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Abstract. In voxel-based neuroimage analysis, lesion features have been
the main focus in disease prediction due to their interpretability with
respect to the related diseases. However, we observe that there exist
another type of features introduced during the preprocessing steps and
we call them “Procedural Bias”. Besides, such bias can be leveraged
to improve classification accuracy. Nevertheless, most existing models
suffer from either under-fit without considering procedural bias or poor
interpretability without differentiating such bias from lesion ones. In this
paper, a novel dual-task algorithm namely GSplit LBI is proposed to
resolve this problem. By introducing an augmented variable enforced
to be structural sparsity with a variable splitting term, the estimators
for prediction and selecting lesion features can be optimized separately
and mutually monitored by each other following an iterative scheme.
Empirical experiments have been evaluated on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. The advantage of proposed
model is verified by improved stability of selected lesion features and
better classification results.

Keywords: ·Voxel-based Structural Magnetic Resonance Imaging · Pro-
cedural Bias · Split Linearized Bregman Iteration · Feature selection

1 Introduction

Usually, the first step of voxel-based neuroimage analysis requires preprocess-
ing the T1-weighted image, such as segmentation and registration of grey mat-
ter (GM), white matter (WM) and cerebral spinal fluid (CSF). However, some
systematic biases due to scanner difference and different population etc., can be
introduced in this pipeline [2]. Part of them can be helpful to the discrimination
of subjects from normal controls (NC), but may not be directly related to the
disease. For example in structural Magnetic Resonance Imaging (sMRI) images
of subjects with Alzheimer’s Disease (AD), after spatial normalization during
simultaneous registration of GM, WM and CSF, the GM voxels surrounding
lateral ventricle and subarachnoid space etc. may be mistakenly enlarged caused
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by the enlargement of CSF space in those locations [2] compared to normal tem-
plate, as shown in Fig. 1. Although these voxels/features are highly correlated
with disease, they can’t be regarded as lesion features in an interpretable model.
In this paper we refer to them as “Procedural Bias”, which should be iden-
tified but is neglected in the literature. We observe that it can be harnessed in
our voxel-based image analysis to improve the prediction of disease.

Fig. 1. The overlapped voxels among top 150 negative value voxels in each fold of βpre
at the time corresponding to the best average prediction result in the path of GSplit
LBI using 10-fold cross-validation. For subjects with AD, they represent enlarged GM
voxels surrounding lateral ventricle, subarachnoid space, edge of gyrus, etc.

Together with procedural bias, the lesion features are vital for prediction
and lesion regions analysis tasks, which are commonly solved by two types of
regularization models. Specifically, one kind of models such as general losses with
l2 penalty, elastic net [15] and graphnet [5] select strongly correlated features to
minimize classification error. However, such models don’t differentiate features
either introduced by disease or procedural bias and may also introduce redundant
features. Hence, the interpretability of such models are poor and the models are
prone to over-fit. The other kind of models with sparsity enforcement such as
TV-L1 (Combination of Total Variation [9] and L1) and particularly n2 GFL [13]
enforce strong prior of disease on the parameters of the models introduced in
order to capture the lesion features. Although such features are disease-relevant
and the selection is stable, the models ignore the inevitable procedural bias,
hence, they are losing some prediction power.

To incorporate both tasks of prediction and selection of lesion features, we
propose an iterative dual-task algorithm namely Generalized Split LBI (GSplit
LBI) which can have better model selection consistency than generalized lasso
[11]. Specifically, by the introduction of variable splitting term inspired by Split
LBI [6], two estimators are introduced and split apart. One estimator is for
prediction and the other is for selecting lesion features, both of which can be
pursued separately with a gap control. Following an iterative scheme, they will
be mutually monitored by each other: the estimator for selecting lesion features
is gradually monitored to pursue stable lesion features; on the other hand, the
estimator for prediction is also monitored to exploit both the procedural bias
and lesion features to improve prediction. To show the validity of the proposed
method, we successfully apply our model to voxel-based sMRI analysis for AD,
which is challenging and attracts increasing attention.
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2 Method

2.1 GSplit LBI Algorithm

Our dataset consists of N samples {xi, yi}N1 where xi ∈ Rp collects the ith

neuroimaging data with p voxels and yi = {±1} indicates the disease status (−1
for Alzheimer’s disease in this paper). X ∈ RN×p and y ∈ Rp are concatenations
of {xi}i and {yi}i. Consider a general linear model to predict the disease status
(with the intercept parameter β0 ∈ R),

logP (yi = 1|xi)− logP (yi = −1|xi) = xTi βpre + β0. (2.1)

