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Abstract

Jointly identifying brain diseases and predicting clinical scores have attracted increasing attention 

in the domain of computer-aided diagnosis using magnetic resonance imaging (MRI) data, since 

these two tasks are highly correlated. Although several joint learning models have been developed, 

most existing methods focus on using human-engineered features extracted from MRI data. Due to 

the possible heterogeneous property between human-engineered features and subsequent 

classification/regression models, those methods may lead to sub-optimal learning performance. In 

this paper, we propose a deep multi-task multi-channel learning (DM2L) framework for 

simultaneous classification and regression for brain disease diagnosis, using MRI data and 

personal information (i.e., age, gender, and education level) of subjects. Specifically, we first 

identify discriminative anatomical landmarks from MR images in a data-driven manner, and then 

extract multiple image patches around these detected landmarks. A deep multi-task multi-channel 

convolutional neural network is then developed for joint disease classification and clinical score 

regression. We train our model on a large multi-center cohort (i.e., ADNI-1) and test it on an 

independent cohort (i.e., ADNI-2). Experimental results demonstrate that DM2L is superior to the 

state-of-the-art approaches in brain diasease diagnosis.

1 Introduction

For the challenging and interesting task of computer-aided diagnosis of Alzheimer’s disease 

(AD) and its prodromal stage (i.e., mild cognitive impairment, MCI), brain morphometric 

pattern analysis has been widely investigated to identify disease-related imaging biomarkers 

from structural magnetic resonance imaging (MRI) [1–3]. Compared with other widely used 

biomarkers (e.g., cerebrospinal fluid), MRI provides a non-invasive solution to potentially 

identify abnormal structural brain changes in a more sensitive manner [4,5]. While extensive 

MRI-based studies focus on predicting categorical variables in binary classification tasks, 

the multi-class classification task remains a challenging problem. Moreover, several pattern 

regression methods have been developed to estimate continuous clinical scores using MRI 

[6]. This line of research is very important since it can help evaluate the stage of AD/MCI 

pathology and predict its future progression. Different from the classification task that 
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categorizes an MRI into binary or multiple classes, the regression task needs to estimate 

continuous values, which is more challenging in practice.

Actually, the tasks of disease classification and clinical score regression may be highly 

associated, since they aim to predict semantically similar targets. Hence, jointly learning 

these two tasks can utilize the intrinsic useful correlation information among categorical and 

clinical variables to promote the learning performance [6]. Existing methods generally first 

extract human-engineered features from MR images, and then feed these features into 

subsequent classification/regression models. Due to the possibly heterogeneous property 

between features and models, these methods usually lead to sub-optimal performance 

because of simply utilizing the limited human-engineered features. Intuitively, integrating 

the feature extraction and the learning of models into a unified framework could improve the 

diagnostic performance. Also, personal information (e.g., age, gender, and education level) 

may also be related to brain status, and thus can affect the diagnostic performance for AD/

MCI. However, it is often not accurate to simultaneously match multiple parameters for 

different clinical groups.

In this paper, we propose a deep multi-task multi-channel learning (DM2L) framework for 

joint classification and regression of brain status using MRI. Compared with conventional 

methods, DM2L can not only automatically learn representations for MRI without requiring 

any expert knowledge for pre-defining features, but also explicitly embed personal 

information (i.e., age, gender, and education level) into the learning model. Figure 1 shows a 

schematic diagram of DM2L. We first process MR images and identify anatomical 

landmarks in a data-driven manner, followed by a patch extraction procedure. We then 

propose a multi-task multi-channel convolutional neural network (CNN) to simultaneously 

perform multi-class disease classification and clinical score regression.

2 Materials and Methods

Data Description

Two public datasets containing 1396 subjects are used in this study, including Alzheimer’s 

Disease Neuroimaging Initiative-1 (ADNI-1) [7], and ADNI-2 [7]. For independent testing, 

subjects participated in both ADNI-1 and ADNI-2 are simply removed from ADNI-2. 

