples in {s1, s2, s3, . . .}
m starting with sj1 , . . . , sjm−1, i.e.

they all share the same color. We now define a new coloring χ′ : {s1, s2, s3, . . .}
m−1 → C so that

χ′(sj1 , . . . , sjm−1
) := χ(sj1 , . . . , sjm−1

, sjm−1+1) for every sequence of indices j1 < . . . < jm−1 (in
case of jm−1 being the index of the last element in the sequence s1, s2, s3, . . ., χ

′(sj1 , . . . , sjm−1
)

shall be an arbitrary color from C). By induction, there exists a subset Q ⊆ {s1, s2, s3, . . .} of

4

cardinality n, such that every ascending (m − 1)-tuple r̄ ∈ Qm−1 is colored the same by χ′. The
definition of χ′ entails that now all ascending m-tuples r̄′ ∈ Qm are colored the same by χ. Hence,
Q is the sought set.

Based on Lemma 4, one can derive similar results for more structured ways of coloring tuples
of reals. One such result is given in the next lemma. Its proof can be found in the appendix.

Lemma 5. Let n,m, p > 0 be positive integers, let κ ≥ 0 be a nonnegative integer and let χ :
Rm → C be an arbitrary coloring. Let R1, . . . , Rp be sufficiently large but finite subsets of R. Let
q1, . . . , qκ be fixed reals. Let ̺1, . . . , ̺L be some enumeration of all mappings ̺j : [m] → [p+κ]×[m]
for which ̺j(i) = 〈k, ℓ〉 with k > p entails ℓ = 1. There exist subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp,
each of cardinality n, such that for all ascending tuples r̄1, r̄

′
1 ∈ Qm

1 , . . . , r̄p, r̄
′
p ∈ Qm

p and the reals

r〈p+1,1〉 := q1, . . . , r〈p+κ,1〉 := qκ and every index j, 1 ≤ j ≤ L, we have χ
(
r̺j(1), . . . , r̺j(m)

)
=

χ
(
r′
̺j(1)

, . . . , r′
̺j(m)

)
.

4 Decidability of satisfiability for BSR(SLR) clause sets

For the rest of this section we fix two positive integers m,m′ > 0 and some finite BSR(SLR) clause
set N in normal form. For the sake of simplicity, we assume that all uninterpreted predicate sym-
bols P occurring in N have the sort P : Sm′

×Rm. This assumption does not limit expressiveness,
as the arity of a predicate symbol P can easily be increased in an (un)satisfiability-preserving
way by padding the occurring atoms with additional arguments. For instance, every occurrence
of atoms P (t1, . . . , tm) can be replaced with P (t1, . . . , tm, v, . . . , v) for some fresh variable v that
is added sufficiently often as argument.

Given the BSR(SLR) clause set N , every interpretation A induces a partition of R into finitely
many intervals: the interpretations of all the rational and Skolem constants c occurring in N yield
point intervals that are interspersed with and enclosed by open intervals.

Definition 6 (A-induced partition of R). Let A be an interpretation and let r1, . . . , rk be all
the values in the set {cA | c ∈ bconsts(N)} in ascending order. By JA we denote the following
partition of R:

JA :=
{
(−∞, r1), [r1, r1], (r1, r2), [r2, r2], . . . , (rk−1, rk), [rk, rk], (rk,+∞)

}
.

The idea of the following equivalence is that equivalent tuples are indistinguishable by the
constraints that we allow in the BSR(SLR) clause set N .

Definition 7 (JA-equivalence, ∼JA). Let A be an interpretation and let k be a positive integer.
We call two k-tuples r̄, q̄ ∈ Rk JA-equivalent if
(i) for every J ∈ JA and every i, 1 ≤ i ≤ k, we have ri ∈ J if and only if qi ∈ J and
(ii) for all i, j, 1 ≤ i, j ≤ k we have ri < rj if and only if qi < qj .

The induced equivalence relation on tuples of positive length is denoted by ∼JA .

For every positive k the relation ∼JA induces only finitely many equivalence classes on the
set of all k-tuples over the reals. We intend to show that, if N is satisfiable, then there is some
model A for N which does not distinguish between different JA-equivalent tuples. First, we need
some notion that reflects how the interpretation A treats a given tuple r̄ ∈ Rm. This role will be
taken by the coloring χA, which maps r̄ to a set of expressions of the form P ā, where P is some
predicate symbol occurring in N and ā is an m′-tuple of domain elements from SA. The presence
of P ā in the set χA(r̄) indicates that A interprets P in such a way that PA contains the pair 〈ā, r̄〉.
In this sense, χA(r̄) comprises all the relevant information that A contains regarding the tuple r̄.

Definition 8 (A-coloring χA). Given an interpretation A, let Ŝ := {a ∈ SA | a = cA for some c ∈
fconsts(N)} be the set of all domain elements assigned to free-sort constant symbols by A. The
A-coloring of Rm is the mapping

χA : Rm → P{P ā | ā ∈ Ŝm′

and P is an uninterpreted predicate symbol in N}
defined such that for every r̄ ∈ Rm we have P ā ∈ χA(r̄) if and only if 〈ā, r̄〉 ∈ PA.

5

Having the coloring χA at hand, it is easy to formulate a uniformity property for a given
interpretation A. Two tuples r̄, r̄′ ∈ Rm are treated uniformly by A, if the colors χA(r̄) and
χA(r̄

′) agree. Put differently, A does not distinguish r̄ from r̄′.

Definition 9 (JA-uniform interpretation). An interpretation A is JA-uniform if χA colors each
and every ∼JA-equivalence class uniformly, i.e. for all ∼JA-equivalent tuples r̄, r̄

′ we have χA(r̄) =
χA(r̄

′).

We next show that there exists a JB-uniform model B of N , if N is satisfiable. Since such a
model does not distinguish between JB-equivalent m-tuples, and as there are only finitely many
equivalence classes induced by ∼JB , only a finite amount of information is required to describe B.
This insight will give rise to a decision procedure that nondeterministically guesses how each and
every equivalence class shall be treated by the uniform model.

Given some model A of N , the following lemma assumes the existence of certain finite sets Qi

with a fixed cardinality which are subsets of the open intervals in JA. All JA-equivalent m-tuples
that can be constructed from the reals belonging to the Qi are required to be colored identically
by χA. The existence of the Qi is the subject of Lemma 11.

Lemma 10. Let λ be the maximal number of distinct base-sort variables in any single clause in
N . In case of λ < m, we set λ := m. Let A be a model of N . Let J0, . . . , Jκ be an enumeration
of all open intervals in JA sorted in ascending order, i.e. J0 < . . . < Jκ. Suppose we are given a
collection of finite sets Q0, . . . , Qκ possessing the following properties:
(i) Qi ⊆ Ji and |Qi| = λ for every i, 0 ≤ i ≤ κ.
(ii) Let Q :=

⋃
iQi ∪ {cA | c ∈ bconsts(N)}. For all JA-equivalent m-tuples q̄, q̄′ ∈ Qm we have

χA(q̄) = χA(q̄
′).

Then we can construct a model B of N that is JB-uniform and that interprets the free sort S as
a finite set.

Proof sketch.
Claim I: Let µ be a positive integer with µ ≤ λ. Every ∼JA-equivalence class over Rµ contains
some representative lying in Qµ. ♦

Let Ŝ denote the set {a ∈ SA | a = cA for some c ∈ fconsts(N)}. We construct the interpreta-

tion B as follows: SB := Ŝ; cB := cA for every constant symbol c; for every uninterpreted predicate
symbol P and for all tuples ā ∈ Ŝm′

and r̄ ∈ Rm we pick some tuple q̄ ∈ Qm with q̄ ∼JA r̄, and
we define PB so that 〈ā, r̄〉 ∈ PB if and only if 〈ā, q̄〉 ∈ PA. By construction, B is JB-uniform.

It remains to show B |= N . Consider any clause C = Λ ‖ Γ → ∆ in N and let β be any
variable assignment ranging over SB ∪R. Starting from β, we derive a special variable assignment
β̂C as follows. Let x1, . . . , xℓ be all base-sort variables in C. By Claim I, there is some tuple
〈q1, . . . , qℓ〉 ∈ Qℓ such that 〈q1, . . . , qℓ〉 ∼JA

〈
β(x1), . . . , β(xℓ)

〉
. We set β̂C(xi) := qi for every xi.

For all other base-sort variables, β̂C can be defined arbitrarily. For every free-sort variable u we
set β̂C(u) := β(u).

As A is a model of N , we get A, β̂C |= C. By case distinction on why A, β̂C |= C holds, one
can infer B, β |= C. Consequently, B |= N .

In order to show that uniform models always exist satisfiable clause sets N , we still need to
prove the existence of the sets Qi mentioned in Lemma 10. We use Lemma 5 to show this.

Lemma 11. Let A be an interpretation. Moreover, let q1, . . . , qκ be all reals in {cA | c ∈
bconsts(N)} in ascending order and let J1, . . . , Jκ+1 be all open intervals in JA in ascending
order, i.e. J1 < {q1} < J2 < {q2} < . . . < Jκ < {qκ} < Jκ+1. Let λ be a positive integer. There is
a collection of finite sets Q1, . . . , Qκ+1 such that the following requirements are met.
(i) For every i, 1 ≤ i ≤ κ+ 1, we have Qi ⊆ Ji and |Qi| = λ.
(ii) Let Q :=

⋃
iQi ∪ {q1, . . . , qκ}. For all JA-equivalent m-tuples s̄, s̄′ ∈ Qm we have χA(s̄) =

χA(s̄
′).

6

Proof sketch. Let the sets Q1, . . . , Qκ+1 be the Q1, . . . , Qp that we obtain by virtue of Lemma 5
when we set n := λ, p := κ+1, χ := χA, R1 := J1, . . . , Rκ+1 := Jκ+1. Requirement (i) is obviously
satisfied for Q1, . . . , Qκ+1.

One can show that for every equivalence class S ∈ Rm/∼JA
there is some mapping ̺ : [m] →

[2κ+ 1]× [m] such that

(1) whenever ̺(i) = 〈k, ℓ〉 with k > κ+ 1 then ℓ = 1, and

(2) for all ascending tuples
r̄1 = 〈r〈1,1〉, . . . , r〈1,m〉〉 ∈ Jm

1 ; . . . ; r̄κ+1 = 〈r〈κ+1,1〉, . . . , r〈κ+1,m〉〉 ∈ Jm
κ+1;

r̄κ+2 = 〈r〈κ+2,1〉〉 = 〈q1〉; . . . ; r̄2κ+1 = 〈r〈2κ+1,1〉〉 = 〈qκ〉
we have 〈r̺(1), . . . , r̺(m)〉 ∈ S, and

(3) for every tuple 〈s1, . . . , sm〉 ∈ S there exist ascending tuples r̄1, . . . , r̄2κ+1 defined as in (2)
such that 〈s1, . . . , sm〉 = 〈r̺(1), . . . , r̺(m)〉.

Consider any s̄, s̄′ ∈ S. By (2), s̄ can be written in the form 〈r̺(1), . . . , r̺(m)〉 for appropriate values
r〈k,ℓ〉 and s̄

′ can be represented in the form 〈r′
̺(1), . . . , r

′
̺(m)〉 for appropriate r

′
〈k,ℓ〉. Lemma 5 entails

χA(s̄) = χA(〈r̺(1), . . . , r̺(m)〉) = χA(〈r
′
̺(1), . . . , r

′
̺(m)〉) = χA(s̄

′).

Lemmas 10 and 11 together entail the existence of some JA-uniform model A |= N with a
finite free-sort domain SA, if N is satisfiable.

