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Abstract. We investigate the possibility of extending the non-function-
ally complete logic of a collection of Boolean connectives by the addition
of further Boolean connectives that make the resulting set of connectives
functionally complete. More precisely, we will be interested in checking
whether an axiomatization for Classical Propositional Logic may be pro-
duced by merging Hilbert-style calculi for two disjoint incomplete frag-
ments of it. We will prove that the answer to that problem is a negative
one, unless one of the components includes only top-like connectives.

1 Introduction

Hilbert-style calculi are arguably the most widespread way of defining logics,
and simultaneously the least studied one, from the metalogical viewpoint. This
is mostly due to the fact that proofs in Hilbert-style calculi are hard to obtain and
systematize, in contrast with other proof formalisms such as sequent calculi and
their well developed proof-theory, and semantic approaches involving algebraic or
relational structures. Still, Hilbert-style calculi are most directly associated with
the fundamental notion of logic as a consequence operation and are thus worth
studying. Furthermore, merging together Hilbert-style calculi for given logics in
order to build a combined logic precisely captures the mechanism for combining
logics known as fibring, yielding the least logic on the joint language that extends
the logics given as input [2]. Fibring fares well with respect to two basic guiding
principles one may consider, conservativity and interaction. In contrast, despite
their better behaved compositional character, alternative approaches based for
instance on sequent calculi are prone to emerging interactions and breaches in
conservativity (see, for instance, the collapsing problem [3]).

In this paper, as an application of recent results about fibred logics, we inves-
tigate the modular construction of Hilbert-style calculi for classical logic. Take,
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for instance, implication and negation. Together, they form a functionally com-
plete set of connectives. However, all suitable axiomatizations of classical logic
we have seen include at least one axiom/rule where implication and negation
interact. Rautenberg’s general method for axiomatizing fragments of classical
logic [9], which explores the structure of Post’s lattice [8, 5], further confirms the
intuition about the essential role of interaction axioms/rules, that one may have
drawn from any experience with axiomatizations of classical logic. Additionally,
such expectation is consistent with a careful analysis of the characterization of
the complexity of different fragments of classical logic and their associated satis-
fiability problems [10, 12], namely in the light of recent results on the decidability
and complexity of fibred logics [6]. The question we wish to give a definitive an-
swer to, here, is precisely this: is it possible to recover classical logic by fibring
two disjoint fragments of it? We will show that the recovery is successful iff one
of the logics represents a fragment of classical logic consisting only of top-like
connectives (i.e., connectives that only produce theorems, for whichever argu-
ments received as input), while the other results in a functionally complete set
of connectives with the addition of ⊤.

The paper is organized as follows. In Section 2, we overview basic notions
of logic, including Hilbert calculi and logical matrices, and introduce helpful
notation. In Section 3 we carefully review the mechanism for fibring logics, as
well as some general results about disjoint fibring that shall be necessary next.
Our main results, analyzing the merging of disjoint fragments of classical logic,
are obtained in Section 4. We conclude, in Section 5, with a brief discussion of
further work. To the best of our knowledge, Proposition 1 (Section 3) and all
the characterization results in Section 4 are new.

2 Preliminaries

2.1 Logics in abstract

In what follows, a signature Σ is an indexed set {Σ(k)}k∈N, where each Σ(k) is
a collection of k-place connectives. Given a signature Σ and a (disjoint) set P of
sentential variables, we denote by LΣ(P ) the absolutely free Σ-algebra generated
by P , also known as the language generated by P over Σ. The objects in LΣ(P )
are called formulas, and a formula is called compound in case it belongs to
LΣ(P ) \ P , that is, in case it contains some connective. We will sometimes use
head(C) to refer to the main connective in a compound formula C, and say
that a formula C is Σ-headed if head(C) ∈ Σ. Furthermore, we will use sbf(C)
to refer to the set of subformulas of C, and use var(C) to refer to the set of
sentential variables occurring in C; the definitions of sbf and var are extended
to sets of formulas in the obvious way. Given a formula C such that var(C) ⊆
{p1, . . . , pk}, it is sometimes convenient to take it as inducing a k-ary term

function ϕ = λp1 . . . pk.C such that ϕ(p1, . . . , pk) = C, over which we will employ
essentially the same terminology used to talk about connectives and formulas
therewith constructed —in particular, a k-ary term function is induced by a
formula generated by k distinct sentential variables over a k-place connective. In



Merging fragments of classical logic 3

such cases we will also say that the corresponding term functions are allowed by

the underlying language and expressed by the corresponding logic. We will often
employ the appellations nullary for 0-ary and singulary for 1-ary term functions
(or for the connectives that induce them). Given signatures Σ ⊆ Σ′ and sets
P ⊆ P ′ of sentential variables, a substitution is a structure-preserving mapping
over the corresponding sets of formulas, namely a function σ : P −→ LΣ′(P ′)
which extends uniquely to a homomorphism σ⋆ : LΣ(P ) −→ LΣ′(P ′) by setting
σ⋆( c©(C1, . . . , Ck)) := c©(σ⋆(C1), . . . , σ

⋆(Ck)) for every c© ∈ Σ(k). We shall refer
to σ⋆(C) more simply as Cσ. The latter notation is extended in the natural way
to sets of formulas: given Π ⊆ LΣ(P ), Π

σ denotes {Cσ : C ∈ Π}.

A logic L over the language LΣ(P ) is here a structure 〈LΣ(P ),⊢〉 equipped
with a so-called consequence relation ⊢ ⊆ Pow(LΣ(P ))×LΣ(P ) respecting (R)
Γ ∪ {C} ⊢ C; (M) if Γ ⊢ C then Γ ∪∆ ⊢ C; (T) if Γ ⊢ D for every D ∈ ∆ and
Γ ∪∆ ⊢ C, then Γ ⊢ C; and (SI) if Γ ⊢ C then Γ σ ⊢ Cσ for any substitution
σ : P −→ LΣ(P ). Any assertion in the form Π ⊢ E will be called a consecution,
and may be read as ‘E follows from Π (according to L)’; whenever 〈Π,E〉 ∈ ⊢
one may say that L sanctions Π ⊢ E. Henceforth, union operations and braces
will be omitted from consecutions, and the reader will be trusted to appropriately
supply them in order to make the expressions well-typed.

Given two logics L = 〈LΣ(P ),⊢〉 and L′ = 〈LΣ′(P ′),⊢′〉, we say that L′

extends L in case P ⊆ P ′, Σ ⊆ Σ′ and ⊢ ⊆ ⊢′. In case Γ ⊢ C iff Γ ⊢′ C,
for every Γ ∪ {C} ⊆ LΣ(P ), we say that the extension is conservative. So, in a
conservative extension no new consecutions are added in the ‘reduced language’
LΣ(P ) by the ‘bigger’ logic L′ to those sanctioned by the ‘smaller’ logic L.
Fixed L = 〈LΣ(P ),⊢〉, and given Σ ⊆ Σ′ and P ⊆ P ′, let Sbst collect all
the substitutions σ : P −→ LΣ′(P ′). We say that a formula B of LΣ′(P ′) is a
substitution instance of a formula A of LΣ(P ) if there is a substitution σ ∈ Sbst

such that Aσ = B. A natural conservative extension induced by L is given
by the logic L′ = 〈LΣ′(P ′),⊢′〉 equipped by the smallest substitution-invari-
ant consequence relation preserving the consecutions of L inside the extended
language, that is, such that Γ ⊢′ C iff there is some ∆∪{D} ⊆ LΣ(P ) and some
σ ∈ Sbst such that ∆ ⊢ D, where ∆σ = Γ and Dσ = C. In what follows, when
we simply enrich the signature and the set of sentential variables, we shall not
distinguish between a given logic and its natural conservative extension.