A desired estimator βpre ∈ Rp should not only fit the data by maximizing the log-
likelihood in logistic regression, but also satisfy the following types of structural
sparsity: (1) the number of voxels involved in the disease prediction is small, so
βpre is sparse; (2) the voxel activities should be geometrically clustered or 3D-
smooth, suggesting a TV-type sparsity on DGβpre where DG is a graph difference
operator5; (3) the degenerate GM voxels in AD are captured by nonnegative
component in βpre. However, the existing procedural bias may violate these a
priori sparsity properties, esp. the third one, yet increase the prediction power.

To overcome this issue, we adopt a variable splitting idea in [6] by intro-
ducing an auxiliary variable γ ∈ R|V |+|E| to achieve these sparsity requirements
separately, while controlling the gap from Dβpre with penalty Sρ(βpre, γ) :=

‖Dβpre − γ‖22 := ‖βpre − γV ‖22 + ‖ρDGβpre − γG‖22 with γ =
[
γTV γTG

]T
and

D =
[
I ρDT

G

]T
. Here ρ controls the trade-off between different types of spar-

sity. Our purpose is thus of two-folds: (1) use βpre for prediction; (2) enforce
sparsity on γ. Such a dual-task scheme can be illustrated by Fig. 6.

To implement it, we generalize the Split Linearized Bregman Iteration (Split
LBI) algorithm in [6] to our setting with generalized linear models (GLM) and
the three types of structural sparsity above, hence called Generalized Split LBI
(or GSplit LBI). Algorithm 1 describes the procedure with a new loss:

`(β0, βpre, γ; {xi, yi}N1 , ν) := `(β0, βpre; {xi, yi}N1 ) +
1

2ν
Sρ(βpre, γ), (2.2)

where `(βpre; {xi, yi}N1 ) is the negative log-likelihood function for GLM and ν >
0 tunes the strength of gap control. The algorithm returns a sequence of estimates
as a regularization path, {βk0 , βkpre, γk, βkles}k≥0. In particular, γk shows a variety

of sparsity levels and βkpre is generically dense with different prediction powers.

The projection of βkpre onto the subspace with the same support of γk gives

estimate βkles, satisfying those a priori sparsity properties (sparse, 3D-smooth,
nonnegative) and hence being regarded as the interpretable lesion features for
AD. The remainder of this projection is heavily influenced by procedural bias; in

5 Here DG : RV → RE denotes a graph difference operator on G = (V,E), where V is
the node set of voxels, E is the edge set of voxel pairs in neighbour (e.g. 3-by-3-by-3),
such that DG(β)(i, j) := β(i)− β(j).
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Fig. 2. Illustration of GSplit LBI. The gap between βpre for fitting data and γ for spar-
sity is controlled by Sρ(βpre, γ). The estimate βles, as a projection of βpre on support
set of γ, can be used for stable lesion features analysis when ν → 0 (Section 3.2). When
ν 9 0 (Section 3.1) with appropriately large value, βpre can be used for prediction by
capturing both lesion features and procedural bias.

this paper the non-zero elements in βkpre which are negative (-1 denotes disease
label) with comparably large magnitude are identified as procedural bias, while
others with tiny values can be treated as nuisance or weak features. In summary,
βles only selects lesion features; while βpre also captures additional procedural
bias. Hence, such two kinds of features can be differentiated, as illustrated in
Fig. 6.

2.2 Setting the Parameters

A stopping time at tk (line 10) is the regularization parameter, which can be
determined via cross-validation to minimize the prediction error [7]. Parameter
ρ is a tradeoff between geometric clustering and voxel sparsity. Parameter κ, α
is damping factor and step size, which should satisfy κα ≤ ν/κ(1 + νΛH + Λ2

D)
to ensure the stability of iterations. Here Λ(·) denotes the largest singular value
of a matrix and H denotes the Hessian matrix of `(β0, βpre; {xi, yi}N1 ).