Corollary 12. If N has a model, then it has a model A that is JA-uniform and that interprets
the sort S as some finite set.

Given any interpretationA, the partition JA of the reals is determined by the rational constants
in N and by the values that A assigns to the base-sort Skolem constants in N . Let d1, . . . , dλ be
all the base-sort Skolem constants in N . If we are given some mapping γ : {d1, . . . , dλ} → R, then
γ induces a partition Jγ , just as A induces JA. We can easily verify whether N has a model B
that is compatible with γ (i.e. B assigns the same values to d1, . . . , dλ) and that is JB-uniform.
Due to the uniformity requirement, there is only a finite number of candidate interpretations that
have to be checked.

Consequently, in order to show decidability of the satisfiability problem for finite BSR(SLR)
clause sets in normal form, the only question that remains to be answered is whether it is sufficient
to consider a finite number of assignments γ of real values to the Skolem constants inN . Recall that
since N is in normal form, we can divide N into two disjoint parts Ndef andN

′ such that all ground
LA terms occurring inN ′ are either (Skolem) constants or rationals. Moreover, every clause inNdef

constitutes a definition c = t of some Skolem constant c. As far as the LA constraints occurring in
N ′ are concerned, the most relevant information regarding the interpretation of Skolem constants
is their ordering relative to one another and relative to the occurring rationals. This means, the
clauses in N ′ cannot distinguish two assignments γ, γ′ if
(a) for every Skolem constant di and every rational r occurring in N ′ we have (a.1) γ(di) ≤ r if
and only if γ′(di) ≤ r, and (a.2) γ(di) ≥ r if and only if γ′(di) ≥ r, and
(b) for all di, dj we have that γ(di) ≤ γ(dj) if and only if γ′(di) ≤ γ′(dj).

This observation leads to the following nondeterministic decision procedure for finite BSR(SLR)
clause sets in normal form:

(1) Nondeterministically fix a total preorder� (reflexive and transitive) on the set of all base-sort
Skolem constants and rational constants occurring in N ′.

Define a clause set N� that enforces � for base-sort Skolem constants, i.e. N� :=
{
c >

c′ ‖ → �
∣∣ c � c′, either c or c′ or both are Skolem constants

}
.

(2) Check whether there is some mapping γ : {d1, . . . , dλ} → R such that γ is a solution for the
clauses in Ndef ∪ N�. (This step relies on the fact that linear arithmetic over existentially
quantified variables is decidable.)

7

(3) If such an assignment γ exists, define an interpretation B as follows.

(3.1) Nondeterministically define SB to be some subset of fconsts(N), i.e. use a subset of the
Herbrand domain with respect to the free sort S.

(3.2) For every e ∈ fconsts(N) nondeterministically pick some a ∈ SB and set eB := a.

(3.3) Set dBi := γ(di) for every di.

(3.4) For every uninterpreted predicate symbol P occurring in N nondeterministically define
the set PB in such a way that B is JB-uniform.

(4) Check whether B is a model of N .

Theorem 13. Satisfiability of finite BSR(SLR) clause sets is decidable.

5 Decidability of satisfiability for BSR(BD) clause sets

Similarly to the previous section, we fix some finite BSR(BD) clause set N in normal form for
the rest of this section, and we assume that all uninterpreted predicate symbols P occurring in N
have the sort P : Sm′

×Rm. Moreover, we assume that all base-sort constants in N are integers.
This does not lead to a loss of generality, as we could multiply all rational constants with the least
common multiple of their denominators to obtain an equisatisfiable clause set in which all base-
sort constants are integers. We could even allow Skolem constants, if we added clauses stipulating
that every such constant is assigned a value that is (a) an integer and (b) is bounded from above
and below by some integer bounds. For the sake of simplicity, however, we do not consider Skolem
constants here.

Our general approach to decidability of the satisfiability problem for finite BSR(BD) clause sets
is very similar to the path taken in the previous section. Due to the nature of the LA constraints
in BSR(BD) clause sets, the employed equivalence relation characterizing indistinguishable tuples
has to be a different one. In fact, we use one equivalence relation ≃̂κ on the unbounded space Rm

and another equivalence relation ≃κ on the subspace (−κ − 1, κ + 1)m for some positive integer
κ. Our definition of the relations ≃κ and ≃̂κ is inspired by the notion of clock equivalence used
in the context of timed automata (see, e.g., [1]).

Definition 14 (bounded region equivalence ≃κ). Let κ be a positive integer. We define the
equivalence relation ≃κ on (−κ− 1, κ+ 1)m such that we get 〈r1, . . . , rm〉 ≃κ 〈s1, . . . , sm〉 if and
only if the following conditions are met:
(i) For every i we have ⌊ri⌋ = ⌊si⌋, and fr(ri) = 0 if and only if fr(si) = 0.
(ii) For all i, j we have fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

The relation ≃κ induces only a finite number of equivalence classes over (−κ − 1, κ + 1)m.
Over Rm, on the other hand, an analogous equivalence relation ≃∞ would lead to infinitely many
equivalence classes. In order to overcome this problem and obtain an equivalence relation over
Rm that induces only a finite number of equivalence classes, we use the following compromise.

Definition 15 (unbounded region equivalence ≃̂κ). Let κ be a positive integer. We define the
equivalence relation ≃̂κ on Rm in such a way that
〈r1, . . . , rm〉 ≃̂κ 〈s1, . . . , sm〉 holds if and only if
(i) for every i either ri > κ and si > κ, or ri < −κ and si < −κ, or the following conditions are
met: (i.i) ⌊ri⌋ = ⌊si⌋ and (i.ii) fr(ri) = 0 if and only if fr(si) = 0, and (ii) for all i, j
(ii.i) if ri, rj > κ or ri, rj < −κ, then ri ≤ rj if and only if si ≤ sj,
(ii.ii) if −κ ≤ ri, rj ≤ κ, then fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

Obviously, the equivalence relations ≃κ and ≃̂κ coincide on the subspace (−κ, κ)m. Over
(−κ − 1, κ + 1)m the relation ≃κ constitutes a proper refinement of ≃̂κ. Figure 1 depicts the
equivalence classes induced by ≃κ and ≃̂κ in a two-dimensional setting for κ = 1. We need both
relations in our approach.

8

r r r

r r r

r r r
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� 〈0, 0〉

PPPPPPP✐

✏✏✏✏✏✏✏✶

r r r

r r r

r r r

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 1: Left: partition of the set (−2, 2)2 induced by ≃1. Right: partition of R2 induced by
≃̂1. Every dot, line segment, and white area represents an equivalence class.

Definition 16 (≃κ-uniform and ≃̂κ-uniform interpretations). Let κ be a positive integer. Con-
sider a interpretation A. We call A ≃κ-uniform if its corresponding coloring χA (cf. Defini-
tion 8) colors each ≃κ-equivalence class over (−κ − 1, κ + 1)m uniformly, i.e. for all tuples
q̄, q̄′ ∈ (−κ − 1, κ + 1)m with q̄ ≃κ q̄′ we have χA(q̄) = χA(q̄

′). We call A ≃̂κ-uniform if χA

colors each ≃κ-equivalence class over Rm uniformly.

The parameter κ will be determined by the base-sort constant in N with the largest absolute
value. If κ is defined in this way, one can show that the LA constraints occurring in N cannot
distinguish between two ≃̂κ-equivalent m-tuples of reals. This observation is crucial for the proof
of Lemma 17.

In order to prove the existence of ≃̂κ-uniform models for satisfiable N , we start from some
model A of N and rely on the existence of a certain finite set Q ⊆ [0, 1) of fractional parts. This

set Q can be extended to a set Q̂ ⊆ (−κ− 1, κ+ 1) by addition of the fractional parts in Q with

integral parts k from the range −κ − 1 ≤ k ≤ κ. Hence, Q̂ contains 2(κ + 1) · |Q| reals. We

assume that all ≃κ-equivalent tuples s̄, s̄′ from Q̂m are treated uniformly by A. Put differently,
we require χA(s̄) = χA(s̄

′). We choose to formulate this requirement with respect to ≃κ because
of the more regular structure of its equivalence classes, which facilitates a more convenient way
of invoking Lemma 4. Due to the fact that ≃κ constitutes a refinement of ≃̂κ on the subspace
(−κ− 1, κ+1)m, and since for every ≃̂κ-equivalence class Ŝ over Rm there is some ≃κ-equivalence

class S ⊆ (−κ− 1, κ+1)m such that S ⊆ Ŝ, we can use the color χA(r̄) of representative m-tuples

r̄ constructed from Q̂ to serve as a blueprint when constructing a ≃̂κ-uniform model B.

Lemma 17. Let λ be the maximal number of distinct base-sort variables in any single clause in
N ; in case of λ < m, we set λ := m. Let A be a model of N . Let κ be the maximal absolute value
of any rational occurring in N ; in case this value is zero, we set κ := 1. Suppose we are given a
finite set Q ⊆ [0, 1) of cardinality λ+1 such that 0 ∈ Q and for all tuples r̄, s̄ ∈ Q̂m, r̄ ≃κ s̄ entails
χA(r̄) = χA(s̄), where

Q̂ :=
{
q + k

∣∣ q ∈ Q and k ∈ {−κ− 1, . . . , 0, . . . , κ}
}
.

Then we can construct a model B of N that is ≃̂κ-uniform and that interprets the free sort S as
a finite set.

Proof sketch. The construction of B from A is similar to the construction of uniform models
outlined in the proof of Lemma 10.

Claim I: Let µ be a positive integer with µ ≤ λ. For every ≃̂κ-equivalence class S over Rµ and
every r̄ ∈ S there is some q̄ ∈ S ∩ Q̂µ such that r̄ ≃̂κ q̄ and for all i1, i2, i3 with ri1 < −κ and
ri2 > κ and −κ ≤ ri3 ≤ κ we have fr(qi1) < fr(qi2) < fr(qi3). ♦

Let Ŝ denote the set {a ∈ SA | a = cA for some c ∈ fconsts(N)}. We construct the interpreta-

tion B as follows: SB := Ŝ; cB := cA for every constant symbol c; for every uninterpreted predicate
symbol P occurring in N and for all tuples ā ∈ Ŝm′

and r̄ ∈ Rm we pick some tuple q̄ ∈ Q̂m in
accordance with Claim I—i.e. q̄ satisfies r̄ ≃̂κ q̄—and define PB in such a way that 〈ā, r̄〉 ∈ PB if
and only if 〈ā, q̄〉 ∈ PA.

Claim II: The interpretation B is ≃̂κ-uniform. ♦

It remains to show B |= N . We use the same approach as in the proof for Lemma 10, this time
based on the equivalence relation ≃̂κ instead of ∼JA .

9

We employ Lemma 4 to prove the existence of the set Q used in Lemma 17.

Lemma 18. Let A be an interpretation and let κ, λ be positive integers with λ ≥ m. There exists
a finite set Q ⊆ [0, 1) of cardinality λ + 1 such that 0 ∈ Q and for all tuples s̄, s̄′ ∈ Q̂m, s̄ ≃κ s̄

′

entails χA(s̄) = χA(s̄
′), where

Q̂ :=
{
q + k

∣∣ q ∈ Q and k ∈ {−κ− 1, . . . , 0, . . . , κ}
}
.

Proof sketch. One can show that every ≃κ-equivalence class S over (−κ − 1, κ + 1)m can be
represented by a pair of mappings ̺ : [m] → {0, 1, . . . ,m} and σ : [m] → {−κ − 1, . . . , 0, . . . , κ}
such that
(i) for any ascending tuple 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 with r0 = 0 we have

〈
r̺(1)+σ(1), . . . , r̺(m)+

σ(m)
〉
∈ S, and

(ii) for every tuple 〈s1, . . . , sm〉 ∈ S there is an ascending tuple 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 with
r0 = 0 such that

〈
s1, . . . , sm

〉
=

〈
r̺(1) + σ(1), . . . , r̺(m) + σ(m)

〉
.