Two formulas C and D of a logic L = 〈LΣ(P ),⊢〉 are said to be logically

equivalent according to L if C ⊢ D and D ⊢ C; two sets of formulas Γ and ∆
are said to be logically equivalent according to L if each formula from each
one of these sets may correctly be said to follow from the other set of formulas
(notation: Γ ⊣⊢L ∆). We call the set of formulas Γ ⊆ LΣ(P ) trivial (according

to L) if Γ ⊣⊢L LΣ(P ). We will say that the logic L is consistent if its consequence
relation ⊢ does not sanction all possible consecutions over a given language, that
is, if there is some set of formulas Π ∪ {E} such that Π 6⊢ E, in other words,
if L contains some non-trivial set of formulas Π ; we call a logic inconsistent if
it fails to be consistent. We say that a set of formulas Π in L = 〈LΣ(P ),⊢〉 is
⊢-explosive in case Πσ ⊢ E for every substitution σ : P −→ LΣ(P ) and every
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formula E. Obviously, an inconsistent logic L is one in which the empty set of
formulas is ⊢-explosive.

Fixed a denumerable set of sentential variables P and a non-empty signa-
ture Σ, let conn =

⋃
Σ. To simplify notation, whenever the context eliminates

any risk of ambiguity, we will sometimes refer to LΣ(P ) more simply as Lconn.
For instance, given the 2-place connective ∧, in writing L∧ we refer to the lan-
guage generated by P using solely the connective ∧, and similarly for the 2-place
connective ∨ and the language L∨. Taking the union of the corresponding sig-
natures, in writing L∧∨ we refer to the mixed language whose formulas may be
built using exclusively the connectives ∧ and ∨.

Example 1. For an illustration involving some familiar connectives, a logic L =
〈LΣ(P ),⊢〉 will be said to be c©-classical if, for every set of formulas Γ∪{A,B,C}
in its language (see, for instance, [4]):

[ c© = ⊤ ∈ Σ(0)] Γ,⊤ ⊢ C implies Γ ⊢ C
[ c© = ⊥ ∈ Σ(0)] Γ ⊢ ⊥ implies Γ ⊢ C

[ c© = ¬ ∈ Σ(1)] (i) A,¬A ⊢ C; and (ii) Γ,A ⊢ C and Γ,¬A ⊢ C imply Γ ⊢ C

[ c© = ∧ ∈ Σ(2)] Γ,A ∧B ⊢ C iff Γ,A,B ⊢ C
[ c© = ∨ ∈ Σ(2)] Γ,A ∨B ⊢ C iff Γ,A ⊢ C and Γ,B ⊢ C

[ c© = → ∈ Σ(2)] (i) A,A→B ⊢ B; (ii) Γ,A→B ⊢ C implies Γ,B ⊢ C;
and (iii) Γ,A ⊢ C and Γ,A→B ⊢ C implies Γ ⊢ C

Other classical connectives may also be given appropriate abstract characteri-
zations, ‘upon demand’. If the logic Lconn = 〈Lconn,⊢〉 is c©-classical for every
c© ∈ conn, we call it the logic of classical conn and denote it by Bconn. △

Let ϕ be some k-ary term function expressed by the logic L = 〈LΣ(P ),⊢〉.
If ϕ(p1, . . . , pk) ⊢ pj for some 1 ≤ j ≤ k, we say that ϕ is projective over its

j-th component. Such term function is called a projection-conjunction if it is
logically equivalent to its set of projective components, i.e., if there is some
J ⊆ {1, 2, . . . , k} such that (i) ϕ(p1, . . . , pk) ⊢ pj for every j ∈ J and (ii)
{pj : j ∈ J} ⊢ ϕ(p1, . . . , pk). In case ϕ(p1, . . . , pk) ⊢ pk+1, we say that ϕ is
bottom-like. We will call ϕ top-like if ⊢ ϕ(p1, . . . , pk); do note that the latter is
a particular case of projection-conjunction (take J = ∅). Classical conjunction
is another particular case of projection-conjunction (take n = 2 and J = {1, 2});
its singulary version (take n = 1 and J = {1}) corresponds to the so-called affir-

mation connective. A term function that is neither top-like nor bottom-like will
here be called significant; if in addition it is not a projection-conjunction, we will
call it very significant; in each case, connectives shall inherit the corresponding
terminology from the term functions that they induce. Note that being not very
significant means being either bottom-like or a projection-conjunction.

2.2 Hilbert-style proof systems

One of the standard ways of presenting a logic is through the so-called ‘axiomatic
approach’. We call Hilbert calculus over the language LΣ(P ) any structure H =
〈LΣ(P ),R〉, presented by a set of inference rules R ⊆ Pow(LΣ(P ))×LΣ(P ). An



Merging fragments of classical logic 5

inference rule r = 〈∆,D〉 ∈ R is said to have premises ∆ and conclusion D,

and is often represented in tree-format by writing ∆
D

r , or
D1 ... Dn

D
r when ∆ =

{D1, . . . , Dn}, or
D

r in case ∆ = ∅. The latter type of rule, with an empty set
of premises, is called axiom.

Fix in what follows a Hilbert calculus presentation H = 〈LΣ(P ),R〉, and
consider signatures Σ ⊆ Σ′ and sets P ⊆ P ′ of sentential variables, with the
corresponding collection Sbst of substitutions from LΣ(P ) into LΣ′(P ′). Given
formulas Γ ∪ {C} ⊆ LΣ′(P ′), a rule application allowing to infer C from Γ
according to H corresponds to a pair 〈r, σ〉 such that ∆

D
r is in R and σ ∈ Sbst,

while ∆σ = Γ and Dσ = C. Such rule applications are often annotated with the
names of the corresponding rules being applied. In case ∆ = ∅ we may also refer
to the corresponding rule application as an instance of an axiom. As usual, an
H-derivation of C from Γ is a tree T with the following features: (i) all nodes are
labelled with substitution instances of formulas of LΣ(P ); (ii) the root is labelled
with C; (iii) the existing leaves are all labelled with formulas from Γ ; (iv) all
non-leaf nodes are labelled with instances of axioms, or with premises from Γ ,
or with formulas inferred by rule applications from the formulas labelling the
roots of certain subtrees of T , using the inference rules R of H. It is not hard
to see that H induces a logic LH = 〈LΣ′(P ′),⊢R〉 by setting Γ ⊢R C iff there
is some H-derivation of C from Γ ; indeed, we may safely leave to the reader
the task of verifying that postulates (R), (M), (T) and (SI) are all respected
by ⊢R. We shall say that a logic L = 〈LΣ(P ),⊢〉 is characterized by a Hilbert

calculus H = 〈LΣ(P ),R〉 iff ⊢ = ⊢R.