Parameter ν balances the prediction task and sparsity enforcement in feature
selection. In this paper, it is task-dependent, as shown in Fig. 6. For prediction
of disease, βpre with appropriately larger value of ν may increase the prediction
power by harnessing both lesion features and procedural bias. For lesion features
analysis, βles with a small value of ν is helpful to enhance stability of feature
selection. For details please refer to supplementary information.

3 Experimental Results

We apply our model to AD/NC classification (namely ADNC) and MCI (Mild
Cognitive Impairment)/NC (namely MCINC) classification, which are two fun-
damental challenges in diagnosis of AD. The data are obtained from ADNI6

6 http://adni.loni.ucla.edu



GSplit LBI: Taming the Procedural Bias in Neuroimaging 5

Algorithm 1 GSplit LBI

1: Input: Loss function `(β0, βpre, γ; {xi, yi}Ni=1, ν), parameters ν, ρ, κ, α > 0.
2: Initialize: k = 0, tk = 0, βk0 = 0, βkles = 0, βkpre = 0, γkV = 0p, γ

k
G = 0m,

zkV = 0p, z
k
G = 0m and Sk := supp(γk) = ∅.

3: Iteration
4: βk+1

0 = βk0 − καOβ0
`(βk0 , β

k
pre, γ

k; {xi, yi}N1 , ν)

5: βk+1
pre = βkpre − καOβpre `(βk0 , βkpre, γk; {xi, yi}N1 , ν)

6: zk+1 = zk − αOγ `(βk0 , βkpre, γk; {xi, yi}N1 , ν)

7: γk+1
V = κ · S+(zk+1

V , 1), where S+(x, 1) = max(x− 1, 0)

8: γk+1
G = κ · S(zk+1

G , 1), where S(x, 1) = sign(x) ·max(|x| − 1, 0)

9: βk+1
les = PSk+1

βk+1
pre , where PS = Pker(DSc ) = I −D†ScDSc

10: tk+1 = (k + 1)α

11: Output: {βk0 , βkpre, βkles, γk}, where γk+1 =

ñ
γk+1
V

γk+1
G

ô
and zk+1 =

ñ
zk+1
V

zk+1
G

ô
.

database, which is split into 1.5T and 3.0T (namely 15 and 30) MRI scan mag-
netic field strength datasets. The 15 dataset contains 64 AD, 208 MCI and 90
NC; while the 30 dataset contains 66 AD and 110 NC. DARTEL VBM pipeline
[1] is then implemented to preprocess the data. Finally, the input features con-
sist of 2,527 8×8×8 mm3 size voxels with average values in GM population
template greater than 0.1. Experiments are designed on 15ADNC, 30ADNC and
15MCINC tasks.

3.1 Prediction and Path Analysis

10-fold cross-validation is adopted for classification evaluation. Under exactly
the same experimental setup, comparison is made between GSplit LBI and other
classifiers: SVM, MLDA (univariate model via t-test + LDA) [3], Graphnet [5],
Lasso [10], Elastic Net, TV+L1 and n2GFL. For each model, optimal parameters
are determined by grid-search. For GSplit LBI, ρ is chosen from {1, 2, ..., 10},
κ is set to 10; α = ν/κ(1 + νΛ2

X + Λ2
D)7; specifically, ν is set to 0.2 (corre-

sponding to ν 9 0 in Fig. 6)8 . The regularization coefficient λ is ranged in
{0, 0.05, 0.1, ..., 0.95, 1, 10, 102} for lasso9 and 2{−20,−19,...,0,...,20} for SVM. For
other models, parameters are optimized from λ : {0.05, 0.1, ..., 0.95, 1, 10, 102}
and ρ : {0.5, 1, .., 10}(in addition, the mixture parameter α: {0, 0.05, ..., 0.95} for
Elastic Net).

The best accuracy in the path of GSplit LBI and counterpart are reported.
Table 1 shows that βpre of our model outperforms that of others in all cases. Note
that although our accuracies may not be superior to models with multi-modality
data [8], they are the state-of-the-art results for only sMRI modality.

7 For logit model, α < ν/κ(1 + νΛ2
H + νΛ2

X) since ΛX > ΛH .
8 In this experiment, comparable prediction result will be given for ν ∈ (0.1, 10).
9 0 corresponds to logistic regression model.