Having an enumeration 〈̺1, σ1〉, . . . , 〈̺k, σk〉 of pairs of such mappings in which every ≃κ-
equivalence class over (−κ− 1, κ+1)m is represented, we construct a coloring χ̂ : Rm →

(
P{Piā |

ā ∈ Ŝm′

and Pi occurs in N}
)k

by setting

χ̂(r̄) :=
〈
χA

(
〈r̺1(1) + σ1(1), . . . , r̺1(m) + σ1(m)〉

)
,

. . . , χA

(
〈r̺k(1) + σk(1), . . . , r̺k(m) + σk(m)〉

)〉

for every tuple r̄ = 〈r1, . . . , rm〉 ∈ (0, 1)m, where we define r0 to be 0. By virtue of Lemma 4, there
is a set Q′ ⊆ (0, 1) of cardinality λ such that all ascending tuples 〈r1, . . . , rm〉 ∈ Q′m are assigned
the same color by χ. Then Q := Q′ ∪ {0} is the sought set.

Lemmas 17 and 18 together entail the existence of ≃̂κ-uniform models for finite satisfiable
BSR(BD) clause sets, where κ is defined as in Lemma 17.

Corollary 19. Let κ be defined as in Lemma 17. If N is satisfiable, then it has a model A that
is ≃̂κ-uniform and that interprets the sort S as some finite set.

By virtue of Corollary 19, we can devise a nondeterministic decision procedure for finite
BSR(BD) clause sets N . We adapt the decision procedure for BSR(SLR) as follows. Since
base-sort Skolem constants do not occur in N , Steps (1), (2), and (3.3) are skipped. Moreover,
Step (3.4) has to be modified slightly. The interpretations of uninterpreted predicate symbols
need to be constructed in such a way that the candidate interpretation B is ≃̂κ-uniform for
κ := max

(
{1} ∪ {|c|

∣∣ c ∈ bconsts(N)}
)
.

Theorem 20. Satisfiability of finite BSR(BD) clause sets is decidable.

6 Formalizing reachability for timed automata

In this section we show that reachability for timed automata (cf. [1]) can be formalized using finite
BSR(BD) clause sets. In what follows, we fix a finite sequence x̄ of pairwise distinct clock variables
that range over the reals. For convenience, we occasionally treat x̄ as a set and use set notation
such at x ∈ x̄, |x̄|, and P(x̄). A clock constraint over x̄ is a finite conjunction of LA constraints of
the form true, x ⊳ c, or x − y ⊳ c, where x, y ∈ x̄, c is an integer and ⊳ ∈{<,≤,=, 6=,≥, >}. We
denote the set of all clock constraints over x̄ by cc(x̄). A timed automaton is a tuple 〈Loc, ℓ0, x̄,
〈invℓ〉ℓ∈Loc, T 〉, where Loc is a finite set of locations; ℓ0 ∈ Loc is the initial location; 〈invℓ〉ℓ∈Loc

is a family of clock constraints from cc(x̄) where each invℓ describes the invariant at location ℓ;
T ⊆ Loc× cc(x̄)×P(x̄)×Loc is the location transition relation within the automaton, including
guards with respect to clocks and the set of clocks that are being reset when the transition is
taken.

Although the control flow of a timed automaton is described by finite means, the fact that
clocks can assume uncountably many values yields an infinite state space, namely, Loc× [0,∞)|x̄|.
Transitions between states fall into two categories:

10

delay transitions 〈ℓ, r̄〉 →֒ 〈ℓ, r̄′〉 with r̄′ = r̄ + t for some t ≥ 0 and
[x̄′ 7→r̄′] |= invℓ[x̄

′]; and

location transitions 〈ℓ, r̄〉 →֒ 〈ℓ′, r̄′〉 for some 〈ℓ, g, Z, ℓ′〉∈T with [x̄ 7→r̄] |= g[x̄],
r̄′ = r̄[Z 7→ 0], and [x̄′ 7→r̄′] |= invℓ′ [x̄

′].
The operation r̄′ := r̄ + t is defined by setting r′i := ri + t for every i, and r̄′ := r̄[Z 7→ 0] means
that r′i = 0 for every xi ∈ Z and r′i = ri for every xi 6∈ Z.

In [6] Fietzke and Weidenbach present an encoding of reachability for a given timed automaton
A in terms of first-order logic modulo linear arithmetic.

Definition 21 (FOL(LA) encoding of a timed automaton, [6]). Given a timed automaton A :=
〈Loc, ℓ0, x̄, 〈invℓ〉ℓ∈Loc, T 〉, the FOL(LA) encoding of A is the following clause setNA, where Reach
is a (1 + |x̄|)-ary predicate symbol:

the initial clause
∧

x∈x̄ x = 0 ∧ invℓ0 [x̄]
∥∥ → Reach(ℓ0, x̄);

delay clauses z ≥ 0 ∧
∧

x∈x̄ x
′ = x+ z ∧ invℓ[x̄

′]∥∥ Reach(ℓ, x̄) → Reach(ℓ, x̄′)
for every location ℓ ∈ Loc;

transition clauses g[x̄] ∧
∧

x∈Z x
′ = 0 ∧

∧
x∈x̄\Z x

′ = x ∧ invℓ′ [x̄
′]∥∥ Reach(ℓ, x̄) → Reach(ℓ′, x̄′)

for every location transition 〈ℓ, g, Z, ℓ′〉 ∈ T .

Corollary 4.3 in [6] states that for any model of NA, every location ℓ ∈ Loc, and every tuple
r̄ ∈ R|x̄| we have A, [x̄7→r̄] |= Reach(ℓ, x̄) if and only if A can reach the state 〈ℓ, r̄〉 from its initial
configuration.

Given any clock constraint ψ ∈ cc(x̄) and some location ℓ, the timed automaton A can reach
at least one of the states 〈ℓ, r̄〉 with [x̄ 7→r̄] |= ψ[x̄] from its initial configuration if and only if the
clause set NA ∪

{
ψ[x̄] ‖Reach(ℓ, x̄) → �

}
is unsatisfiable (cf. Proposition 4.4 in [6]).

Next, we argue that the passage of time does not have to be formalized as a synchronous
progression of all clocks. Instead, it is sufficient to require that clocks progress in such a way that
their valuations do not drift apart excessively.

Lemma 22. Consider any delay clause
C := z ≥ 0 ∧

∧
x∈x̄ x

′ = x+ z ∧ invℓ[x̄
′]

∥∥ Reach(ℓ, x̄) → Reach(ℓ, x̄′)
that belongs to the FOL(LA) encoding of some timed automaton A := 〈Loc, ℓ0, x̄, 〈invℓ〉ℓ∈Loc, T 〉.
Let λ be some positive integer. LetM be a finite clause set corresponding to the following formula

ϕ :=
∧

x1,x2∈x̄

∧

−λ≤k≤λ

(
x1 − x2 ≤ k ↔ x′1 − x′2 ≤ k

)

∧
(
x1 − x2 ≥ k ↔ x′1 − x′2 ≥ k

)

∧
∧

x∈x̄

x′ ≥ x ∧ invℓ[x̄
′]

∥∥ Reach(ℓ, x̄) → Reach(ℓ, x̄′) .

For every ≃λ-uniform interpretation A we have A, [x̄7→r̄, x̄′ 7→r̄′] |= C for all tuples r̄, r̄′ ∈ [0, λ +
1)|x̄| if and only if A, [x̄ 7→q̄, x̄′ 7→q̄′] |=M holds for all tuples q̄, q̄′ ∈ [0, λ+ 1)|x̄|.

Our approach to decidability of BSR(BD)-satisfiability exploits the observation that the allowed
constraints cannot distinguish between tuples from one and the same equivalence class with respect
to ≃̂λ, which induces only a finite number of such classes. Decidability of the reachability problem
for timed automata can be argued in a similar fashion, using a suitable equivalence relation on
clock valuations [1]. We refer to the induced classes of indistinguishable clock valuations over R|x|,
which are induced by a given timed automaton A = 〈Loc, ℓ0, x̄, 〈invℓ〉ℓ∈Loc, T 〉, as TA regions of
A.

In order to decide reachability for A, it is sufficient to consider a bounded subspace of R|x̄|.
More precisely, there exists a computable integer λ, depending on the number of clocks |x̄| and
the constants occurring in clock constraints in A, such that any valuation r̄ of A’s clocks can be
projected to some valuation r̄′ ∈ [0, λ+ 1)|x̄| that A cannot distinguish from r̄ (see Section A.4).
In the subspace [0, λ + 1)|x̄|, A’s TA regions coincide with (finite unions of) equivalence classes

11

with respect to ≃λ. In fact, the quotient [0, λ + 1)|x̄|/≃λ
constitutes a refinement of the division

of [0, λ+1)|x̄| into TA regions. Since any pair 〈ℓ, r̄〉 with r̄ ∈ R for some TA region R is reachable
if and only if all pairs 〈ℓ, r̄′〉 with r̄ ∈ R are reachable, any minimal model A of the encoding NA

is ≃λ-uniform (where minimality of A refers to the minimality of the set ReachA with respect to
set inclusion). This is why Lemma 22 may focus on ≃λ-uniform models.

Theorem 23. The reachability problem for a given timed automaton can be expressed in terms
of satisfiability of a finite BSR(BD) clause set.

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–
235, 1994.

[2] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theorem proving for
hierarchic first-order theories. Applicable Algebra in Engineering, Communication and Com-
puting, 5:193–212, 1994.

[3] Peter Baumgartner and Uwe Waldmann. Hierarchic superposition with weak abstraction. In
Automated Deduction (CADE-24), pages 39–57, 2013.

[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s Decidable About Arrays? In
Verification, Model Checking, and Abstract Interpretation (VMCAI’06), pages 427–442, 2006.

[5] Peter J. Downey. Undecidability of Presburger Arithmetic with a Single Monadic Predicate
Letter. Technical report, Center for Research in Computer Technology, Harvard University,
1972.

[6] Arnaud Fietzke and Christoph Weidenbach. Superposition as a Decision Procedure for Timed
Automata. Mathematics in Computer Science, 6(4):409–425, 2012.

[7] Yeting Ge and Leonardo Mendonça de Moura. Complete Instantiation for Quantified For-
mulas in Satisfiabiliby Modulo Theories. In Computer Aided Verification (CAV’09), pages
306–320, 2009.

[8] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey Theory. A Wiley-
Interscience publication. Wiley, second edition, 1990.

[9] Matthias Horbach, Marco Voigt, and Christoph Weidenbach. On the Combination of the
Bernays–Schönfinkel–Ramsey Fragment with Linear Integer Arithmetic. In Automated De-
duction (CADE-26). To appear.

[10] Matthias Horbach, Marco Voigt, and Christoph Weidenbach. The Universal Fragment of
Presburger Arithmetic with Unary Uninterpreted Predicates is Undecidable. ArXiv preprint,
arXiv:1703.01212 [cs.LO], 2017.

[11] Daniel Kroening and Ofer Strichman. Decision Procedures. Texts in Theoretical Computer
Science. An EATCS Series. Springer, second edition, 2016.

[12] Evgeny Kruglov and Christoph Weidenbach. Superposition Decides the First-Order Logic
Fragment Over Ground Theories. Mathematics in Computer Science, 6(4):427–456, 2012.

[13] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded Maler, and Navendu
Jain. Verification of Timed Automata via Satisfiability Checking. In Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT’02), pages 225–244, 2002.