Example 2. We revisit the well-known connectives of classical logic whose in-
ferential behaviors were described in Example 1. What follows are the rules of
appropriate Hilbert calculi for the logics L c© = 〈L c©,⊢R c©

〉, where p, q, r ∈ P :

[ c© = ⊤] ⊤
t1

[ c© = ⊥] ⊥
p

b1

[ c© = ¬] p
¬¬p

n1
¬¬p
p

n2
p ¬p

q
n3

[ c© = ∧] p∧q
p

c1
p∧q
q

c2
p q
p∧q

c3

[ c© = ∨] p
p∨q

d1
p∨p
p

d2
p∨q
q∨p

d3
p∨(q∨r)
(p∨q)∨r

d4

[ c© = →]
p→(q→ p)

i1
(p→(q→ r))→((p→ q)→(p→ r))

i2
((p→ q)→ p)→ p

i3
p p→ q

q
i4

Of course, other classical connectives can also be axiomatized. For instance, the
bi-implication ↔ defined by the term function λpq.(p→ q) ∧ (q→ p) may be
presented by:

[ c© = ↔] (p↔(q↔ r))↔((p↔ q)↔ r)
e1

((p↔ r)↔(q↔ p))↔(r↔ q)
e2

p p↔ q
q

e3 △

2.3 Matrix semantics

Another standard way of presenting a logic is through ‘model-theoretic seman-
tics’. A matrix semantics M over the language LΣ(P ) is a collection of logical
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matrices over LΣ(P ), where by a logical matrix LM over LΣ(P ) we mean a
structure LM = 〈V,D,C〉 in which the set V is said to contain truth-values, each
truth-value in D ⊆ V is called designated, and for each c© ∈ Σ(k) there is in C a k-
ary interpretation mapping c̃© over V. A valuation over a logical matrix LM is any
mapping v : LΣ(P ) −→ V such that v( c©(C1, . . . , Ck)) = c̃©(v(C1), . . . , v(Ck))
for every c© ∈ Σ(k). We denote by VLM the set of all valuations over LM, and
say that the valuation v over LM satisfies a formula C ∈ LΣ(P ) if v(C) ∈ D.
Note that a valuation might be thought more simply as a mapping v : P −→ V,
given that there is a unique extension of v as a homomorphism from LΣ(P )
into the similar algebra having V as carrier and having each symbol c© ∈ Σ(k)

interpreted as the k-ary operator c̃© : Vk −→ V. Analogously, each k-ary term
function λp1 . . . pk.ϕ over LΣ(P ) is interpreted by a logical matrix LM in the
natural way as a k-ary operator ϕ̃ : Vk −→ V. We shall call CΣ

LM
the collection of

all term functions compositionally derived over Σ and interpreted through LM;
in the literature on Universal Algebra, CΣ

LM
is known as the clone of operations

definable by term functions allowed by the signature Σ, under the interpretation
provided by LM.

Given a valuation v : LΣ(P ) −→ V, where the truth-values D ⊆ V are
taken as designated, and given formulas Γ ∪ {C} ⊆ LΣ(P ), we say that C
follows from Γ according to v (notation: Γ ⊢v C) iff it is not the case that v
simultaneously satisfies all formulas in Γ while failing to satisfy C. We extend
the definition to a set V of valuations by setting Γ ⊢V C iff Γ ⊢v C for every
v ∈ V , that is, ⊢V =

⋂
v∈V(⊢v). On its turn, a matrix semantics M defines a

consequence relation ⊢M by setting Γ ⊢M C iff Γ ⊢VLM
C for every LM ∈ M,

that is, ⊢M =
⋂

LM∈M(⊢VLM
). If we set VM :=

⋃
LM∈M(VLM), it should be clear

that ⊢M = ⊢VM
. We shall say that a logic L = 〈LΣ(P ),⊢〉 is characterized by

a matrix semantics M iff ⊢ = ⊢M. To make precise what we mean herefrom by
a ‘fragment’ of a given logic, given a subsignature Σ′ ⊆ Σ, a sublogic L′ of L is
a logic L′ = 〈LΣ′(P ),⊢′〉 characterized by a matrix semantics M′ such that the
interpretation c̃© of the connective c© is the same at both M and M′, for every
c© ∈ Σ′ and every LM ∈ M′. It is not hard to see that L will in this case consist
in a conservative extension of L′. There are well-known results in the literature
to the effect that any logic whose consequence relation satisfies (R), (M), (T)
and (SI) may be characterized by a matrix semantics [13].

Example 3. We now revisit yet again the connectives of classical logic that re-
ceived our attention at Examples 1 and 2. Let V = {0, 1} and D = {1}. Given a
logical matrix 〈V,D,C〉, we will call it c©-Boolean if:

[ c© = ⊤] ⊤̃ = 1

[ c© = ⊥] ⊥̃ = 0

[ c© = ¬] (i) ¬̃(1) = 0; and (ii) ¬̃(0) = 1

[ c© = ∧] (i) ∧̃(1, 1) = 1; and (ii) ∧̃(x, y) = 0 otherwise

[ c© = ∨] (i) ∨̃(0, 0) = 0; and (ii) ∨̃(x, y) = 1 otherwise

[ c© = →] (i) →̃(1, 0) = 0; and (ii) →̃(x, y) = 1 otherwise

[ c© = ↔] (i) ↔̃(x, y) = 1 if x = y; and (ii) ↔̃(x, y) = 0 otherwise
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It is not difficult to show that, if M is a collection of c©-Boolean logical
matrices, the logic L c© = 〈L c©,⊢M〉 is c©-classical. Conversely, every c©-classical
logic may be characterized by a single c©-Boolean logical matrix.

We take the chance to introduce a few other connectives that will be useful
later on. These connectives may be primitive in some sublogics of classical logic,
but can also be defined by term functions involving the previously mentioned
connectives, as follows:

6→ := λpq.¬(p→ q)
+ := λpq.(p ∧ ¬q) ∨ (q ∧ ¬p)
if := λpqr.(p→ q) ∧ (¬p→ r)
T n0 := λp1 . . . pn.⊤, for n ≥ 0
T nn := λp1 . . . pn.p1 ∧ · · · ∧ pn, for n > 0
T nk := λp1 . . . pn.(p1 ∧ T

n−1
k−1 (p2, . . . , pn)) ∨ T

n−1
k (p2, . . . , pn), for n > k > 0

Note that a logical matrix containing such connectives is c©-Boolean if:

[ c© = 6→] (i) 6→̃(1, 0) = 1; and (ii) 6→̃(x, y) = 0 otherwise

[ c© = +] (i) +̃(x, y) = 0 if x = y; and (ii) +̃(x, y) = 1 otherwise

[ c© = if] (i) ĩf(1, y, z) = y; and (ii) ĩf(0, y, z) = z

[ c© = T̃ nk ] (i) T̃ nk (x1, . . . , xn) = 0 if Size({i : xi = 1}) < k;

and (ii) T̃ nk (x1, . . . , xn) = 1 otherwise △

In what follows we shall use the expression two-valued logic to refer to any
logic characterized by the logical matrix {V

2

,D
2

,C}, where V
2

= {0, 1} and
D
2

= {1}, and use the expression Boolean connectives to refer to the corre-
sponding 2-valued interpretation of the symbols in Σ (see Example 3). From
this perspective, whenever we deal with a two-valued logic whose language is ex-
pressive enough, modulo its interpretation through a matrix semantics, to allow
for all operators of a Boolean algebra BA over V

2

to be compositionally derived,
we will say that we are dealing with classical logic. Alternatively, whenever the
underlying signature turns out to be of lesser importance, one might say that
classical logic is the two-valued logic that corresponds to the clone CBA contain-
ing all operations over V

2

. Due to such level of expressiveness, classical logic is
said thus to be functionally complete (over V

2

). On those grounds, it follows that
all two-valued logics may be said to be sublogics of classical logic. The paper [9]
shows how to provide a Hilbert calculus presentation for any proper two-valued
sublogic of classical logic.