6 Xinwei Sun et al.

Table 1. Comparison of GSplit LBI with other models

MLDA SVM Lasso Graphnet Elastic Net TV + l1 n
2GFL GSplit LBI (βpre)

15ADNC 85.06% 83.12% 87.01% 86.36% 88.31% 83.77% 86.36% 88.96%

30ADNC 86.93% 87.50% 87.50% 88.64% 89.20% 87.50% 87.50% 90.91%

15MCINC 61.41% 70.13% 69.80% 72.15% 70.13% 73.83% 69.80% 75.17%

Fig. 3. Left image: Accuracy of (βpre, βles) vs log t (t: regularization parameter). Right
image: Six 2-d brain slice images of selected degenerative voxels of βles and βpre are
sorted orderly at {t1, ...t6}. As t grows, βpre and βles identify similar lesion features.

The process of feature selection combined with prediction accuracy can be
analyzed together along the path. The result of 30ADNC is used as an illustra-
tion in Fig. 3. We can see that βpre (blue curve) outperforms βles (red curve)
in the whole path for additional procedural bias captured by βpre. Specifically,
at βpre’s highest accuracy (t5), there is a more than 8% increase in prediction
accuracy by βpre. Early stopping regularization at t5 is desired, as βpre converges
to βles in prediction accuracy with overfitting when t grows. Recall that positive
(negative) features represent degenerate (enlarged) voxels. In each fold of βpre
at t5, the commonly selected voxels among top 150 negative (enlargement) vox-
els are identified as procedural bias shown in Fig. 1, where most of these GM
voxels are enlarged and located near lateral ventricle or subarachnoid space etc.,
possibly due to enlargement of CSF space in those locations that are different
from the lesion features.

3.2 Lesion Features Analysis

To quantitatively evaluate the stability of selected lesion features, multi-set
Dice Coefficient (mDC)10 [4,13] is applied as a measurement. The 30ADNC task
is again applied as an example, the mDC is computed for βles which achieves
highest accuracy by 10-fold cross-validation. As shown from Table 2, when ν =
0.0002 (corresponding to ν → 0 in Fig. 6), the βles of our model can obtain
more stable lesion feature selection results than other models with comparable

10 In [13], mDC :=
10|∩10

k=1
S(k)|∑10

k=1
|S(k)|

where S(k) denotes the support set of βles in k-th fold.
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prediction power. Besides, the average number of selected features (line 3 in
Table 2) are also recorded . Note that although elastic net is of slightly higher
accuracy than βles, it selects much more features than necessary.

Table 2. mDC comparison between GSplit LBI and other models

Lasso Elastic Net Graphnet TV + l1 n
2 GFL GSplit LBI (βles)

Accuracy 87.50% 89.20% 88.64% 87.50% 87.50% 88.64%

mDC 0.1992 0.5631 0.6005 0.5824 0.5362 0.7805∑10
k=1 |S(k)|/10 50.2 777.8 832.6 712.6 443.9 129.4

For the meaningfulness of selected lesion features, they are shown in Fig. 4
(a)-(c), located in hippocampus, parahippocampal gyrus and medial temporal
lobe etc., which are believed to be early damaged regions for AD patients.

(a) fold 2 (b) fold 10 (c) overlap (d) coarse-to-fine

Fig. 4. (a)-(c): Stability of selected lesion features of βles shown in 2-d 110 slice brain
images when ν = 0.0002. (a)-(b): Results of fold 2 and fold 10. (c): The overlapped
features in 10 folds. (d): The 2-d slice brain image of selected voxels with 2 × 2 × 2
mm3 using coarse-to-fine approach.

To further investigate the locus of lesion features, we conduct a coarse-to-
fine experiment. Specifically, we project the selected overlapped voxels of 8 ×
8 × 8 mm3 size (shown in Fig. 4 (c)) onto MRI image with more finer scale
voxels, i.e. in size of 2 × 2 × 2 mm3. Totally 4,895 voxels are served as input
features after projection. Again, the GSplit LBI is implemented using 10-fold
cross-validation. The prediction accuracy of βpre is 90.34% and on average 446.6
voxels are selected by βles. As desired, these voxels belong to parts of lesion
regions, such as those located in hippocampal tail, as shown in Fig. 4 (d).