[14] Vaughan R. Pratt. Two Easy Theories Whose Combination is Hard. Technical report, Mas-
sachusetts Institute of Technology, 1977.

12

http://arxiv.org/abs/1703.01212

[15] Hilary Putnam. Decidability and Essential Undecidability. Journal of Symbolic Logic,
22(1):39–54, 1957.

[16] Marco Voigt. The Bernays–Schönfinkel–Ramsey Fragment with Bounded Difference Con-
straints over the Reals is Decidable. In Frontiers of Combining Systems (FroCoS’17). To
appear.

[17] Marco Voigt and Christoph Weidenbach. Bernays-Schönfinkel-Ramsey with Simple Bounds
is NEXPTIME-complete. ArXiv preprint, arXiv:1501.07209 [cs.LO], 2015.

13

http://arxiv.org/abs/1501.07209

A Appendix

A.1 Details Concerning Section 3

Proof of Lemma 5

We start with two auxiliary results.

Lemma 24. Let n,m, p > 0 be positive integers and let χ : Rmp → C be an arbitrary coloring.
Let R1, . . . , Rp be sufficiently large but finite subsets of R.

There exist subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp, each of cardinality n, such that for all ascending
tuples r̄1 ∈ Qm

1 , . . . , r̄p ∈ Qm
p the colors χ(r̄1, . . . , r̄p) are the same.

adaptation of the proof of Theorem 5 on page 113 in [8].
As in the proof of Lemma 4, we assume n ≥ m. We proceed by induction on p ≥ 1.

The case p = 1 is covered by Lemma 4.
Suppose p > 1. We define an equivalence relation ∼p on the set Rm

p so that s̄ ∼p s̄
′ holds if

and only if for all ascending tuples r̄1 ∈ Rm
1 , . . . , r̄p−1 ∈ Rm

p−1 the colors χ
(
r̄1, . . . , r̄p−1, s̄

)
and

χ
(
r̄1, . . . , r̄p−1, s̄

′
)
are identical. This equivalence relation partitionsRm

p into at most |C|(
|R1|
m)·...·(|Rp−1|

m)

equivalence classes. It thus induces a coloring of χ′ : Rm
p → C′

p with one color for each equivalence
class.

By virtue of Lemma 4, we can construct a subset Qp ⊆ Rp with n elements such that all
ascending m-tuples r̄ ∈ Qm

p are colored identically by χ′.
Let the coloring χ′′ be defined by χ′′(r̄1, . . . , r̄p−1) := χ(r̄1, . . . , r̄p−1, s̄) for some fixed ascending

m-tuple s̄ ∈ Qm
p . By induction, we find subsets Q1 ⊆ R1, . . . , Qp−1 ⊆ Rp−1, each containing n

elements, such that for all ascendingm-tuples r̄1 ∈ Rm
1 , . . . , r̄p−1 ∈ Rm

p−1 the colors χ
′′(r̄1, . . . , r̄p−1)

are identical.
But then the definition of χ′′ and χ′ entail that the sets Q1, . . . , Qp satisfy the requirements

posed by the lemma.

Recall that we write [k] to address the set {1, . . . , k} for any positive integer k > 0.

Lemma 25. Let n,m, p > 0 be positive integers, let κ ≥ 0 be a nonnegative integer and let
χ : Rm → C be an arbitrary coloring. Let R1, . . . , Rp be sufficiently large but finite subsets of R.
Let q1, . . . , qκ be fixed reals. Let ̺ : [m] → [p+ κ]× [m] be some mapping such that ̺(i) = 〈k, ℓ〉
with k > p implies ℓ = 1.

There exist subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp, each of cardinality n, such that for all ascending
tuples

r̄1 = 〈r〈1,1〉, . . . , r〈1,m〉〉 ∈ Qm
1

...

r̄p = 〈r〈p,1〉, . . . , r〈p,m〉〉 ∈ Qm
p

and the reals r〈p+1,1〉 := q1, . . . , r〈p+κ,1〉 := qκ the colors χ(r̺̄(1), . . . , r̺̄(m)) are the same.

Proof. We again assume n ≥ m. We define a new coloring χ′ : Rmp → C by

χ′(r〈1,1〉, . . . , r〈1,m〉, . . . , r〈p,1〉, . . . , r〈p,m〉) := χ(r̺(1), . . . , r̺(m))

for every mp-tuple 〈r̄1, . . . , r̄p〉 ∈ Rm
1 × . . .× Rm

p with ascending r̄1, . . . , r̄p. By Lemma 24, there
exist subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp, each with n elements, such that for all ascending tuples r̄1 ∈
Qm

1 , . . . , r̄p ∈ Qm
p the colors χ′(r̄1, . . . , r̄p) are the same. By definition of χ′, the sets Q1, . . . , Qp

satisfy the requirements of the lemma.

Now we have the right tools at hand to prove Lemma 5

14

Lemma. Let n,m, p > 0 be positive integers, let K ≥ 0 be a nonnegative integer and let χ :
Rm → C be an arbitrary coloring. Let R1, . . . , Rp be sufficiently large but finite subsets of R. Let
q1, . . . , qK be fixed reals. Let ̺1, . . . , ̺L be some enumeration of all mappings ̺j : [m] → [p+K]×
[m] for which ̺j(i) = 〈k, ℓ〉 with k > p entails ℓ = 1. There exist subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp,
each of cardinality n, such that for all ascending tuples r̄1, r̄

′
1 ∈ Qm

1 , . . . , r̄p, r̄
′
p ∈ Qm

p and the reals
r〈p+1,1〉 := q1, . . . , r〈p+K,1〉 := qK and every index j, 1 ≤ j ≤ L, we have

χ
(
r̺j(1), . . . , r̺j(m)

)
= χ

(
r′̺j(1)

, . . . , r′̺j(m)

)
.

Proof. We again assume n ≥ m. We construct sequences of subsets Sℓ,0 ⊇ . . . ⊇ Sℓ,L for every ℓ,
1 ≤ ℓ ≤ p, such that

• Sℓ,0 = Rℓ, and

• Sℓ,j+1 ⊆ Sℓ,j is a subset of sufficient cardinality that is constructed by application of Lemma
25 for ̺ := ̺j+1, i.e. for all ascending tuples

〈s〈1,1〉, . . . , s〈1,m〉〉 ∈ Sm
1,j+1

...

〈s〈p,1〉, . . . , s〈p,m〉〉 ∈ Sm
p,j+1

the colors χ(s̺̄j+1(1), . . . , s̺̄j+1(m)) are the same.

Then the sets S1,L, . . . , Sp,L are the sought Q1, . . . , Qp.

A.2 Details Concerning Section 4

Proof of Lemma 10

Lemma. Let λ be the maximal number of distinct base-sort variables in any single clause in N
but at least m, i.e. λ := max

(
{m} ∪

{
|vars(C) ∩ VR|

∣∣ C ∈ N
})

. Let A be a model of N . Let
J0, . . . , Jκ be an enumeration of all open intervals in JA so that J0 < . . . < Jκ. Suppose we are
given a collection of finite sets Q0, . . . , Qκ possessing the following properties,

(i) Qi ⊆ Ji and |Qi| = λ for every i, 0 ≤ i ≤ κ.

(ii) Let Q :=
⋃

iQi ∪ {cA | c ∈ bconsts(N)}. For all JA-equivalent m-tuples q̄, q̄′ ∈ Qm we have
χA(q̄) = χA(q̄

′).

Then we can construct a model B of N that is JB-uniform and that interprets the free sort S as
a finite set. Moreover, B interprets all constant symbols in N exactly as A does.

Proof.

Claim I: Let µ, 1 ≤ µ ≤, λ be a positive integer. For each of the finitely many equivalence classes
in Rµ/∼JA

, we find a representative lying in Qµ.

Proof: Given an equivalence class [r̄]∼JA
∈ Rµ/∼JA

, we define the following ascending sequences
for every i, 0 ≤ i ≤ κ,

• si,1 < . . . < si,ki
, where the values si,j are the reals in r̄ that stem from Ji, enumerated

in ascending order, and

• qi,1 < . . . < qi,λ, which comprises all reals in Qi in ascending order.

In every Qi ⊆ Ji we find λ ≥ µ ≥ ki distinct reals.

We can now construct a tuple q̄′ ∈ [r̄]∼JA
∩Qµ by setting

q′ℓ :=

{
cA if rℓ = cA for some c ∈ bconsts(N),

qi,j if rℓ = si,j for some i, 0 ≤ i ≤ κ, and some j, 1 ≤ j ≤ ki,

for every ℓ, 1 ≤ ℓ ≤ µ. Clearly, r̄ and q̄′ are JA-equivalent. ♦

15

We construct the interpretation B as follows, where Ŝ denotes the set {a ∈ SA | a = cA for some
c ∈ fconsts(N)}:

• SB := Ŝ,

• for every constant symbol c occurring in N we set cB := cA,

• for every uninterpreted predicate symbol P occurring in N and for all tuples ā ∈ Ŝm′

and
r̄ ∈ Rm we pick some tuple q̄ ∈ Qm which is JA-equivalent to r̄, and we define PB so that

〈ā, r̄〉 ∈ PB if and only if 〈ā, q̄〉 ∈ PA .

Claim II: The interpretation B is JB-uniform.

Proof: By construction of B and by requirement (ii). ♦

We next show B |= N . Consider any clause C = Λ ‖ Γ → ∆ in N and let β be any variable

assignment ranging over SB∪R. Starting from β, we derive a special variable assignment β̂C as fol-
lows. Let x1, . . . , xλC

be an enumeration of all base-sort variables in C. By Claim I, there is some

tuple 〈q1, . . . , qλC
〉 ∈ QλC such that 〈q1, . . . , qλC

〉 ∼JA

〈
β(x1), . . . , β(xλC

)
〉
. We define β̂C(xi) :=

qi for every i, 1 ≤ i ≤ λC . For all other base-sort variables, β̂C can be defined arbitrarily. For every
free-sort variable u we set β̂C(u) := β(u). We observe (∗)

〈
β(x1), . . . , β(xλC

)
〉
∼JB

〈
β̂C(x1), . . . , β̂C(xλC

)
〉
.

As A is a model of N , we get A, β̂C |= C. By case distinction on why A, β̂C |= C holds, we
can infer B, β |= C.

Case A, β̂C 6|= t ⊳ t′ for some atomic LA constraint t ⊳ t′ in Λ, where t, t′ are constant symbols or
base-sort variables. Since B and A interpret constant symbols in the same way and due to
(∗), we conclude B, β 6|= t ⊳ t′.

Case A, β̂C 6|= t ≈ t′ for some free-sort equation t ≈ t′ ∈ Γ. In this case, t and t′ are either
variables or constant symbols of the free sort, which means they do not contain subterms of
the base sort. Since B andA behave identical on free-sort constant symbols and β(u) = β̂C(u)
for every variable u ∈ VS , we have B, β 6|= t ≈ t′.

Case A, β̂C |= t ≈ t′ for some t ≈ t′ ∈ ∆. Analogous to the above case, we get B, β |= t ≈ t′.

Case A, β̂C 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom

P (t′1, . . . , t
′
m′ , t1, . . . , tm) ∈ Γ. This translates to〈

A(β̂C)(t
′
1), . . . ,A(β̂C)(t

′
m′),A(β̂C)(t1), . . . ,A(β̂C)(tm)

〉
6∈ PA.

By definition of β̂C , we have A(β̂C)(tj) ∈ Q for every j, 1 ≤ j ≤ m. Therefore, and by con-
struction of B, 〈

A(β̂C)(t
′
1), . . . ,A(β̂C)(t

′
m′),A(β̂C)(t1), . . . ,A(β̂C)(tm)

〉
6∈ PB.