Emil Post’s characterization of functional completeness for classical logic [8,
5] is very informative. First of all, it tells us that there are exactly five maximal
functionally incomplete clones (i.e, co-atoms in Post’s lattice), namely:

P0 = C∨ 6→
BA

P1 = C∧→
BA

A = C↔⊥
BA

M = C∧∨⊤⊥
BA

D = C
T 3
2 ¬

BA

The Boolean top-like connectives form the clone UP1 = C⊤
BA

. As it will be useful
later on, we mention that an analysis of Post’s lattice also reveals that there are
also a number of clones which are maximal with respect to ⊤, i.e., functionally
incomplete clones that become functionally complete by the mere addition of
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the nullary connective ⊤ (or actually any other connective from UP1). In terms
of the Post’s lattice, the clones whose join with UP1 result in CBA are:

D T∞
0 = C 6→

BA
Tn0 = C

Tn+1
n 6→

BA
(for n ∈ N)

It is worth noting that T1
0 = P0.

If a logic turns out to be characterized by a single logical matrix with a finite
set of truth-values, a ‘tabular’ decision procedure is associable to its consequence
relation based on the fact that the valuations over a finite number of sentential
variables may be divided into a finite number of equivalence classes, and one may
then simply do an exhaustive check for satisfaction whenever a finite number of
formulas is involved in a given consecution. More generally, we will say that a
logic L is locally tabular if the relation of logical equivalence ⊣⊢L partitions the
language LΣ({p1, . . . , pk}), freely generated by the signature Σ over a finite set
of sentential variables, into a finite number of equivalence classes. It is clear that
all two-valued sublogics of classical logic are locally tabular. On the same line,
it should be equally clear that any logic that fails to be locally tabular cannot
be characterized by a logical matrix with a finite set of truth-values.

3 Combining logics

Given two logics La = 〈LΣa
(P ),⊢a〉 and Lb = 〈LΣb

(P ),⊢b〉, their fibring is
defined as the smallest logic La • Lb = 〈La•b(P ),⊢a•b〉, where La•b(P ) =
LΣa∪Σb

(P ), and where ⊢a ⊆ ⊢a•b and ⊢b ⊆ ⊢a•b, that is, it consists in the
smallest logic over the joint signature that extends both logics given as input.
Typically, one could expect the combined logic La • Lb to conservatively extend
both La and Lb. That is not always possible, though (consider for instance the
combination of a consistent logic with an inconsistent logic). A full characteriza-
tion of the combinations of logics through disjoint fibring that yield conservative
extensions of both input logics may be found at [7]. The fibring of two logics is
called disjoint (or unconstrained) if their signatures are disjoint. A neat char-
acterization of fibring is given by way of Hilbert calculi: Given ⊢a = ⊢Ra

and
⊢b = ⊢Rb

, where Ra and Rb are sets of inference rules, we may set Ra•b := Ra ∪Rb

and then note that La • Lb = 〈La•b(P ),⊢Ra•b
〉.

Insofar as a logic may be said to codify inferential practices used in reason-
ing, the (conservative) combination of two logics should not only allow one to
faithfully recover the original forms of reasoning sanctioned by each ingredient
logic over the respective underlying language, but should also allow the same
forms of reasoning —and no more— to obtain over the mixed language. Hence,
it is natural to think that each of the ingredient logics cannot see past the con-
nectives belonging to the other ingredient logic —the latter connectives look like
‘monoliths’ whose internal structure is inaccessible from the outside.

To put things more formally, given signatures Σ ⊆ Σ′ and given a formula
C ∈ LΣ′(P ), we call Σ-monoliths the largest subformulas of C whose heads
belong to Σ′ \ Σ. Accordingly, the set monΣ(C) ⊆ sbf(C) of all Σ-monoliths
of C is defined by setting:
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monΣ(C) :=





∅ if C ∈ P,⋃k

i=1 monΣ(Ci) if C = c©(C1, . . . , Ck) and c© ∈ Σ(k),

{C} otherwise.

This definition may be extended to sets of formulas in the usual way, by set-
ting monΣ(Γ ) :=

⋃
C∈Γ monΣ(C). Note, in particular, that monΣ(Γ ) = ∅ if

Γ ⊆ LΣ(P ). From the viewpoint of the signature Σ, monoliths may be seen
as ‘skeletal’ (sentential) variables that represent formulas of LΣ′(P ) whose
inner structure cannot be taken advantage of. In what follows, let XΣ′

:=
{xD : D ∈ LΣ′(P )} be a set of fresh symbols for sentential variables. Given
C ∈ LΣ′(P ), in order to represent the Σ-skeleton of C we define the function
skΣ : LΣ′(P ) −→ LΣ′(P ∪XΣ′

) by setting:

skΣ(C) :=





C if C ∈ P,

c©(skΣ(C1), . . . , skΣ(Ck)) if C = c©(C1, . . . , Ck) and c© ∈ Σ(k),

xC , otherwise.

Clearly, a skeletal variable xD is only really useful in case head(D) ∈ Σ′ \Σ.

Example 4. Recall from Example 2 the inference rules characterizing the logic B∧

of classical conjunction and the logic B∨ of classical disjunction. As in Example 1,
we let B∧∨ refer to a logic that is at once ∧-classical and ∨-classical, and contains
no other primitive connectives besides ∧ and ∨. Consider now the fibred logic
L∧•∨ := B∧ • B∨. It should be clear that ⊢∧•∨ ⊆ ⊢∧∨. It is easy to see now that
p ∧ (p ∨ q) ⊣⊢∧•∨ p (a logical realization of an absorption law of lattice theory).
Indeed, a one-step derivation D1 of p from p∧ (p∨ q) in L∧•∨ is obtained simply
by an application of rule c1 to p∧(p∨q), and a two-step derivation D2 of p∧(p∨q)
from p in L∧•∨ is obtained by the application of rule d1 to p to obtain p ∨ q,
followed by an application of c3 to p and p ∨ q to obtain p ∧ (p ∨ q). Note that
monΣ∧

(p∧(p∨q)) = {p∨q} and monΣ∨
(p∧(p∨q)) = {p∧(p∨q)}, and note also

that skΣ∧
(p∧(p∨q)) = p∧xp∨q and skΣ∨

(p∧(p∨q)) = xp∧(p∨q). This means that
from the viewpoint of B∧ the step of D2 in which the foreign rule d1 is used is seen
as a ‘mysterious’ passage from p to a new sentential variable xp∨q taken ex nihilo
as an extra hypothesis in the derivation, and from the viewpoint of B∨ the step
of D2 in which the foreign rule c3 is used is seen as the spontaneous introduction
of an extra hypothesis xp∧(p∨q). At our next example we will however show that
the dual absorption law, represented by p∨ (p∧ q) ⊣⊢∧•∨ p, does not hold, even
though the corresponding equivalence holds good over all Boolean algebras. This
will prove that ⊢∧∨ 6⊆ ⊢∧•∨, and thus B∧∨ 6⊆ B∧ • B∨. △