4 Conclusions

In this paper, a novel iterative dual task algorithm is proposed to incorpo-
rate both disease prediction and lesion feature selection in neuroimage analysis.
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With variable splitting term, the estimators for prediction and selecting lesion
features can be separately pursued and mutually monitored under a gap control.
The gap here is dominated by procedural bias, some specific features crucial for
prediction yet ignored in a priori disease knowledge. With experimental studies
conducted on 15ADNC, 30ADNC and 15MCINC tasks, we have shown that the
leverage of procedural bias can lead to significant improvements in both predic-
tion and model interpretability. In future works, we shall extend our model to
other neuroimaging applications including multi-modality data.

Acknowledgements. This work was supported in part by 973-2015CB351800,
2015CB85600, 2012CB825501, NSFC-61625201, 61370004, 11421110001 and Sci-
entific Research Common Program of Beijing Municipal Commission of Educa-
tion (No. KM201610025013).
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Supplementary Information

A Notation

For matrix A, AJ represents the submatrix of A indexed by J . A† denotes the
Moore-Penrose pseudoinverse of A. Suppose A ∈ Rn×n, ‖A‖Σ := trace(A) =∑n
i=1Ai,i. Besides, β̃ and β are used to represent βles and βpre respectively in

what follows.

B Model selection consistency

Consider recovery from generalized linear model(GLM) of β? ∈ Rp which satis-
fies structural sparsity after linearly transformed by D ∈ Rm×p:

P (y|x, β?) ∝ exp(x
T β?·y−ψ(xT β?)

d(σ) )

s.t. γ? = Dβ? (S := supp(γ?), s = |S|, s << m) (B.1)

where ψ : R → R is link function and d(σ) is known parameter related to the
variance of distribution.
Under linear model with ψ(t) = t2 and d(σ) = σ2 in B.1, our model GSplit LBI
degenerates to Split LBI [6]. Recently, it’s proved in [6] that the Split LBI may
achieve model selection consistency under weaker conditions than generalized
lasso [11,12] if ν is large enough. We claim that this property can also be shared
by logit model.
To understand why Gsplit LBI can achieve better model selection consistency,
note that the variable splitting term projects solution vector β into higher di-
mensional space (β, γ) with β fitting data and γ being structural sparse. This will
make it easier for the subspace of γSc to decorrelate with the subspace of (β, γS),
especially when ν increases, which sheds light on better performance of Split LBI
to recover true signal set S. What’s more important, the property may also be
shared by logit model when y = {±1}, d(σ) = 1 and ψ(t) = log(1 + exp(t)).
Concretely speaking, we use θSc,(β,S)(ν) to denote the angle between subspace
of γSc and that of (β, γS), the definition of which is:

θSc,(β,S)(ν) := arccos (
‖PA(β,S)

ASc‖F
‖ASc‖F

) = arccos (

Ã
‖HSc,(β,S)H

†
(β,S),(β,S)H(β,S),Sc‖Σ
‖HSc,Sc‖Σ

)

(B.2)

WhereA :=
[
A(β,S) ASc

]
andH := O2

β,γ l(β, γ) = ATA =

ï
H(β,S),(β,S) H(β,S),Sc

HSc,(β,S) HSc,Sc

ò
.

Remark 1. For linear model, A = Oβ,γ l(β, γ) with

A(β,S) =

 X 0n×s
−DS/

√
ν I(S,S)/

√
ν

−DSc/
√
ν 0(p−s)×s

 ASc =

 0n×(p−s)
0s×(p−s)

I(Sc,Sc)/
√
ν

 (B.3)
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There is no explicit definition for A for logit model, however θSc,(β,S)(ν) can be
computed through Hessian matrix H in equation B.3.

We claim that θSc,(β,S)(ν) will increase as ν becomes larger under some condi-
tions. See theorem 1 for details.

Theorem 1. Under linear model and logit model, limν→+∞θSc,(β,S)(ν) = 90◦

if and only if Im(DT
Sc) ⊆ Im(XT ).

Remark 2. In [6], it’s been proved that the necessary condition for sign-consistency
is IRR(ν) < 1. For uniqueness of model, we also assume that ker(X) ∩ ker(DSc)
⊆ ker(DS). Combined with Im(DT

Sc) ⊆ Im(XT ) ⇐⇒ ker(X) ⊆ ker(DSc), we
have that ker(X) ⊆ ker(DS), which is the sufficient and necessary condition for
the hold of limν→∞ IRR(ν)→ 0. Hence, this is another way to understand why
GSplit LBI can achieve better model selection consistency.