We observe the following properties:

• We have A(β̂C)(t
′
j) = B(β)(t′j) for every j, 1 ≤ j ≤ m′, due to the definition of B and

β̂C .

• Since A and B interpret constant symbols in the same way, we get A(β̂C)(tj) =

B(β̂C)(tj) for every j, 1 ≤ j ≤ m.

• The definition of β̂C entails that
〈
B(β̂C)(t1), . . . ,B(β̂C)(tm)

〉
and〈

B(β)(t1), . . . ,B(β)(tm)
〉
are JB-equivalent.

The first two observations imply〈
B(β)(t′1), . . . ,B(β)(t

′
m′),B(β̂C)(t1), . . . ,B(β̂C)(tm)

〉
6∈ PB.

Due to this result and the fact that B is JB-uniform (Claim II), the third observation leads
to

〈
B(β)(t′1), . . . ,B(β)(t

′
m′),B(β)(t1), . . . ,B(β)(tm)

〉
6∈ PB.

Put differently, we have B, β 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm).

16

Case A, β̂C |= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom P (t′1, . . . , t

′
m′ , t1, . . . , tm) ∈

∆. Analogous to the previous case we can infer B, β |= P (t′1, . . . , t
′
m′ , t1, . . . , tm).

Altogether, we have shown B |= N .

Proof of Lemma 11

As an auxiliary result, we first show a correspondence between the equivalence classes with respect
to ∼JA and mappings ̺ : [m] → [|JA|]× [m].

Lemma 26. LetA be an interpretation. Let {q1}, . . . , {qκ} be an enumeration of all point intervals
in JA such that q1 < . . . < qκ and let J1, . . . , Jκ+1 be an enumeration of all open intervals in JA

such that J1 < . . . < Jκ+1. Let S ∈ Rm/∼JA
be any equivalence class with respect to ∼JA . There

is a mapping ̺ : [m] → [|JA|]× [m] such that

(i) whenever ̺(i) = 〈k, ℓ〉 with k > κ+ 1 then ℓ = 1, and

(ii) for all ascending tuples

r̄1 = 〈r〈1,1〉, . . . , r〈1,m〉〉 ∈ Jm
1 ,

...

r̄κ+1 = 〈r〈κ+1,1〉, . . . , r〈κ+1,m〉〉 ∈ Jm
κ+1,

r̄κ+2 = 〈r〈κ+2,1〉〉 = 〈q1〉

...

r̄2K+1 = 〈r〈2K+1,1〉〉 = 〈qκ〉

we have 〈r̺(1), . . . , r̺(m)〉 ∈ S, and

(iii) for every tuple 〈s1, . . . , sm〉 ∈ S there exist ascending tuples r̄1, . . . , r̄2K+1 defined as in (ii)
such that 〈s1, . . . , sm〉 = 〈r̺(1), . . . , r̺(m)〉.

Proof. Let s̄′ be some representative taken from S, i.e. S = [s̄′]∼JA
. Given s̄′, we construct 2K+1

possibly empty sequences s̄′′k := 〈s′′k,1, s
′′
k,2, . . .〉, such that every s̄′′k with k ≤ κ+1 lists all elements

of s̄′ in ascending order that lie in Jk, and every s̄′′k with k > κ + 1 contains exactly the value
qk−κ−1. We construct the mapping ̺ in such a way that ̺(i) = 〈k, ℓ〉 holds if and only if s′i = s′′k,ℓ.

Let r̄1, . . . , r̄2K+1 be tuples of reals chosen in accordance with requirement (ii). It is easy to
verify that r̺̄ := 〈r̺(1), . . . , r̺(m)〉 is JA-equivalent to s̄

′, i.e. r̺̄ belongs to S.
In order to show (iii), we construct the tuples r̄1, . . . , r̄2K+1 from 〈s1, . . . , sm〉 in the same way

we have constructed the s̄′′k from s̄′ when constructing ̺ in the beginning of this proof. In addition,
we pad them with suitable values from the respective intervals Jk to reach the length m for every
tuple.

We can now prove Lemma 11.

Lemma. Let A be an interpretation. Let {q1}, . . . , {qκ} be an enumeration of all point intervals
in JA such that q1 < . . . < qκ and let J1, . . . , Jκ+1 be an enumeration of all open intervals in
JA such that J1 < . . . < Jκ+1. Let λ be a positive integer. There is a collection of finite sets
Q1, . . . , Qκ+1 such that the following requirements are met.

(i) For every i, 1 ≤ i ≤ κ+ 1, it holds Qi ⊆ Ji and |Qi| = λ.

(ii) Let Q :=
⋃

iQi ∪ {q1, . . . , qκ}. For all JA-equivalent m-tuples s̄, s̄′ ∈ Qm we have χA(s̄) =
χA(s̄

′).

17

Proof. Let the sets Q1, . . . , Qκ+1 be the Q1, . . . , Qp that we obtain by virtue of Lemma 5 when
we set n := λ, p := κ+ 1, χ := χA, R1 := J1, . . . , Rκ+1 := Jκ+1.

Requirement (i) is obviously satisfied for Q1, . . . , Qκ+1.
By Lemma 26, the equivalence class to which any two given JA-equivalent tuples s̄, s̄

′ belong
corresponds to some mapping ̺ : [m] → [2K + 1]× [m]. Part (ii) of Lemma 26 states that s̄ can
be written in the form 〈r̺(1), . . . , r̺(m)〉 for appropriate values r〈k,ℓ〉 and s̄′ can be represented
in the form 〈r′

̺(1), . . . , r
′
̺(m)〉 for appropriate r′〈k,ℓ〉. We then know by Lemma 5 that χA(s̄) =

χA(〈r̺(1), . . . , r̺(m)〉) = χA(〈r
′
̺(1), . . . , r

′
̺(m)〉) = χA(s̄

′).

A.3 Details Concerning Section 5

Proof of Lemma 17

Lemma. Let λ := max
(
{m} ∪

{
|vars(C) ∩ VR|

∣∣ C ∈ N
})

. Let A be a model of N and let

κ := max
(
{1}∪ {|c|

∣∣ c ∈ bconsts(N)}
)
. Suppose we are given a finite set Q ⊂ [0, 1) of cardinality

λ+ 1 such that 0 ∈ Q and for all tuples r̄, s̄ ∈ Q̂m, r̄ ≃κ s̄ entails χA(r̄) = χA(s̄), where

Q̂ :=
{
q + k

∣∣ q ∈ Q and k ∈ {−κ− 1, . . . , 0, . . . , κ}
}
.

Then we can construct a model B of N that is ≃̂κ-uniform and that interprets the free sort S as
a finite set.

Proof. The construction of B from A is similar to the construction of uniform models outlined in
the proof of Lemma 10.

Claim I: Let µ be a positive integer with 1 ≤ µ ≤ λ. For each of the finitely many equivalence
classes S ∈ Rµ/≃̂κ

and every r̄ ∈ S, there is some q̄ ∈ S ∩ Q̂µ such that r̄ ≃̂κ q̄ and for all
i1, i2, i3 with ri1 < −κ and ri2 > κ and −κ ≤ ri3 ≤ κ we have fr(qi1) < fr(qi2) < fr(qi3).

Proof: Let i1, i2, . . . be all the indices from {1, . . . , µ} for which we have rij > κ for every j.
Analogously, let ℓ1, ℓ2, . . . be all the indices from {1, . . . , µ} such that rℓj < −κ holds for
every j. We define the real

δ := min
{
fr(ri)

∣∣ −κ ≤ ri ≤ κ and fr(ri) > 0 and 1 ≤ i ≤ m
}
∪
{

1
2

}
.

There must be some integer t for which we get 0 < 1
t
rij <

1
2δ and − 1

2δ <
1
t
rℓj < 0 for every

j. Let r̄′ be the tuple that we obtain from r̄ by replacing every rij with 1
t
rij +

1
2δ + κ and

every rℓj with 1
t
rℓj +

1
2δ− κ. By construction, we observe r̄′ ∈ (−κ− 1, κ+ 1)µ and r̄ ≃̂κ r̄

′.
Moreover, we have 1

2δ < fr(r̄′ij) < δ and 0 < fr(r̄′ℓj) <
1
2δ for every j.

Next, we define the following ascending sequences

• s′0 < s′1 < . . . < s′k, where s
′
0 = 0 and the values s′j , j ≥ 1, are the strictly positive

fractional parts in ascending order that occur in fr(r̄′), and

• q′0 < q′1 < . . . < q′λ, which comprises all reals in Q in ascending order, including q′0 = 0.

We can now construct a tuple q̄ ∈ S∩Q̂µ by setting qℓ := ⌊r′ℓ⌋+q
′
j for j such that fr(r′ℓ) = s′j .

Clearly, r̄′ and q̄ are ≃κ-equivalent. Since ≃κ is a refinement of ≃̂κ on the subspace (−κ−
1, κ+ 1)µ, this entails r̄ ≃̂κ q̄. ♦

Let Ŝ denote the set {a ∈ SA | a = cA for some c ∈ fconsts(N)}. The interpretation B can be
constructed as follows:

• SB := Ŝ,

• for every constant symbol c occurring in N we set cB := cA,

• for every uninterpreted predicate symbol P occurring in N and for all tuples ā ∈ Ŝm′

and
r̄ ∈ Rm we pick some tuple q̄ ∈ Q̂m in accordance with Claim I—i.e. q̄ satisfies r̄ ≃̂κ q̄—and
define PB in such a way that

〈ā, r̄〉 ∈ PB if and only if 〈ā, q̄〉 ∈ PA .

18

Claim II: The interpretation B is ≃̂κ-uniform.

Proof: Let r̄1, r̄2 ∈ Rm be two ≃̂κ-equivalent tuples. By Claim I, there exist two tuples q̄1, q̄2

such that q̄1 ≃̂κ r̄1 and q̄2 ≃̂κ r̄2. Clearly, by transitivity and symmetry of ≃̂κ, we have
q̄1 ≃̂κ q̄2. Even stronger, we can show q̄1 ≃κ q̄2. Suppose, q̄1 6≃κ q̄2. We observe the
following properties, which follow from q̄1 ≃̂κ q̄

2:

• ⌊q̄1⌋ = ⌊q̄2⌋ and ⌈q̄1⌉ = ⌈q̄2⌉.

• For all i, j, 1 ≤ i, j ≤ m, for which −κ ≤ q1i , q
1
j ≤ κ, we have fr(q1i) ≤ fr(q1j) if and only

if fr(q2i) ≤ fr(q2j).

• For all i, j, 1 ≤ i, j ≤ m, for which κ < q1i , q
1
j or q1i , q

1
j < −κ, we have q1i ≤ q1j if and

only if q2i ≤ q2j . Because of q̄1, q̄2 ∈ (−κ− 1, κ+ 1)m, we even obtain fr(q1i) ≤ fr(q1j) if

and only if fr(q2i) ≤ fr(q2j).

Hence, our assumption q̄1 6≃κ q̄
2 entails that there are two indices i, j such that fr(q1i) ≤ fr(q1j)

and fr(q2i) > fr(q2j), and one of the following cases applies:

(1) q1i , q
2
i > κ and −κ ≤ q1j , q

2
j ≤ κ, or

(2) q1i , q
2
i > κ and q1j , q

2
j < −κ, or

(3) −κ ≤ q1i , q
2
i ≤ κ and q1j , q

2
j > κ, or

(4) −κ ≤ q1i , q
2
i ≤ κ and −κ < q1j , q

2
j , or

(5) q1i , q
2
i < −κ and −κ ≤ q1j , q

2
j .

Ad (1). By Claim I, we have fr(q1i) < fr(q1j) and fr(q2i) < fr(q2j).