Remark 1. In a natural conservative extension, where the syntax of a logic is
extended with new connectives but no further inference power is added, it is clear
that formulas headed by the newly added connectives are treated as monoliths.
Hence, the following result from [6] applies: Given L = 〈LΣ(P ),⊢〉, Σ ⊆ Σ′ and
∆ ∪ {C,D} ⊆ LΣ′(P ) we have ∆ ⊢ D if and only if skΣ(∆) ⊢ skΣ(D). △
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We will present next a fundamental result from [6] that fully describes disjoint
mixed reasoning in La • Lb, viz. by identifying the consecutions sanctioned by
such combined logic with the help of appropriate consecutions sanctioned by its
ingredient logics La and Lb. Given that consecutions in ⊢a•b are justified by
alternations of consecutions sanctioned by ⊢a and consecutions sanctioned by ⊢b,
given a set of mixed formulas∆ ⊆ La•b, we define the saturation Sa•b(∆) of ∆ as⋃
n∈N

Sna•b(∆), where S0a•b(∆) := ∆ and S
n+1
a•b (∆) := {D ∈ sbf(∆) : Sna•b(∆) ⊢a

D or Sna•b(∆) ⊢b D}. In addition, given a set of mixed formulas ∆∪{D} ⊆ La•b,
we abbreviate by Mi

a•b(∆,D) the set of Σi-monoliths {C ∈ monΣi
(D) : ∆ ⊢a•b

C}, for each i ∈ {a, b}. Such ancillary notation helps us stating:

Theorem 1. Let La and Lb be two logics, each one characterizable by a single
logical matrix. If La and Lb have disjoint signatures, the consecutions in the
fibred logic La•b are such that Γ ⊢a•b C iff the following condition holds good:

(Za) Sa•b(Γ ),M
a
a•b(Γ,C) ⊢a C or Sa•b(Γ ) is ⊢b-explosive.

Note that the roles of a and bmay be exchanged in the above theorem, given that
the fibring operation is obviously commutative, so we might talk accordingly of
a corresponding condition (Zb), in case it turns out to be more convenient. The
original formulation of this result in [6] was based on a slightly more sophisticated
notion of saturation, which reduces to the above one in particular when the logics
involved in the combination are characterizable by means of a truth-functional
semantics (i.e., a matrix semantics involving a single logical matrix), as it is
indeed the case for all sublogics of classical logic.

Example 5. Set a = ∧ and b = ∨, E = p ∨ (p ∧ q), and let Γ = {E} and C = p.
Note that (i) sbf(Γ ) = {p, q, p ∧ q, p ∨ (p ∧ q)}. Moreover, it is clear that (ii)
monΣa

(p) = monΣb
(p) = ∅, given that p ∈ P , thus Ma

a•b(Γ,C) = Mb
a•b(Γ,C) =

∅. We know by the base case of the definition of S that (iii) S0a•b(Γ ) = Γ . Let
us now show that S1a•b(Γ ) = Γ , from which it follows that Sa•b(Γ ) = Γ . We
shall be freely making use of item (a) of Remark 1. Note first, by (R), that we
obviously have Γ ⊢c E, for c ∈ {a, b}, and note also that (iv) skΣa

(E) = xE ,
(v) skΣb

(E) = p ∨ xp∧q, (vi) skΣa
(p ∧ q) = p ∧ q, (vii) skΣb

(p ∧ q) = xp∧q and
(viii) skΣc

(r) = r when r ∈ {p, q}, for c ∈ {a, b}. To see that S0a•b(Γ ) 6⊢c D for
every D ∈ sbf(Γ ) \ {E} in case c is a it suffices to invoke (i), (iii), (iv), (vi) and
(viii), and set a valuation v such that v(xE) := 1 and v(p) = v(q) := 0; in case c
is b it suffices to invoke (i), (iii), (v), (vii) and (viii), and one may even reuse
the previous valuation v, just adding the extra requirement that v(xp∧q) := 0.
It thus follows from the recursive case of the definition of S that S1a•b(Γ ) = Γ . It
is easy to see, with the help of (iv) and (v), that Sa•b(Γ ) = {E} is neither ⊢a-
explosive nor ⊢b-explosive. Therefore, according to condition (Zc) in Theorem 1,
to check whether Γ ⊢a•b C one may in this case simply check whether Γ ⊢a C
or Γ ⊢b C. From the preceding argument about S0a•b(Γ ) we already know that
the answer is negative in both cases. We conclude that p ∨ (p ∧ q) 6⊢a•b p, thus
indeed the fragment of classical logic with conjunction and disjunction as sole
primitive connectives must be a non-conservative extension of the fibring of the
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logic of classical conjunction with the logic of classical disjunction, as we had
announced at the end of Example 4. △

The following is the first useful new result of this paper, establishing that con-
servativity is preserved by disjoint fibring, here proved for the (slightly simpler)
case where each logic is characterized by a single logical matrix.

Proposition 1. Let La and Lb be logics with disjoint signatures, each charac-
terizable by means of a single logical matrix. If La and Lb conservatively extend
logics L1 and L2, respectively, then La • Lb also conservatively extends L1 • L2.

Proof. Let Σa, Σb, Σ1 and Σ2, be the signatures of, respectively, La, Lb, L1

and L2. Fix Γ ∪ {C} ⊆ LΣ1∪Σ2
(P ). From Theorem 1 we may conclude that:

(a) Γ ⊢a•b C if and only if either Sa•b(Γ ),M
a
a•b(Γ,C) ⊢a C, or Sa•b(Γ ) is ⊢b-

explosive; (b) Γ ⊢1•2 C if and only if either S1•2(Γ ),M
1
1•2(Γ,C) ⊢1 C, or S1•2(Γ )

is ⊢2-explosive. Now, from the fact that Sna•b(Γ ) ∪ Sn1•2(Γ ) ⊆ LΣ1∪Σ2
(P ), for all

n ∈ N, together with the assumptions that La conservatively extends L1 and Lb
conservatively extends L2 we conclude that Sa•b(Γ ) = S1•2(Γ ). The assumption
about conservative extension also guarantees that (c) Sa•b(Γ ) is ⊢b-explosive if
and only if S1•2(Γ ) is ⊢2-explosive.

We prove, by induction on the structure of C, that (d) Γ ⊢a•b C if and only
if Γ ⊢1•2 C. If C is a sentential variable then Ma

a•b(Γ,C) ⊆ monΣa
(C) = ∅

and, also, M1
1•2(Γ,C) ⊆ monΣ1

(C) = ∅. We note that (d) then follows from
(a), (b) and (c). For the induction step, let C be compound. From the inductive
hypothesis we conclude that M

a
a•b(Γ,C) = M

1
1•2(Γ,C). Hence, again from (a),

(b) and (c), we note that (d) follows. ⊓⊔

4 Merging fragments

This section studies the expressivity of logics obtained by fibring disjoint frag-
ments of classical logic. We start by analyzing the cases in which combining
disjoint sublogics of classical logic still yields a sublogic of classical logic.

Proposition 2. Let c©1 be a Boolean connective and c©2 be top-like. We then
have that B c©1

• B c©2
= B c©1

c©2
.