Proof. We firstly prove the case under linear model. Denoted A := νX?X+DTD
where X ∈ Rn×p and X? = X/n. Note that:

H(β,S),(β,S) = QLQT , HSc,(β,S) =
[
DSc/ν 0

]
where:

Q =

ï
Ip 0

−DSA
† Is

ò
, L =

ï
A/ν 0

0 (Is −DSA
†DT

S )/ν

ò
(B.4)

Then we have:

HSc,(β,S)H
†
(β,S),(β,S)H(β,S),Sc = HSc,(β,S)QL

†QTH(β,S),Sc =
1

ν
DScA

†DT
Sc

(B.5)
Substituting equation B.5 into the second equation of B.2, we have:

cos2(θSc,(β,S)(ν)) =
‖DScA

†DSc‖Σ
‖HSc,Sc‖Σ

=
‖DScA

†DSc‖Σ
m− s

(B.6)

Denote ei ∈ Rm−s as the vector with the ith element being 1 and left being 0.
Then equation B.6 is equivalent to:

cos2(θSc,(β,S)(ν))(m− s) = Σp
i=1d

T
i A
†di (B.7)

where di := DT
Scei. Suppose the compact singular value decomposition ofX/

√
n :=

UΛV T , and (V, Ṽ ) be an orthogonal square matrix. Suppose the compact sin-
gular value decomposition of DṼ := U1Λ1V

T
1 . If Im(DT

Sc) ⊆ Im(XT ), then ∃fi,
such that di = V fi, hence,

dTi (νX?X +DTD)†di = dTi
(
V Ṽ

)ÅÅV T
Ṽ T

ã
(νX?X +DTD)

(
V Ṽ

)ã† ÅV T
Ṽ T

ã
di

= fTi (νΛ2 + V TDTDV )−1fi → 0, as ν →∞ (B.8)



12 Xinwei Sun et al.

Combined with equation B.7, it’s then easy to obtain that cos2(θSc,(β,S)(ν))→ 0
as ν → +∞. On the contrary, if ∃ a such that DT

Sca /∈ Im(XT ), then there ∃ i?
such that di? /∈ Im(XT ). This means that for di? , there ∃ f1,i? , f2,i? 6= 0 such

that di? = V f1,i? + Ṽ f2,i? . Then we have

dTi?(νX?X +DTD)†di? ≥ fT2,i?(Ṽ TDTDṼ )†f2,i? = fT2,i?V1Λ
−2
1 V T1 f2,i?

does not equal to 0 ⇐⇒ fT2,i?V1Λ
2
1V

T
1 f2,i? = fT2,i? Ṽ

TDTDṼ f2,i? 6= 0. Since

fT2,i? Ṽ
TDTDṼ f2,i? ≥ fT2,i? Ṽ T di?dTi?f2,i? = (fT2,i?f2,i?)2 > 0

From equation B.7, we can obtain that:

cos2(θSc,(β,S)(ν))(m− s) ≥ dTi?A†di? 6= 0

which means the θSc,(β,S)(ν)→ 0 does not hold when ν → +∞. The proof is then
completed under linear model. Under logit model, the definition of A is modified
to A := νX?W ({xi, β}pi=1)X +DTD where W ({xi, β}pi=1) is a diagonal matrix

with each diagonal element equals to
exp(xTi β)

(1+exp(xT
i
β))2

, the left proof is almost the

same with that of linear model.

An simulation experiment is conducted to illustrate this idea. In more detail,
n = 100 and p = 80, D = I and X ∈ Rn×p and Xi,j ∼ N(0, 1). β?i = 2 for
1 ≤ i ≤ 4, β?i = −2 for 5 ≤ i ≤ 8 and 0 otherwise, y is generated by both
linear model y = Xβ? + ε with ε ∼ N(0, 1) and logit model given X and β?.
We simulated for 100 times and average θSc,(β,S)(ν) is then computed, which is
shown in the left image in figure 5. We can see that θSc,(β,S)(ν) increases when
ν becomes larger, as illustrated in right image in figure 5, and converges to 90◦

when ν → +∞.
The average AUC and estimation of β? of Gsplit LBI with different ν compared
with those of genlasso are also computed. Table B shows better AUC with the
increase of ν before ν = 100. As we can see from the algorithm in the paper that
β̃ is the projection of β onto the support set of γ. Hence it is equivalent to say
that better model selection of β̃ can be achieved as ν increases.
However, the excessively large value of ν will lower the signal-to-noise ratio,
which is also crucial for model selection consistency and prediction estimation.
It’s shown in [6] that ν determines the trade-off between model selection con-
sistency and estimation of β?. Also, the irrepresentable condition(IRR) can be
satisfied as long as ν is large enough. If ν continuously increase, it will deteriorate
the estimation of β?, prediction estimation and even AUC. In our experiment
the same phenomena can be observed, i.e. the estimation of β̃ and β get worse if
ν increases from 10 and 100, respectively; when ν = 100, AUC even decreases.