Subjects in the baseline ADNI-1 dataset have 1.5T T1-weighted MRI data, while subjects in 

the baseline ADNI-2 dataset have 3T T1-weighted MRI data. More specifically, ADNI-1 

contains 226 normal control (NC), 225 stable MCI (sMCI), 165 progressive MCI (pMCI), 

and 181 AD subjects. In ADNI-2, there are 185 NC, 234 sMCI, 37 pMCI, and 143 AD 

subjects. Both sMCI and pMCI are defined based on whether MCI subjects would convert to 

AD within 36 months after the baseline time. Four types of clinical scores are acquired for 

each subject in both ADNI-1 and ADNI-2, including Clinical Dementia Rating Sum of 

Boxes (CDRSB), classic Alzheimer’s Disease Assessment Scale Cognitive (ADAS-Cog) 

subscale with 11 items (ADAS11), modified ADAS-Cog with 13 items (ADAS13), and 

MiniMental State Examination (MMSE). We process all studied MR images via a standard 

pipeline, including anterior commissure (AC)-posterior commissure (PC) correction, 

intensity correction, skull stripping, and cerebellum removing.
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Data-Driven Anatomical Landmark Identification

To extract informative patches from MRI for both feature learning and model training, we 

first identify discriminative AD-related landmark locations using a data-driven landmark 

discovery algorithm [8, 9]. The aim is to identify the landmarks that have statistically 

significant group difference between AD patients and NC subjects in local brain structures. 

More specifically, using the Colin27 template, both linear and non-linear registration are 

performed to establish correspondences among voxels in different MR images. Then, 

morphological features are extracted from local image patches around the corresponding 

voxels in the linearly-aligned AD and NC subjects from ADNI-1. A voxel-wise group 

comparison between AD and NC groups is then performed in the template space, through 

which a p-value can be calculated for each voxel. In this way, a p-value map can be 

obtained, whose local minima are defined as locations of discriminative landmarks in the 

template. In Fig. 2 (left), we illustrate the identified anatomical landmarks based on AD and 

NC subjects in ADNI-1. For a new testing MR image, one can first linearly align it to the 

template space, and then use a pre-trained landmark detector to localize each landmark. In 

this study, we assume that landmarks with significant differences between AD and NC 

groups are potential atrophy locations of MCI subjects. Accordingly, all pMCI and sMCI 

subjects share the same landmarks as those identified from AD and NC groups.

Patch Extraction from MRI

Based on the identified landmarks, we extract image patches from an MR image of a 

specific subject. As shown in Fig. 2 (left), some landmarks are close to each other. In such a 

case, patches extracted from these landmark locations will have large overlaps, and thus can 

only provide limited information about the structures of MR images due to redundant 

information. To this end, we define a spatial distance threshold (i.e., 20 voxels) to control the 

distance of landmarks, in order to reduce the overlaps of patches. In Fig. 2 (right), we plot 

the L = 50 selected landmarks, from which we can see that many of these selected 

landmarks are located in the areas of bilateral hippocampal, parahippocampal, and fusiform. 

These areas are reported to be related to AD/MCI in previous studies [10, 11]. Then, for 

each subject, we can extract L image patches (with the size of 24 × 24 × 24) based on L 
landmarks, and each patch center is a specific landmark location. We further randomly 

extract image patches centered at each landmark location with displacements in a 5 × 5 × 5 

cubic, in order to reduce the impact of landmark detection errors.

Multi-Task Multi-Channel CNN

As shown in Fig. 3, we propose a multitask multi-channel CNN, which allows the learning 

model to extract feature representations implicitly from the input MRI patches. This 

architecture adopts multi-channel input data, where each channel is corresponding to a local 

image patch extracted from a specific landmark location. In addition, we incorporate 

personal information (i.e., age, gender, and education level) into the learning model, in order 

to investigate the impact of personal information on the performance of computer-aided 

disease diagnosis. As shown in Fig. 3, the input of this network includes L image patches, 

age, gender, and education level from each subject, while the output contains the class labels 