Proof. By assumption, c©2 is top-like, hence: (⋆) for any given set of formu-
las ∆, we have ∆ ⊢ c©2

ψ iff ψ ∈ ∆ or head(ψ) = c©2. Let us prove that
Γ ⊢ c©1

c©2
ϕ iff Γ ⊢ c©1• c©2

ϕ. By Theorem 1, we know that Γ ⊢ c©1• c©2
ϕ iff

S c©1• c©2
(Γ ),M

c©1
c©1• c©2

(Γ, ϕ) ⊢ c©1
ϕ or S c©1• c©2

(Γ ) is ⊢ c©2
-explosive. By (⋆) it fol-

lows that if S c©1• c©2
(Γ ) is ⊢ c©2

-explosive then S c©1• c©2
(Γ ) must contain all the

sentential variables and { c©1}-headed formulas. Furthermore, mon c©2
(sbf(Γ )) ⊆

S c©1• c©2
(Γ ) and M

c©1
c©1• c©2

(Γ, ϕ) = mon c©2
(ϕ). Therefore, Γ ⊢ c©1• c©2

ϕ iff
S c©1• c©2

(Γ ),M
c©1
c©1• c©2

(Γ, ϕ) ⊢ c©1
ϕ. Moreover, S c©1• c©2

(Γ ) = {ψ ∈ sbf(Γ ) :
Γ,mon c©1

(Γ ) ⊢ c©1
ψ}. We may then finally conclude that Γ ⊢ c©1• c©2

ϕ iff
Γ,mon c©1

(Γ ∪ {ϕ}) ⊢ c©1
ϕ iff Γ ⊢ c©1

c©2
ϕ. ⊓⊔
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Example 6. B 6→ • B⊤ = B 6→⊤ yields full classical logic, as the set {6→,⊤} is
functionally complete. △

Proposition 3. Let c©1 and c©2 be Boolean connectives neither of which are
very significant. Then, B c©1

• B c©2
= B c©1

c©2
.

Proof. There are three possible combinations, either (a) both connectives are
conjunction-projections, or (b) both are bottom-like, or (c) one connective is
bottom-like and the other is a conjunction-projection.
[Case (a)] Let J1 and J2 be the sets of indices corresponding respectively to
the projective components of c©1 and of c©2. For each ψ ∈ L c©1

c©2
(P ) let us

define Pψ ⊆ P recursively, in the following way: Pψ := {ψ} if ψ ∈ P and
P c©i(ψ1,...,ψk) :=

⋃
a∈Ji

Pψa
for i ∈ {1, 2}. We claim that ψ is equivalent to Pψ

both according to B c©1
• B c©2

and according to B c©1
c©2

. Let us prove this by
induction on the structure of ψ. For the base case, let ψ be a sentential variable,
and note that ψ is equivalent to itself. If ψ is a nullary connective c©i, for some
i ∈ {1, 2} (and therefore c©i is top-like), then c©i is equivalent to P c©i

(namely,
the empty set). For the inductive step, consider ψ = c©i(ψ1, . . . , ψki) where ki
is the arity of c©i. Using the fact that c©i is a projection-conjunction we have
that c©i is equivalent to {ψa : a ∈ Ji}. By induction hypothesis, each ψa is
equivalent to Pψa

, hence ψ is equivalent to
⋃
a∈Ji

Pψa
. Finally, for a set of

sentential variables B ∪ {b} we clearly have that B ⊢ c©1• c©2
b iff B ⊢ c©1

c©2
b iff

b ∈ B. So, the logics are equal.

[Case (b)] This is similar to the previous case. Let ψ ∈ L c©1
c©2

(P ). We now define
Aψ recursively in the following way: Aψ := {ψ} if ψ ∈ P or head(ψ) = c©2,
and A c©1(ψ1,...,ψk) :=

⋃
a∈J1

Aψa
. Again, it is not hard to check that in both

B c©1
• B c©2

and B c©1
c©2

we have that ψ is equivalent to Aψ . Moreover, given
B ∪ {b} ⊆ P ∪ {ψ : head(ψ) = c©2} we clearly have that B ⊢ c©1• c©2

b iff
B ⊢ c©1

c©2
b iff b ∈ B or there is ψ ∈ B such that head(ψ) = c©2.

[Case (c)] It should be clear that according to both B c©1
• B c©2

and B c©1
c©2

we
may conclude that ϕ follows from Γ iff either ϕ ∈ Γ or there is ψ ∈ Γ such that
ψ /∈ P . ⊓⊔

Proposition 4. For any set of Boolean connectives conn ⊆ C↔
BA

, we have that
Bconn • B⊥ = Bconn∪{⊥}.

Proof. We first show that B↔ • B⊥ = B↔⊥. As B⊥ is axiomatized by just the
single rule ⊥

p
, it easily follows that (a) Γ ⊢↔•⊥ C iff Γ ⊢↔ ⊥ or Γ ⊢↔ C.

By [4, Exercise 7.31.3(iii)], we note that (b) for every Γ ∪ {B,C} ⊆ L↔(P ) we
have that Γ,B ⊢↔ C iff Γ ⊢↔ C or Γ ⊢↔ B↔C. Note in addition that (c)
⊢↔ B↔((B↔A)↔A). Now, if Γ 6⊢↔•⊥ A then by (a) we have that Γ 6⊢↔ A
and Γ 6⊢↔ ⊥. Further, using (b) and (c), it follows also that Γ,A↔⊥ 6⊢↔ A and
Γ,A↔⊥ 6⊢↔ ⊥. Now, a straightforward use of the Lindenbaum-Asser lemma
shows that there exists a ⊢↔-theory T extending Γ ∪{A↔⊥} which is maximal
relative to A. Obviously ⊥ /∈ T , and B↔ • B⊥ = B↔⊥ then follows from the
completeness of the axiomatization of B↔. From this, given conn ⊆ C↔

BA
, we

conclude with the help of Proposition 1 that Bconn • B⊥ = Bconn⊥. ⊓⊔
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Example 7. For every connective c© expressed by the logic of classical bi-impli-
cation, e.g. c© ∈ {↔, λpqr.p+ q + r}, we have that B c© • B⊥ = B c©⊥. △

We now analyze the cases in which combining disjoint sublogics of classical
logic results in a logic strictly weaker than the logic of the corresponding classical
mixed language.

Remark 2. A detailed analysis of Post’s lattice tells us that every clone CΣ
BA

that
contains the Boolean function of a very significant connective (i.e., CΣ

BA
6⊆ C∧⊤⊥

BA
)

must contain the Boolean function associated to at least one of the following
connectives: ¬, →, ↔, 6→, +, if, T n+1

n (for n ∈ N), T n+1
2 (for n ∈ N), λpqr.p ∨

(q ∧ r), λpqr.p ∨ (q + r), λpqr.p ∧ (q ∨ r), λpqr.p ∧ (q→ r), λpqr.p+ q + r. △

Lemma 1. Let conn be a family of Boolean connectives, and assume that Bconn

expresses at least one among the connectives in Remark 2, distinct from ↔
and λpqr.p+ q + r. Then Bconn • B⊥ ( Bconn∪{⊥}.

Proof. Let c© be one of the above Boolean connectives. We show that there are
Γ∪{C} ⊆ L c©(P ) and σ : P −→ P∪{⊤} such that Γ σ ⊢ c©⊥ Cσ yet Γ σ 6⊢ c©•⊥ Cσ,
thus concluding that B c© • B⊥ ( B c©⊥. Hence, by applying Proposition 1, we
obtain that Bconn • B⊥ ( Bconn∪{⊥} for conn in the conditions of the statement.

We will explain two cases in detail, and for the remaining cases we just present
the relevant formulas Γ σ and Cσ, as the rest of the reasoning is analogous.