C Relationship between β and β̃

The estimate β̃, as a projection of β onto the subspace of γ, can select features
that satisfy structural sparsity. Following the Linearized Bregman Iteration [14],
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Fig. 5. Left image: The θSc,(β,S)(ν) curve of logit model and linear model. Right image:
Illustration of θSc,(β,S)(ν) and it monotonically increase v.s. ν.

Table 3. Comparison between Gsplit LBI with different ν and genlasso in terms of
AUC, ‖β̃ − β?‖2, ‖β − β?‖2, ‖Xβ̃ −Xβ?‖2 and ‖Xβ −Xβ?‖2.

Model Gsplit LBI genlasso

ν 0.02 0.1 1 5 10 100 -

AUC 0.9531 0.98194 0.98514 0.98791 0.98792 0.98590 0.97915

‖β̃ − β?‖2 4.9079 4.9015 4.8513 4.8495 4.8473 5.3578 -

‖β − β?‖2 3.9187 3.8993 3.7619 3.6814 3.7129 5.1540 4.9113

‖Xβ̃ −Xβ?‖2 47.0224 46.9625 46.6784 46.9158 47.0098 52.2737 -

‖Xβ −Xβ?‖2 37.3496 37.0962 35.4987 34.6423 34.8514 49.61020 50.6408

β and β̃ will be more similar on features selected by β̃. In more detail, note that
when t = 0, β̃(t) = 0 and β(t) is the graph laplacian regularizer with penalty
factor 1

2ν . As t progresses, the gap between β(t) and β̃(t) will decrease in terms

of ‖β(t)− β̃(t)‖2 for every ν, as shown in figure 6.
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Fig. 6. ‖β− β̃‖2 in the regularized solution path when ν = 100, 1, 0.02. As ν decreases,
the distance of β(t) and β̃(t) are tended to be with smaller distance.
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Fig. 7. Comparison of regularized solution path between β and β̃ when ν = 100, 1, 0.02.
They look more similar with each other as ν decreases.

Since ‖β(t) − β̃(t)‖2 → 0 as t → +∞ and β̃ is sparse, it follows that β will ap-
proximate to β̃ on those selected features. In addition to these selected features,
before convergence to β̃, β can capture other features to better fit data(minimize
training error), especially for those ones that significantly correlated with data.

D Choice of ν

The choice of ν is task-dependent. For stable feature selection, ν with rather
”small” value is suggested. It’s noted that β − β̃ → 0 as ν → 0+, which is
reflected by l2 norm and regularized solution path shown in figure 6, 7. In this
case, the estimator β̃ will be constrained in comparably lower dimension space,
therefore it may fit data with more stability, notwithstanding β have no ability
to select other features.
For prediction estimation, the appropriately large value of ν is preferred. On one
hand, when ν is appropriately large, the ability of selecting features with better
model selection consistency can be achieved and β will share closer values on
these selected features as t progress, as shown in figure 7. On the other hand, β
may increase the ability of fitting data by having other features being non-zeros
as long as ν is not too small. In fact, it is shown in table B that comparable
results can be given as long as ν belongs to a reasonable range of values(0.1-10
in this case).