Ad (2). By Claim I, we have fr(q1j) < fr(q1i) and fr(q2j) < fr(q2i).

Ad (3). By Claim I, we have fr(q1i) < fr(q1j) and fr(q2i) < fr(q2j).

Ad (4). By Claim I, we have fr(q1j) < fr(q1i) and fr(q2j) < fr(q2i).

Ad (5). By Claim I, we have fr(q1i) < fr(q1j) and fr(q2i) < fr(q2j).

Since all cases lead to a contradiction, we must have q̄1 ≃κ q̄
2.

Because of q̄1, q̄2 ∈ Q̂m and due to our assumptions regarding Q and Q̂m, we have χA(q̄
1) =

χA(q̄
2). Moreover, by construction of B, we have χB(r̄

1) = χA(q̄
1) and χB(r̄

2) = χA(q̄
2).

Consequently, χB(r̄
1) = χB(r̄

2). ♦

We next show B |= N . Consider any clause C = Λ ‖ Γ → ∆ in N and let β be any variable

assignment ranging over SB ∪ R. Starting from β, we derive a special variable assignment β̂C as
follows. Let x1, . . . , xℓ be an enumeration of all base-sort variables in C. By Claim I, there exists
some tuple q̄ := 〈q1, . . . , qℓ〉 such that 〈q1, . . . , qℓ〉 ≃̂κ

〈
β(x1), . . . , β(xℓ)

〉
and q̄ ∈ Q̂ℓ. We define

β̂C(xi) := qi for every i, 1 ≤ i ≤ ℓ. Hence, we have

(∗)
〈
β̂C(x1), . . . , β̂C(xℓ)

〉
≃̂κ

〈
β(x1), . . . , β(xℓ)

〉
.

For all other base-sort variables y 6∈ {x1, . . . , xℓ}, β̂C(y) can be defined arbitrarily. For every

free-sort variable u we set β̂C(u) := β(u).

As A is a model of N , we know A, β̂C |= C. By case distinction on why A, β̂C |= C holds, we
may use this result to obtain B, β |= C.

Case A, β̂C 6|= x ⊳ c for some constraint x ⊳ c in Λ. Hence, βC(x) 6⊳ c. Due to (∗), the assumption

|c| ≤ κ, and the definition of ≃̂κ, we know that β̂C(x) ⊳ c holds if and only if β(x) ⊳ c holds.
Consequently, we get β(x) 6⊳ c and thus B, β 6|= x ⊳ c.

19

Case A, β̂C 6|= x ⊳ y for some x ⊳ y in Λ. By (∗) and the definition of ≃̂κ, we know that

β̂C(x) ⊳ β̂C(y) if and only if β(x) ⊳ β(y). Consequently, we get B, β 6|= x ⊳ y.

Case A, β̂C 6|= x− y ⊳ c for some constraint x− y ⊳ c in Λ. By definition of BSR(BD) clause sets,
Λ must also contain constraints cx ≤ x, x ≤ dx, cy ≤ y, and y ≤ dy for certain constants

cx, dx, cy, dy whose absolute value is at most κ. If one of these constraints is violated by β̂C ,
then the first case applies.

If all of these constraints are satisfied by β̂C , then, by (∗), they are also satisfied by

β. Moreover, (∗) and the definition of ≃̂κ, entail ⌊β̂C(x)⌋ = ⌊β(x)⌋, ⌊β̂C(y)⌋ = ⌊β(y)⌋,

⌈β̂C(x)⌉ = ⌈β(x)⌉, ⌈β̂C(y)⌉ = ⌈β(y)⌉, fr(β̂C(x)) ≤ fr(β̂C(y)) if and only if fr(β(x)) ≤ fr(β(y)),

and fr(β̂C(x)) ≥ fr(β̂C(y)) if and only if fr(β(x)) ≥ fr(β(y)). Hence, the following two obser-
vations hold:

⌊β̂C(x)− β̂C(y)⌋ = ⌊β̂C(x)⌋ − ⌊β̂C(y)⌋+
⌊
fr(β̂C(x)) − fr(β̂C(y))

⌋

= ⌊β(x)⌋ − ⌊β(y)⌋+
⌊
fr(β(x)) − fr(β(y))

⌋

= ⌊β(x)− β(y)⌋

and

⌈β̂C(x)− β̂C(y)⌉ = ⌈β̂C(x)⌉ − ⌈β̂C(y)⌉+
⌈
fr(β̂C(x)) − fr(β̂C(y))

⌉

= ⌈β(x)⌉ − ⌈β(y)⌉+
⌈
fr(β(x)) − fr(β(y))

⌉

= ⌈β(x)− β(y)⌉ .

Consequently, we have β̂C(x) − β̂C(y) ⊳ c if and only if β(x) − β(y) ⊳ c. In other words,
A, β 6|= x− y ⊳ c.

Case A, β̂C 6|= t ≈ t′ for some free atom t ≈ t′ ∈ Γ. Hence, t and t′ are either variables or constant
symbols of the free sort, which means they do not contain subterms of the base sort. Since
B and A behave identical on free-sort constant symbols and β(u) = β̂C(u) for every variable
u ∈ VS , we get B, β 6|= t ≈ t′.

Case A, β̂C |= t ≈ t′ for some t ≈ t′ ∈ ∆. Analogous to the above case, B, β |= t ≈ t′.

Case A, β̂C 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom

P (t′1, . . . , t
′
m′ , t1, . . . , tm) ∈ Γ. This translates to〈

A(β̂C)(t
′
1), . . . ,A(β̂C)(t

′
m′),A(β̂C)(t1), . . . ,A(β̂C)(tm)

〉
6∈ PA.

By construction of β̂C , we have A(β̂C)(tj) ∈ Q̂ for every j, 1 ≤ j ≤ m. Due to our assump-

tions regarding Q̂ and by construction of B, we therefore have〈
A(β̂C)(t

′
1), . . . ,A(β̂C)(t

′
m′),A(β̂C)(t1), . . . ,A(β̂C)(tm)

〉
6∈ PB.

We observe the following properties:

• We have A(β̂C)(t
′
j) = B(β)(t′j) for every j, 1 ≤ j ≤ m′, due to the definition of B and

β̂C .

• Since all the tj are base-sort variables, we get A(β̂C)(tj) = B(β̂C)(tj) for every j,
1 ≤ j ≤ m.

These two observations yield〈
B(β)(t′1), . . . ,B(β)(t

′
m′),B(β̂C)(t1), . . . ,B(β̂C)(tm)

〉
6∈ PB.

Because of this result, and due to ≃̂κ-uniformity of B,〈
B(β̂C)(t1), . . . ,B(β̂C)(tm)

〉
≃̂κ

〈
B(β)(t1), . . . ,B(β)(tm)

〉

leads to 〈
B(β)(t′1), . . . ,B(β)(t

′
m′),B(β)(t1), . . . ,B(β)(tm)

〉
6∈ PB.

Put differently, we have B, β 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm).

20

Case A, β̂C |= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom

P (t′1, . . . , t
′
m′ , t1, . . . , tm) ∈ ∆. Analogously to the previous case we can infer B, β |=

P (t′1, . . . , t
′
m′ , t1, . . . , tm).

Altogether, we have shown B |= N .

Proof of Lemma 18

We first need the following auxiliary result.

Lemma 27. Let S ∈ (−κ− 1, κ+ 1)m/≃κ
be an equivalence class with respect to ≃κ. There are

two mappings ̺ : [m] → {0, 1, . . . ,m} and σ : [m] → {−κ− 1, . . . , 0, . . . , κ} such that

(i) for any ascending tuple 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 with r0 = 0 we have
〈
r̺(1)+σ(1), . . . , r̺(m)+

σ(m)
〉
∈ S, and

(ii) for every tuple 〈s1, . . . , sm〉 ∈ S there is an ascending tuple 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 with
r0 = 0 such that

〈
s1, . . . , sm

〉
=

〈
r̺(1) + σ(1), . . . , r̺(m) + σ(m)

〉
.

Proof. Fix some tuple q̄ taken from S. Given q̄, we set q′0 := 0 and further construct the sequence
q′1, q

′
2, . . . in such a way that it lists all strictly positive fractional values in fr(q̄) in ascending order.
We construct σ by setting σ(i) := ⌊qi⌋ for every i = 1, . . . ,m, and ̺ such that ̺(i) = k holds

if and only if fr(qi) = q′k. Consequently, we have

(∗) 〈q1, . . . , qm〉 =
〈
fr(q1) + ⌊q1⌋, . . . , fr(qm) + ⌊qm⌋

〉
=

〈
q′
̺(1) + σ(1), . . . , q′

̺(m) + σ(m)
〉
.

Let 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 be any ascending tuple with r0 = 0. For all i, j, we observe the
following properties:

(1) ⌊r̺(i) + σ(i)⌋ = σ(i) = ⌊qi⌋.

(2) fr(r̺(i) + σ(i)) = fr(r̺(i)) = r̺(i).

(3) ̺(i) = 0 if and only if fr(qi) = q′0 = 0, which entails that fr(r̺(i) +σ(i)) = 0 holds if and only
if we have fr(qi) = 0.

(4) fr(qi) = q′
̺(i).

(5) We have fr(r̺(i) + σ(i)) ≤ fr(r̺(j) + σ(j))
if and only if r̺(i) ≤ r̺(j)
if and only if ̺(i) ≤ ̺(j)
if and only if q′

̺(i) ≤ q′
̺(j)

if and only if fr(qi) ≤ fr(qj).

Taken together, these observations imply q̄ ≃κ 〈r̺(1) + σ(1), . . . , r̺(m) + σ(m)〉. Hence, we have
just proved (i).

In fact, we have also already proved (ii), by giving the construction of the sequence q′0, q
′
1, q

′
2, . . .

and by having derived (∗). If the sequence q′1, q
′
2, . . . is shorter than m elements, we can simply

pad it in an ascending fashion with arbitrary values from (0, 1).

We can now prove Lemma 18.

Lemma. Let A be an interpretation and let κ, λ be positive integers. There exists a finite set
Q ⊂ [0, 1) of cardinality λ + 1 such that 0 ∈ Q and for all tuples s̄, s̄′ ∈ Q̂m, s̄ ≃κ s̄′ entails
χA(s̄) = χA(s̄

′), where

Q̂ :=
{
q + k

∣∣ q ∈ Q and k ∈ {−κ− 1, . . . , 0, . . . , κ}
}
.

21

Proof. Let S1, . . . , Sk be some enumeration of all equivalence classes in (−κ− 1, κ+ 1)m/≃κ
. By

Lemma 27, there is a (not necessarily unique) sequence 〈̺1, σ1〉, . . . , 〈̺k, σk〉 of pairs of functions
such that each pair 〈̺j , σj〉 corresponds to the equivalence class Sj in the sense of Lemma 27.

Let Ŝ := {a ∈ SA | a = cA for some c ∈ fconsts(N)} be the set of all domain elements assigned

to free-sort constant symbols byA. We define a coloring χ̂ : Rm →
(
P{Piā | ā ∈ Ŝm′

and Pi occurs

in N}
)k

by setting

χ̂(r̄) :=
〈
χA

(
〈r̺1(1) + σ1(1), . . . , r̺1(m) + σ1(m)〉

)
,

. . . , χA

(
〈r̺k(1) + σk(1), . . . , r̺k(m) + σk(m)〉

)〉

for every tuple r̄ = 〈r1, . . . , rm〉 ∈ (0, 1)m, where we define r0 to be 0. By virtue of Lemma 4, there
is a set Q′ ⊆ (0, 1) of cardinality λ such that all ascending tuples 〈r1, . . . , rm〉 ∈ Q′m are assigned
the same color by χ. We then set Q := Q′ ∪ {0}.