[Case c© = ¬] Set Γ := ∅ and Cσ := ¬⊥. We have that ⊢ c©⊥ ¬⊥. However, since
6⊢ c© ¬(x⊥) and S c©•⊥(Γ ) = ∅ is not ⊢⊥-explosive, we conclude that 6⊢ c©•⊥ ¬(⊥)
by Theorem 1.

[Case c© = ∨] Set Γ σ := {⊥ ∨ q} and Cσ := q. We have that ⊥ ∨ q ⊢ c©⊥ q.
However, since x⊥ ∨ q 6⊢ c© q and S c©•⊥({ϕ(x⊥, q)}) = {ϕ(x⊥, q)} is not ⊢⊥-
explosive, we conclude that ⊥ ∨ q 6⊢ c©•⊥ q by Theorem 1.

[Case c© = +] Set Γ σ := {⊥+ q} and Cσ := q.

[Case c© = →] Set Γ σ := ∅ and Cσ := ⊥→ q.

[Case c© = 6→] let Γ σ := {p} and Cσ := p 6→ ⊥.

[Case c© = λpqr.p∨(q+r)] Set Γ σ := {⊥∨(q+⊥)} and Cσ := q.

[Case c© = λpqr.p∧(q→r)] Set Γ σ := {p} and Cσ := p∧(⊥→r).

[Case c© = λpqr.p∧(q∨r)] Set Γ σ := {p∧(⊥∨r)} and Cσ := r.

[Case c© = λpqr.p∨(q∧r)] Set Γ σ := {⊥∨(q∧r)} and Cσ := q.

[Case c© = if] Set Γ σ := {if(⊥, q, r)} and Cσ := r.

[Case c© = T k+1
k ] Set Γ σ := {T k+1

k (p, . . . , p, q,⊥)} and Cσ := q.

[Case c© = T k+1
2 ] Set Γ σ := {T k+1

2 (p, p,⊥, . . . ,⊥)} and Cσ := p. ⊓⊔

Corollary 1. Let c© /∈ C↔
BA

be some very significant Boolean connective. Then,
B c© • B⊥ ( B c©⊥.

Proof. Note, by Remark 2 and the fact that both ↔ and λpqr.p+ q + r belong
to C↔

BA
, that c© fulfills the conditions of application of Lemma 1. ⊓⊔

Example 8. For every connective c© among ¬, →, 6→, +, if, T n+1
n (for n ∈ N),

T n+1
2 (for n ∈ N), λpqr.p ∨ (q ∧ r), λpqr.p ∨ (q + r), λpqr.p ∧ (q ∨ r), and
λpqr.p ∧ (q→ r), we have that B c© • B⊥ ( B c©⊥. △
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Remark 3. On a two-valued logic: (i) sentential variables are always significant,
every nullary connective is either top-like or bottom-like; (ii) top-like term func-
tions are always assigned the value 1 and bottom-like term functions are always
assigned the value 0; (iii) significant singulary term functions all behave seman-
tically either as Boolean affirmation or as Boolean negation. △

Lemma 2. The logic of a significant Boolean k-place connective c© expresses
some 1-ary significant compound term function.

Proof. Let ϕ denote the singulary term function induced by the formula c©(p)
obtained by substituting a fixed sentential variable p at all argument positions
of c©(p1, . . . , pk). If ϕ is significant, we are done. Otherwise, there are two cases
to consider.

For the first case, suppose that ϕ is top-like. Thus, given that c© is sig-
nificant and the logic is two-valued, we know from Remark 3(ii), in particu-
lar, that there must be some valuation v such that v( c©(p1, . . . , pk)) = 0. Set
I := {i : v(pi) = 1}, and define the substitution σ by σ(pj) := ϕ(p) if j ∈ I, and
σ(pj) := p otherwise. Let ψ denote the new singulary term function induced by
( c©(p1, . . . , pk))

σ. On the one hand, choosing a valuation v′ such that v′(p) = 0
we may immediately conclude that v′(ψ(p)) = v( c©(p1, . . . , pk)) = 0. On the
other hand, choosing v′′ such that v′′(p) = 1 we see that v′′(σ(pj)) = 1 for every
1 ≤ j ≤ k. We conclude v′′(ψ(p)) = v′′( c©(p)) = v′′(ϕ(p)), thus v′′(ψ(p)) = 1,
for ϕ was supposed in the present case to be top-like. It follows that ψ(p) is
indeed equivalent here to the sentential variable p.

For the remaining case, where we suppose that ϕ is bottom-like, it suffices
to set I := {i : v(pi) = 0} and then reason analogously. In both the latter cases
our task is seen to have been accomplished in view of Remark 3(i). ⊓⊔

Lemma 3. Let L = 〈LΣ(P ),⊢〉 be a two-valued logic whose language allows a
very significant k-ary term function ϕ, let I be the set of indices that identify the
projective components of ϕ, and let σ be some substitution such that σ(pi) = pi,
for i ∈ I, and σ(pi) = pk+i, for i /∈ I. Then, ϕ(p1, . . . , pk) 6⊢ (ϕ(p1, . . . , pk))

σ.

Proof. By the assumption that ϕ is very significant, we know that this term
function is not a projection-conjunction. Thus, given that I ⊆ {1, . . . , k} is the
exact set of indices such that ϕ(p1, . . . , pk) ⊢ pi, for every i ∈ I, we conclude
that {pi : i ∈ I} 6⊢ ϕ(p1, . . . , pk). There must be, then, some valuation v over
{0, 1} such that v(pi) = 1, for every i ∈ I, while v(ϕ(p1, . . . , pk)) = 0. From
the assumption about significance we also learn that ϕ is not bottom-like, thus,
in view of two-valuedness and the Remark 3(ii), we know that there must be
some valuation v′ such that v′(ϕ(p1, . . . , pk)) = 1. Using the assumption that
ϕ(p1, . . . , pk) ⊢ pi for every i ∈ I one may conclude that v′(pi) = v(pi) = 1 for
every i ∈ I. Our final step to obtain a counter-model to witness ϕ(p1, . . . , pk) 6⊢
(ϕ(p1, . . . , pk))

σ is to glue together the two latter valuations by considering a
valuation v′′ such that v′′(pj) = v′(pj) for 1 ≤ j ≤ k (satisfying thus the premise)
and such that v′′(pj) = v(pj) for j > k (allowing for the conclusion to be
falsified). ⊓⊔
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Proposition 5. The fibring B c©1
•B c©2

of the logic of a very significant classical
connective c©1 and the logic of a non-top-like Boolean connective c©2 distinct
from ⊥ fails to be locally tabular, and therefore B c©1

• B c©2
( B c©1

c©2
.

Proof. We want to build over Σ1∪Σ2, on a finite number of sentential variables,
an infinite family { c©m}m∈N of syntactically distinct formulas that are pairwise
inequivalent according to B c©1

• B c©2
.

In case c©2 is significant we know from Lemma 2 that we can count on a
singulary significant term function ψ0 allowed by L c©2

({p})\P . Set, in this case,
ψn+1 := ψ0 ◦ ψn. Given the assumption that B c©2

is a two-valued logic, in view
of Remark 3(iii) it should be clear that no such ψn+1 can be top-like. To the
same effect, in case c©2 is bottom-like, just consider any enumeration {ψm}m∈N

of the singulary term functions allowed by L c©2
({p}) \ P . In both cases we see

then how to build a family of syntactically distinct { c©2}-headed singulary term
functions, and these will be used below to build a certain convenient family of
({ c©1}-headed) formulas in the mixed language.