and four clinical scores (i.e., CDRSB, ADAS11, ADAS13, and MMSE). Since the 
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appearance of brain MRI is often globally similar and locally different, both global and local 

structural information could be important for the tasks of classification and regression. To 

capture the local structural information of MRI, we first develop L-channel parallel CNN 

architectures. In each channel CNN, there is a sequence of six convolutional layers and two 

fully connected (FC) layers (i.e., FC7, and FC8). Each convolution layer is followed by a 

rectified linear unit (ReLU) activation function, while Conv2, Conv4, and Conv6 are 

followed by 2×2×2 max-pooling operations for down-sampling. Note that each channel 

contains the same number of convolutional layers and the same parameters, while their 

weights are independently optimized and updated. To model the global structural 

information of MRI, we then concatenate the outputs of L FC8 layers, and add two 

additional FC layers (i.e., FC9, and FC10) to capture the global structural information of 

MRI. Moreover, we feed a concatenated representation comprising the output of FC10 and 

personal information (i.e., age, gender, and education level) into two FC layers (i.e., FC11, 

and FC12). Finally, two FC13 layers are used to predict the class probability (via soft-max) 

and to estimate the clinical scores, respectively. The proposed network can also be 

mathematically described as follows.

Let 𝒳 = {Xn}
n = 1
N  denote the training set, with the element Xn representing the n-th subject. 

Denote the labels of C (C = 4) categories as yc = {yn
c}

n = 1
N (c = 1, 2, ⋯, C), and S (S = 4) types 

of clinical scores as zs = {zn
s}

n = 1
N (s = 1, 2, ⋯, S). In this study, both the class labels and 

clinical scores are used in a back-propagation procedure to update the network weights in 

the convolutional layers and to learn the most relevant features in the FC layers. The aim of 

the proposed CNN is to learn a non-linear mapping Ψ :𝒳 {yc}c = 1
C , {zs}s = 1

S
 from the 

input space to both spaces of the class label and the clinical score, and the objective function 

is as follows:

arg minW − 1
C ∑

c = 1

C 1
N ∑

Xn ∈ 𝒳
1 yn

c = c log P(yn
c = c ∣ Xn; W) + 1

S ∑
s = 1

S 1
N ∑

Xn ∈ 𝒳
zn
s − zn

s 2,

(1)

where the first term is the cross-entropy loss for multi-class classification, and the second 

one is the mean squared loss for regression to evaluate the difference between the estimated 

clinical score z∼n
s  and the ground truth zn

s . Note that 1 {·} is an indicator function, with 1 {·} = 

1 if {·} is true; and 0, otherwise. In addition, P(yn
c = c ∣ Xn; W) indicates the probability of the 

subject Xn being correctly classified as the category yn
c using the network coefficients W.
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3 Experiments

Experimental Settings

We perform both multi-class classification (NC vs. sMCI vs. pMCI vs. AD) and regression 
of four clinical scores (CDRSB, ADAS11, ADAS13, and MMSE). The performance of 

multi-class classification is evaluated by the overall classification accuracy (Acc) for four 

categories, as well as the accuracy for each category. The performance of regression is 

evaluated by the correlation coefficient (CC), and the root mean square error (RMSE). To 

evaluate the generalization ability and the robustness of a specific model, we adopt ADNI-1 

as the training dataset, and ADNI-2 as the independent testing dataset.

We compare our DM2L method with two state-of-the-art methods, including 1) voxel-based 

morphometry (VBM) [12], and 2) ROI-based method (ROI). In the VBM, we first normalize 

all MR images to the anatomical automatic labeling (AAL) template using a non-linear 

image registration technique, and then extract the local GM tissue density in a voxel-wise 

manner as features. We also perform t-test to select informative features, followed by a 

linear support vector machine (LSVM) or a linear support vector regressor (LSVR) for 

classification or regression. In the ROI, the brain MRI is first segmented into three tissue 

types, i.e., gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). We then 

align the AAL template with 90 pre-defined ROIs to the native space of each subject using a 

deformable registration algorithm. Then, the normalized volumes of GM tissue in 90 ROIs 

are used as the representation of an MR image, followed by an LSVM or an LSVR for 

classification or regression.