Consider any equivalence class Sj and the corresponding pair 〈̺j , σj〉 and let s̄, s̄′ ∈ Q̂m be
two ≃κ-equivalent tuples. Let q1, q2, . . . be an enumeration of all the strictly positive fractional
parts in fr(s̄) in ascending order and let q0 := 0. Hence, q0 < q1 < q2 <

By Lemma 27, there are two ascending tuples q̄ := 〈0, q1, . . . , qm〉 and q̄′ := 〈0, q′1, . . . , q
′
m〉 in

[0, 1)m+1 such that
s̄ = 〈q̺j(1) + σ(1), . . . , q̺j(m) + σ(m)〉

and
s̄′ = 〈q′

̺j(1)
+ σ(1), . . . , q′

̺j(m) + σ(m)〉.

Because of s̄, s̄′ ∈ Q̂m, we know that 〈q1, . . . , qm〉 ∈ Q′m and 〈q′1, . . . , q
′
m〉 ∈ Q′m. Then, χ̂(〈q1, . . . , qm〉) =

χ̂(〈q′1, . . . , q
′
m〉) entails

χA(s̄) = χA

(
〈q̺j(1) + σ(1), . . . , q̺j(m) + σ(m)〉

)

= χA

(
〈q′̺j(1)

+ σ(1), . . . , q′̺j(m) + σ(m)〉
)
= χA(s̄

′) .

A.4 Details Concerning Section 6

Proof of Lemma 22

We first need an auxiliary result.

Lemma 28. Let S ∈ [0, λ+1)|x̄|/≃λ
be some equivalence class with respect to ≃λ. We define the

two sets Ŝ1, Ŝ2 as follows:

Ŝ1 :=
{
q̄′ ∈ [0, λ+ 1)|x̄|

∣∣ there is some q̄ ∈ S such that for every i, 1 ≤ i ≤ |x̄|,

we have qi ≤ q′i and q
′
0 − q′i = q0 − qi

}
,

and

Ŝ2 :=
{
q̄′ ∈ [0, λ+ 1)|x̄|

∣∣
there is some q̄ ∈ S such that for all i1, i2, 1 ≤ i1, i2 ≤ |x̄|,

qi1 ≤ q′i1 and for every integer k, −λ ≤ k ≤ λ, we have

qi1 − qi2 ≤ k if and only if q′i1 − q′i2 ≤ k, and

qi1 − qi2 ≥ k if and only if q′i1 − q′i2 ≥ k
}
,

where q0, q
′
0 are some fixed reals in the tuples q̄, q̄′, respectively, that correspond to the same index.

We observe Ŝ1 = Ŝ2.

Proof. We obviously have Ŝ1 ⊆ Ŝ2.
In order to prove Ŝ2 ⊆ Ŝ1, consider any q̄

′ ∈ Ŝ2. Pick some s̄ ∈ S for which si ≤ q′i for every i,

1 ≤ i ≤ |x̄|. By construction of Ŝ2, we observe ⌊s0 − si⌋ = ⌊q′0 − q′i⌋ and ⌈s0 − si⌉ = ⌈q′0 − q′i⌉ for
every i, 1 ≤ i ≤ |x̄|.

22

Claim III: For all indices j1, j2 ∈ {1, . . . , |x̄|} we have fr(sj1) = fr(sj2) if and only if fr(q′j1) =
fr(q′j2).

Proof: For all reals r, t we have fr(r) = fr(t) if and only if ⌊r − t⌋ = ⌈r − t⌉. Using this fact, we
get that fr(sj1) = fr(sj2) entails ⌊q

′
j1
− q′j2⌋ = ⌊sj1 − sj2⌋ = ⌈sj1 − sj2⌉ = ⌈q′j1 − q′j2⌉ which in

turn implies fr(q′j1) = fr(q′j2). Symmetrically, fr(q′j1) = fr(q′j2) entails fr(sj1) = fr(sj2). ♦

Claim IV: Let k1, . . . , k|x̄|be some enumeration of the indices in {1, . . . , |x̄|} such that fr(sk1
) ≤

. . . ≤ fr(sk|x̄|
). There is some ℓ such that

fr(q′kℓ+1
) ≤ . . . ≤ fr(q′k|x̄|

) ≤ fr(q′k1
) ≤ . . . ≤ fr(q′kℓ

).

Proof: Suppose Claim IV does not hold, while Claim III is respected. Hence, suppose there are
indices j1, j2, j3 ∈ {1, . . . , |x̄|} such that fr(sj1) < fr(sj2) < fr(sj3) and fr(q′j3) < fr(q′j2) <

fr(q′j1).
1

For all reals r, t we have ⌊r − t⌋ = ⌊r⌋ − ⌊t⌋+ ⌊fr(r) − fr(t)⌋, where

⌊fr(r) − fr(t)⌋ =

{
0 if fr(r) ≥ fr(t)

−1 if fr(r) < fr(t).

Hence, we get the following system of equations:

⌊sj1⌋ − ⌊sj2⌋ − 1 = ⌊sj1 − sj2⌋ = ⌊q′j1 − q′j2⌋ = ⌊q′j1⌋ − ⌊q′j2⌋
⌊sj1⌋ − ⌊sj3⌋ − 1 = ⌊sj1 − sj3⌋ = ⌊q′j1 − q′j3⌋ = ⌊q′j1⌋ − ⌊q′j3⌋
⌊sj2⌋ − ⌊sj3⌋ − 1 = ⌊sj2 − sj3⌋ = ⌊q′j2 − q′j3⌋ = ⌊q′j2⌋ − ⌊q′j3⌋

As this system entails 0 = 1, we obtain a contradiction. ♦

It remains to prove the existence of some tuple q̄ that satisfies the following requirements:

(i) ⌊q̄⌋ = ⌊s̄⌋ and ⌈q̄⌉ = ⌈s̄⌉.

(ii) ⌊s0 − si⌋ = ⌊q0 − qi⌋ and ⌈s0 − si⌉ = ⌈q0 − qi⌉ for every i.

(iii) q0 − qi = q′0 − q′i for every i.

(iv) qi ≤ q′i for every i.

Notice that Requirement (ii) is entailed by Requirement (iii) and the definition of S2.
Consider any i with 1 ≤ i ≤ |x̄|. Requirement (i) entails that q̄ must satisfy qi = ⌊si⌋+ fr(qi).

It follows that q0 − qi = ⌊s0⌋ + fr(q0) − ⌊si⌋ − fr(qi) and q′0 − q′i = ⌊q′0⌋ + fr(q′0) − ⌊q′i⌋ − fr(q′i).
Hence, Requirement (iii) entails

⌊s0⌋ − ⌊si⌋+ fr(q0)− fr(qi) = ⌊q′0⌋ − ⌊q′i⌋+ fr(q′0)− fr(q′i),
which is equivalent to

(∗) fr(q0)− fr(qi) = (⌊q′0⌋ − ⌊q′i⌋)− (⌊s0⌋ − ⌊si⌋) + fr(q′0)− fr(q′i) .

We distinguish several cases:

If q̄′ ∈ S, then we set q̄ := q̄′.

If there is some j such that ⌊sj⌋ = ⌈sj⌉, then, by Requirement (i), we must satisfy fr(qj) = 0 and,
therefore, for every i, fr(qi) is determined by (∗).

If fr(s1) = . . . = fr(s|x̄|), then we observe ⌊q′0 − q′i⌋ = ⌊s0 − si⌋ = ⌈s0 − si⌉ = ⌈q′0 − q′i⌉ for every i.
Hence, we have ⌊q′0− q′i⌋ = ⌈q′0− q′i⌉, which implies fr(q′0) = fr(q′i) for every i. As this entails
q′0 − q′i = ⌊q′0 − q′i⌋ = ⌊s0 − si⌋ = s0 − si, Requirement (iii) is satisfied if we set q̄ := s̄.

1There are analogous arguments leading to contradictions in the cases where fr(q′j2) < fr(q′j1) < fr(q′j3) and

fr(q′
j1
) < fr(q′

j3
) < fr(q′

j2
).

23

If none of the above cases apply, we have ⌊si⌋ = ⌈si⌉ − 1 for every i. Moreover, we know that
there are indices i1, i2 such that fr(si1) < fr(si2).

Let k1, . . . , k|x̄|be some enumeration of the indices in {1, . . . , |x̄|} such that fr(sk1
) ≤ . . . ≤

fr(sk|x̄|
). Notice that fr(sk1

) < fr(sk|x̄|
) holds due to our assumptions. By Claim IV, there is

some ℓ such that
fr(q′kℓ+1

) ≤ . . . ≤ fr(q′k|x̄|
) ≤ fr(q′k1

) ≤ . . . ≤ fr(q′kℓ
).

In fact, Claim III together with fr(sk1
) < fr(sk|x̄|

) entails that fr(q′k|x̄|
) is strictly smaller than

fr(q′k1
).

We pick some real ε such that 0 < ε < fr(q′k1
) − fr(q′k|x̄|

). For every j, 1 ≤ j ≤ ℓ, we

set fr(qkj
) := ε +

(
fr(q′kj

) − fr(q′k1
)
)
. For every j, ℓ + 1 ≤ j ≤ |x̄|, we set fr(qkj

) :=

ε+ 1−
(
fr(q′k1

)− fr(q′kj
)
)
.

Claim V: 0 < fr(qk1
) ≤ . . . ≤ fr(qkℓ

) ≤ fr(qkℓ+1
) ≤ . . . ≤ fr(qk|x̄|

) < 1.

Proof:

We observe

• fr(qk1
) = ε+

(
fr(q′k1

)− fr(q′k1
)
)
= ε > 0.

• fr(qk|x̄|
) = ε+1−

(
fr(q′k1

)−fr(q′k|x̄|
)
)
<

(
fr(q′k1

)−fr(q′k|x̄|
)
)
+1−

(
fr(q′k1

)−fr(q′k|x̄|
)
)
=

1.

• Because of fr(q′kℓ
) ∈ [0, 1) and fr(q′kℓ+1

) ∈ [0, 1), we obtain fr(q′kℓ
) ≤ fr(q′kℓ+1

) + 1.

Hence, we get fr(qkℓ
) = ε +

(
fr(q′kℓ

) − fr(q′k1
)
)
≤ ε + fr(q′kℓ+1

) + 1 − fr(q′k1
) =

ε+ 1−
(
fr(q′k1

)− fr(q′kℓ+1
)
)
= fr(qkℓ+1

).

The above observations entail 0 < fr(qk1
), fr(qkℓ

) ≤ fr(qkℓ+1
), and fr(qk|x̄|

) < 1. By
definition of the fr(qkj

) and our assumptions fr(q′k1
) ≤ . . . ≤ fr(q′kℓ

) and fr(q′kℓ+1
) ≤

. . . ≤ fr(q′k|x̄|
), these observations imply Claim V. ♦

Claim VI: For every j we have
(
⌊sk1

⌋+ fr(qk1
)
)
−
(
⌊skj

⌋+ fr(qkj
)
)
= q′k1

− q′kj
.

Proof: If 1 ≤ j ≤ ℓ, then we have

(
⌊sk1

⌋+ fr(qk1
)
)
−
(
⌊skj

⌋+ fr(qkj
)
)

= ⌊sk1
⌋+ ε+

(
fr(q′k1

)− fr(q′k1
)
)
− ⌊skj

⌋ − ε−
(
fr(q′kj

)− fr(q′k1
)
)

= ⌊sk1
⌋ − ⌊skj

⌋+ fr(q′k1
)− fr(q′kj

)

= ⌊sk1
− skj

⌋+ δ + fr(q′k1
)− fr(q′kj

)

= ⌊q′k1
− q′kj

⌋+ δ + fr(q′k1
)− fr(q′kj

)

= ⌊q′k1
⌋ − ⌊q′kj

⌋+ fr(q′k1
)− fr(q′kj

)

= q′k1
− q′kj

,

where δ = 0 in case of fr(q′k1
) = fr(q′kj

) (or fr(sk1
) = fr(skj

)) and δ = 1 if fr(q′k1
) < fr(q′kj

)

(or fr(sk1
) < fr(skj

)).