In what follows we abbreviate c©1(p1, p2, . . . , pk1) to C. We may assume,
without loss of generality, that there is some j < k1 such that C ⊢ c©1

pi for every
i ≤ j and C 6⊢ c©1

pi otherwise. Let σn, for each n > 0, denote a substitution
such that σn(pi) = pi, for i ≤ j, and σn(pi) = ψn×i(p) otherwise. We claim that
Cσa 6⊢ c©1• c©2

Cσb , for every a 6= b.
To check the claim, first note that, for each a > 0, we have S c©1• c©2

({Cσa}) =
{Cσa}∪{pi : i ≤ j}. From the fact that C is a significant term function, it follows
that S c©1• c©2

({Cσa}) is neither ⊢ c©1
-explosive nor ⊢ c©2

-explosive. For arbitrary
b > 0, since monΣ2

(ψb(p)) = ∅, we have M
2
c©1• c©2

({Cσa}, ψb(p)) = ∅. Therefore,
using Theorem 1 we may conclude that Cσa 6⊢ c©1• c©2

ψb(p) and, given that
monΣ1

(Cσb ) ⊆ {ψk(p) : k ∈ N}, it also follows that M1
c©1• c©2

({Cσa}, Cσb) = ∅.

Note, in addition, for each n > 0, that skΣ1
(C) = Cσ

′
n , where σ′

n(pi) := pi for
i ∈ I, and σ′

n(pi) := xψn×i
for i /∈ I. Therefore, given that c©1 is very significant,

using Remark 1 and Lemma 3 we conclude at last, for every a 6= b, that Cσb does
not follow from Cσa according to B c©1

• B c©2
. The latter combined logic, thus,

fails to be locally tabular. As a consequence, given that all two-valued logics are
locally tabular we see that B c©1

• B c©2
cannot coincide with B c©1 c©2

. ⊓⊔

Example 9. If c©1 and c©2 are among the Boolean connectives mentioned in
Remark 2 then we have that B c©1

• B c©2
( B c©1

c©2
. △

The following theorem makes use of the previous results to capture the exact
circumstances in which the logic that merges the axiomatizations of two classical
connectives coincides with the logic of these Boolean connectives.

Theorem 2. Consider the logic B c©1
of the classical connective c©1 and the logic

B c©2
of the distinct classical connective c©2. Then, B c©1

•B c©2
= B c©1

c©2
iff either:

(a) at least one among c©1 and c©2 is top-like, or
(b) neither c©1 nor c©2 are very significant, or
(c) c©1 ∈ C↔

BA
and c©2 = ⊥ (or c©1 = ⊥ and c©2 ∈ C↔

BA
).
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Proof. The direction from right to left follows from Propositions 2 to 4. The
other direction follows from Corollary 1 and Proposition 5. ⊓⊔

We can finally obtain the envisaged characterization result:

Theorem 3. Let conn1 and conn2 be non-functionally complete disjoint sets
of connectives such that conn = conn1 ∪ conn2 is functionally complete. The
disjoint fibring of the classical logics of conn1 and conn2 is classical iff Cconni

BA
∈

{D,T∞
0 } ∪ {Tk0 : k ∈ N} and C

connj

BA
= UP1, for some i ∈ {1, 2} and j = 3− i.

Proof. Note that if Cconni

BA
∈ {D,T∞

0 } ∪ {Tk0 : k ∈ N} and C
connj

BA
= UP1, for

i 6= j ∈ {1, 2}, then we have that conn is functionally complete. For the right to
left implication, it suffices to invoke Proposition 1 and item (a) of Theorem 2.

As for the converse implication, let us assume that Bconn1 • Bconn2 = Bconn.
Using Proposition 1, we know that for every pair of connectives c©1 ∈ conn1

and c©2 ∈ conn2 one of the items (a), (b) or (c) of Theorem 2 must hold. If (a)
holds in all cases, then, without loss of generality, C

connj

BA
= UP1. This, given the

functional completeness of conn, implies that Cconni

BA
∈ {D,T∞

0 } ∪ {Tk0 : k ∈ N}.
Otherwise, we would have Cconni

BA
and C

connj

BA
both distinct from UP1, and items

(b) or (c) of Theorem 2 would have to hold in all the remaining cases. If (b) holds
in all the remaining cases then we would conclude that conni ∪ connj contains
only connectives that are not very significant, and that would contradict the
functional completeness of conn. Thence, without loss of generality, we could say
that Cconni

BA
contains very significant connectives, and item (c) of Theorem 2 would

have to hold in those cases. But this would mean that Cconni

BA
⊆ C↔∧⊤⊥

BA
= C↔∧⊥

BA

and C
connj

BA
⊆ C⊤⊥

BA
. Note, however, that neither ∧ nor ⊥ can coexist in Cconni

BA

with ↔, or the underlying logic would express some very significant connective
not expressible using only ↔. We are therefore led to conclude that Cconni

BA
⊆ C↔

BA

and C
connj

BA
⊆ C⊤⊥

BA
. But this is impossible, as we would then have Cconn

BA
⊆ A,

contradicting the functional completeness of conn. ⊓⊔

5 Closing remarks

In the present paper, we have investigated and fully characterized the situations
when merging two disjoint fragments of classical logic still results in a fragment
of classical logic. As a by-product, we showed that recovering full classical logic
in such a manner can only be done when one of the logics is a fragment of
classical logic consisting exclusively of top-like connectives, while the other forms
a functionally complete set of connectives with the addition of ⊤. Our results
take full advantage of the characterization of Post’s lattice, and may be seen
as an application of recent developments concerning fibred logics. Though our
conclusions cannot be seen as a total surprise, we are not aware of any other result
of this kind. Some unexpected situations do pop up, like the fact that B↔ •B⊥ =
B↔⊥, or the fact that B 6→ • B⊤ and B∨+ • B⊤ both yield full classical logic. The
latter two combinations are particularly enlightening, given that according to [6]
the complexity of disjoint fibring is only polynomially worse than the complexity
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of the component logics, and we know from [1] that the decision problems for B 6→

or B∨+ are both co-NP-complete, as in full classical logic. As a matter of fact,
some of the results we obtained may alternatively be established as consequences
of the complexity result in [6] together with the conjecture that P 6= NP. In fact,
for disjoint sets of Boolean connectives conn1 and conn2 such that conn1 ∪ conn2

is functionally complete, if the decision problems for Bconn1
and for Bconn2

are
both in P then clearly Bconn1

•Bconn2
6= Bconn1∪conn2 . However, the techniques we

use here do not depend on P 6= NP and allow us to solve also the cases in which
the complexity of the components is already in co-NP, for which the complexity
result in [6] offers no hints.

Similar studies could certainly be pursued concerning logics other than clas-
sical. However, even for the classical case there are some thought-provoking un-
settled questions. Concretely, we would like to devise semantical counterparts for
all the combinations that do not yield fragments of classical logic, namely those
covered by Proposition 5. So far, we can be sure that such semantic counterparts
cannot be provided by a single finite logical matrix. Additionally, we would like
to link the cases yielding fragments of classical logic (as covered by the condi-
tions listed in Theorem 2) to properties of the multiple-conclusion consequence
relations [11] pertaining to such connectives.
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