To evaluate the contributions of the proposed two strategies (i.e., joint learning, and using 

personal information) adopted in DM2L, we further compare DM2L with its three variants. 

These variants include 1) deep single-task multi-channel learning (DSML) using personal 

information, 2) deep single-task multi-channel learning without using personal information 

(denoted as DSML-1), and 3) deep multi-task multi-channel learning without using personal 

information (denoted as DM2L-1). Note that DSML-1 and DSML employ the similar CNN 

architecture as shown in Fig. 3, but perform the tasks of classification and regression 

separately. In addition, DM2L-1 does not adopt any personal information for the joint 

learning of classification and regression. The size of image patch is empirically set to 24 × 

24 × 24 in DM2L and its three variants, and they share the same L = 50 landmarks as shown 

in Fig. 2 (right).

Results

In Table 1, we report the experimental results achieved by six methods in the tasks of multi-

class disease classification (i.e., NC vs. sMCI vs. pMCI vs. AD) and regression of four 

clinical scores. The confusion matrices for multi-class classification are given in the 

Supplementary Materials. Figure 4 further shows the scatter plots of the estimated scores vs. 

the true scores achieved by six different methods for four clinical scores, respectively. Note 

that the clinical scores are normalized to [0, 1] in the procedure of model learning, and we 

transform those estimated scores back to their original ranges in Fig. 4.
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From Table 1 and Fig. 4, we can make at least four observations. First, compared with 

conventional methods (i.e., VBM, and ROI), the proposed 4 deep learning based approaches 

generally yield better results in both disease classification and clinical score regression. For 

instance, in terms of the overall accuracy, DM2L achieves an 11.4% and an 8.7% 

improvement compared with VBM and ROI, respectively. In addition, VBM and ROI can 

only achieve very low classification accuracies (i.e., 0.081 and 0.027, respectively) for the 

pMCI subjects, while our deep learning based methods can achieve much higher accuracies. 

This implies that the integration of feature extraction into model learning provides a good 

solution for improving diagnostic performance, since feature learning and model training 

can be optimally coordinated. Second, in both classification and regression tasks, the 

proposed joint learning models are usually superior to the models that learn different tasks 

separately. That is, DM2L usually achieves better results than DSML, and DM2L-1 

outperforms DSML-1. Third, DM2L and DSML generally outperforms their counterparts 

(i.e., DM2 L-1, and DSML-1) that do not incorporate personal information (i.e., age, gender, 

and education level) into the learning process. It suggests that personal information helps 

improve the learning performance of the proposed method. Finally, as can be seen from Fig. 

4, ourDM2L method generally outperforms those five competing methods in the regression 

of four clinical scores. Considering different signal-to-noise ratios of MRI in the training set 

(i.e., ADNI-1 with 1.5T scanners) and MRI in the testing set (i.e., ADNI-2 with 3T 

scanners), these results imply that the learned model via our DM2L framework has good 

generalization capability.

4 Conclusion

We propose a deep multi-task multi-channel learning (DM2L) framework for joint 

classification and regression of brain status using MRI and personal information. Results on 

two public cohorts demonstrate the effectiveness of DM2L in both multi-class disease 

classification and clinical score regression. However, due to the differences in data 

distribution between ADNI-1 and ADNI-2, it may degrade the performance to directly apply 

the model trained on ADNI-1 to ADNI-2. It is interesting to study a model adaptation 

strategy to reduce the negative influence of data distribution differences. Besides, studying 

how to automatically extract informative patches from MRI is meaningful, which will also 

be our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of our deep multi-task multi-channel learning (DM2L) framework.
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Fig. 2. 
Illustration of (left) all identified AD-related anatomical landmarks, and (right) L = 50 

selected landmarks with colors denoting p-values in group comparison [8].
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Fig. 3. 
Architecture for the proposed multi-task multi-channel CNN.
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Fig. 4. 
Scatter plots of estimated scores vs. true scores achieved by different methods.
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