If ℓ+ 1 ≤ j ≤ |x̄|, then we have

(
⌊sk1

⌋+ fr(qk1
)
)
−
(
⌊skj

⌋+ fr(qkj
)
)

= ⌊sk1
⌋+ ε+

(
fr(q′k1

)− fr(q′k1
)
)
− ⌊skj

⌋ − ε− 1 +
(
fr(q′k1

)− fr(q′kj
)
)

= ⌊sk1
⌋ − ⌊skj

⌋+ fr(q′k1
)− fr(q′kj

)− 1 .

Since fr(q′k|x̄|
) is strictly smaller than fr(q′k1

), we get fr(q′kj
) < fr(qk1

). Moreover,

Claim III together with fr(sk1
) ≤ fr(skj

) entails fr(sk1
) < fr(skj

). Hence, ⌊sk1
⌋−⌊skj

⌋ =

24

⌊sk1
− skj

⌋+ 1 and ⌊q′k1
− q′kj

⌋ = ⌊q′k1
⌋ − ⌊q′kj

⌋. Consequently, we get

⌊sk1
⌋ − ⌊skj

⌋+ fr(q′k1
)− fr(q′kj

)− 1

= ⌊sk1
− skj

⌋+ 1 + fr(q′k1
)− fr(q′kj

)− 1

= ⌊q′k1
− q′kj

⌋+ fr(q′k1
)− fr(q′kj

)

= ⌊q′k1
⌋ − ⌊q′kj

⌋+ fr(q′k1
)− fr(q′kj

)

= q′k1
− q′kj

.

♦

Claim VII: For every j we have ⌊skj
⌋+ fr(qkj

) ≤ q′kj
.

Proof: As we assume q̄′ 6∈ S, there is at least one i such that ⌊q′ki
⌋ > ⌊ski

⌋. This entails

q′ki
≥ ⌊q′ki

⌋ > ⌊ski
⌋ + fr(qki

). As one consequence of Claim VI, we get that
(
⌊ski

⌋ +

fr(qki
)
)
−

(
⌊skj

⌋ + fr(qkj
)
)
= q′ki

− q′kj
for every j. This can be rewritten into the

equivalent equation q′kj
−
(
⌊skj

⌋+ fr(qkj
)
)
= q′ki

−
(
⌊ski

⌋+ fr(qki
)
)
. In other words, we

have q′kj
>

(
⌊skj

⌋+ fr(qkj
)
)
for every j. ♦

This means, if we set qkj
:= ⌊skj

⌋ + fr(qkj
) for every j, 1 ≤ j ≤ |x̄|, then the stipulated

requirements are satisfied.

Using the above result, we can prove Lemma 22

Lemma. Consider any delay clause

C := z ≥ 0 ∧
∧

x∈x̄

x′ = x+ z ∧ invℓ[x̄
′]

∥∥ Reach(ℓ, x̄) → Reach(ℓ, x̄′).

that belongs to the FOL(LA) encoding of some timed automaton A := 〈Loc, ℓ0, x̄, 〈invℓ〉ℓ∈Loc, T 〉.
Let λ be some positive integer. LetM be a finite clause set corresponding to the following formula

ϕ :=
∧

x1,x2∈x̄

∧

−λ≤k≤λ

(
x1 − x2 ≤ k ↔ x′1 − x′2 ≤ k

)

∧
(
x1 − x2 ≥ k ↔ x′1 − x′2 ≥ k

)

∧
∧

x∈x̄

x′ ≥ x ∧ invℓ[x̄
′]

∥∥ Reach(ℓ, x̄) → Reach(ℓ, x̄′).

For every ≃λ-uniform interpretation A we have A, [x̄7→r̄, x̄′ 7→r̄′] |= C for all tuples r̄, r̄′ ∈ [0, λ +
1)|x̄| if and only if A, [x̄ 7→q̄, x̄′ 7→q̄′] |=M holds for all tuples q̄, q̄′ ∈ [0, λ+ 1)|x̄|.

Proof. We first show that the clause C is equivalent to the clause

C′ :=
∧

x∈x̄

x0 − x = x′0 − x′ ∧
∧

x∈x̄

x′ − x ≥ 0

∧ invℓ[x̄
′]

∥∥ Reach(ℓ, x̄) → Reach(ℓ, x̄′) ,

where x0 is some fixed clock variable x0 ∈ x̄. Although the variable z in C is universally quantified,
the fact that z does not occur on the right-hand side of the implication entails that z’s quantifier
can be moved inside the premise of the implication C represents, where universal quantification
will turn into existential quantification (the quantifier moves into the scope of one implicit negation
symbols). This transformation yields an equivalent clause with the constraint ∃z.

∧
x∈x̄ x

′ − x =

25

z ∧ z ≥ 0 ∧ invℓ[x̄
′]. In addition, we observe

∃z.
∧

x∈x̄

x′ − x = z ∧ z ≥ 0

|=|
∧

x1,x2∈x̄

x′1 − x1 = x′2 − x2 ∧
∧

x∈x̄

x′ − x ≥ 0

|=|
∧

x∈x̄

x′0 − x0 = x′ − x ∧
∧

x∈x̄

x′ − x ≥ 0

|=|
∧

x∈x̄

x0 − x = x′0 − x′ ∧
∧

x∈x̄

x′ − x ≥ 0 .

Consequently, the clauses C and C′ are equivalent.
Let S ⊆ [0, λ+1)|x̄| be any equivalence class with respect to ≃λ. Since we assume A to be ≃λ-

uniform, we have that, if A, [x̄ 7→r̄] |= Reach(ℓ, x̄) holds for one r̄ ∈ S, then A, [x̄ 7→q̄] |= Reach(ℓ, x̄)
holds for every q̄ ∈ S.

Now suppose A, [x̄ 7→r̄, x̄′ 7→r̄′] |= C′ holds for all tuples r̄, r̄′ ∈ [0, λ+ 1)|x̄|. Moreover, suppose
there is some pair of tuples q̄, q̄′ ∈ [0, λ + 1)|x̄| such that A, [x̄ 7→q̄, x̄′ 7→q̄′] 6|= ϕ. Thus, we have
that A, [x̄ 7→q̄, x̄′ 7→q̄′] satisfies the premises of ϕ—among them invℓ[x̄

′]— but does not satisfy the
consequent Reach(ℓ, x̄′). As A, [x̄7→q̄, x̄′ 7→q̄′] |=

∧
x1,x2∈x̄

∧
−λ≤k≤λ

(
x1 − x2 ≤ k ↔ x′1 − x′2 ≤

k
)
∧

(
x1 − x2 ≥ k ↔ x′1 − x′2 ≥ k

)
∧

∧
x∈x̄ x

′ ≥ x, we know that q̄′ ∈ Ŝ2, where S ⊆ [0, λ+ 1)|x̄|

is the equivalence class with respect to ≃λ to which q̄ belongs and Ŝ2 is defined as in Lemma 28.
Moreover, we know that A, [x̄ 7→s̄] |= Reach(ℓ, x̄) for every s̄ ∈ S, as A is ≃λ-uniform. The fact
that A, [x̄ 7→r̄, x̄′ 7→r̄′] |= C′ holds for all tuples r̄, r̄′ ∈ [0, λ+ 1)|x̄| entails A, [x̄′ 7→s̄′] |= Reach(ℓ, x̄′)

for every s̄′ ∈ Ŝ1 for which [x̄′ 7→s̄′] |= invℓ[x̄
′], where Ŝ1 is defined as in Lemma 28. Hence,

Lemma 28 entails A, [x̄′ 7→s̄′′] |= Reach(ℓ, x̄′) for every s̄′′ ∈ Ŝ2 for which [x̄′ 7→s̄′′] |= invℓ[x̄
′], in

particular for s̄′′ = q̄′. This contradiction implies that A, [x̄7→q̄, x̄′ 7→q̄′] |= ϕ holds for all tuples
q̄, q̄′ ∈ [0, λ+ 1)|x̄|.

The opposite direction can be argued analogously.

Details regarding Theorem 23

Figure 2 illustrates the TA regions for some timed automaton with two clocks and in which all
integer constants have an absolute value of at most 2. For every TA region R ⊆ R2 of such an
automaton, there is at least one representative r̄ ∈ R which lies in [0, 5)2.

〈0, 0〉 r r r

r r r r

r r r r

r r

r

r
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 2: Partition of the set [0,∞)2 into classes of clock valuations that cannot be distinguished
by a timed automaton with two clocks in which the absolute value of integer constants occurring
in location invariants and transition guards does not exceed 2. Every dot, line segment, and white
area represents an equivalence class.

Let A := 〈Loc, ℓ0, x̄, 〈invℓ〉ℓ∈Loc, T 〉 be a timed automaton and let k be the maximal absolute
value of any integer constant occurring in the invariants and the transition guards of A. Let

26

x1, . . . , xℓ be some enumeration of all the clock variables in x̄. Consider a constraint of the form
ψ := x1 − x2 = k ∧ x2 − x3 = k ∧ . . . ∧ xℓ−1 − xℓ = k.

We observe that ψ entails x1 − xℓ = (ℓ − 1) · k. Of course, ψ can also be conjoined with the
constraint x1 < −k, say, which entails xℓ < −k − (ℓ − 1) · k. This example illustrates that one
can combine several difference constraints x − y ⊳ c over different clock variables in such a way
that bounds are achieved which cannot be formulated with a single constraint u − v ⊳ d with
|d| ≤ k. However, all of those combined constraints can be equivalently represented with atomic
constraints x− y ⊳ c or x ⊳ c, where |c| ≤ |x̄| · k.

In the main text (in the discussion preceding Theorem 23 in Section 6), we mention that there
exists a computable integer λ such that any valuation r̄ of A’s clocks can be projected to some
valuation r̄′ ∈ [0, λ+ 1)|x̄| which A cannot distinguish from r̄. Due to the above observations, we
find that λ = |x̄| · k meets the stipulated requirements. Hence, in order to decide reachability for
A, it is sufficient to consider the bounded subspace [0, λ + 1)|x̄| ⊆ R|x̄|. This means, given the
FOL(LA) encoding NA of A, we obtain a BSR(BD) encoding N ′

A
of reachability with respect to

A in the following two steps:
(1) Replace every delay clause in NA with a corresponding finite set of clauses M in accordance
with Lemma 22, where we set λ := |x̄| · k.
(2) Conjoin the constraints 0 ≤ x ∧ x < κ for κ := λ+1 = |x̄| · k+1 to every constraint in which
a base-sort variable x occurs.
Since any ≃̂λ+1-uniform model of N ′

A
is ≃λ-uniform over the subspace (−λ−1, λ+1)|x̄|, Lemma 22

entails that N ′
A

faithfully encodes reachability with respect to A.

27

	1 Introduction
	2 Preliminaries and notation
	3 Basic tools from Ramsey theory
	4 Decidability of satisfiability for BSR(SLR) clause sets
	5 Decidability of satisfiability for BSR(BD) clause sets
	6 Formalizing reachability for timed automata
	A Appendix
	A.1 Details Concerning Section ??
	A.2 Details Concerning Section ??
	A.3 Details Concerning Section ??
	A.4 Details Concerning Section ??