E IDS of ADNI subject used in our experiments

Subject ID Class Subject ID Class Subject ID Class

123 S 0094 9655 15AD 027 S 0408 14964 15MCI 072 S 0315 12559 15NC
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123 S 0088 9788 15AD 137 S 0481 15044 15MCI 137 S 0301 12584 15NC
098 S 0149 10146 15AD 027 S 0417 15148 15MCI 002 S 0295 13722 15NC
032 S 0147 10404 15AD 053 S 0507 15315 15MCI 037 S 0327 13802 15NC
123 S 0162 10962 15AD 094 S 0531 15431 15MCI 027 S 0403 14146 15NC
128 S 0216 11101 15AD 033 S 0567 15459 15MCI 137 S 0459 14178 15NC
128 S 0167 11203 15AD 127 S 0394 15510 15MCI 002 S 0413 14437 15NC
005 S 0221 11604 15AD 033 S 0514 15605 15MCI 068 S 0473 14483 15NC
014 S 0328 12327 15AD 033 S 0513 15622 15MCI 116 S 0360 14623 15NC
007 S 0316 12616 15AD 130 S 0460 15711 15MCI 133 S 0488 14838 15NC
021 S 0343 12979 15AD 098 S 0542 15848 15MCI 133 S 0493 14848 15NC
014 S 0356 13004 15AD 007 S 0414 15875 15MCI 014 S 0520 15299 15NC
032 S 0400 13525 15AD 031 S 0568 15885 15MCI 014 S 0519 15323 15NC
116 S 0370 14122 15AD 037 S 0501 15916 15MCI 116 S 0382 15347 15NC
127 S 0431 15497 15AD 037 S 0552 15970 15MCI 128 S 0500 15366 15NC
031 S 0554 15994 15AD 130 S 0423 16196 15MCI 010 S 0419 15415 15NC
128 S 0517 16150 15AD 014 S 0557 16304 15MCI 131 S 0436 15674 15NC
116 S 0487 16377 15AD 033 S 0511 16314 15MCI 128 S 0522 15821 15NC
002 S 0619 16392 15AD 130 S 0449 16351 15MCI 033 S 0516 15860 15NC
131 S 0497 16666 15AD 027 S 0461 16467 15MCI 002 S 0559 15948 15NC
021 S 0642 17632 15AD 128 S 0608 16503 15MCI 014 S 0548 16024 15NC
033 S 0739 19175 15AD 128 S 0611 16766 15MCI 128 S 0545 16090 15NC
100 S 0743 19585 15AD 053 S 0621 16864 15MCI 031 S 0618 16598 15NC
033 S 0724 19772 15AD 037 S 0566 16886 15MCI 010 S 0420 17078 15NC
128 S 0740 19990 15AD 037 S 0539 17018 15MCI 126 S 0506 17184 15NC
021 S 0753 20169 15AD 137 S 0443 17030 15MCI 005 S 0610 17303 15NC
137 S 0796 23112 15AD 005 S 0546 17056 15MCI 006 S 0484 17377 15NC
029 S 0836 23231 15AD 137 S 0631 17109 15MCI 014 S 0558 17400 15NC
100 S 0747 23581 15AD 027 S 0644 17157 15MCI 021 S 0647 17668 15NC
127 S 0754 23787 15AD 133 S 0629 17596 15MCI 137 S 0686 17813 15NC
012 S 0803 24863 15AD 021 S 0626 17687 15MCI 032 S 0677 17820 15NC
033 S 0889 25026 15AD 098 S 0667 17702 15MCI 002 S 0685 18211 15NC
126 S 0891 25172 15AD 052 S 0671 17849 15MCI 094 S 0711 18589 15NC
005 S 0929 25645 15AD 014 S 0563 17876 15MCI 127 S 0684 18896 15NC
006 S 0547 25816 15AD 007 S 0698 18363 15MCI 033 S 0734 19155 15NC
002 S 0955 26170 15AD 133 S 0638 18672 15MCI 033 S 0741 19258 15NC
130 S 0956 27032 15AD 033 S 0723 19014 15MCI 094 S 0692 19567 15NC
053 S 1044 27782 15AD 032 S 0718 19035 15MCI 009 S 0751 20013 15NC
133 S 1055 29381 15AD 126 S 0708 19089 15MCI 116 S 0648 20370 15NC
100 S 1062 29579 15AD 128 S 0715 19225 15MCI 129 S 0778 20543 15NC
029 S 1056 30618 15AD 033 S 0725 19404 15MCI 029 S 0824 23213 15NC
029 S 0999 31239 15AD 137 S 0669 19419 15MCI 116 S 0657 23350 15NC
006 S 0653 31252 15AD 116 S 0649 19516 15MCI 006 S 0731 23468 15NC
014 S 1095 31576 15AD 130 S 0505 19701 15MCI 029 S 0845 24249 15NC
094 S 1090 31678 15AD 137 S 0722 19707 15MCI 009 S 0862 25128 15NC
021 S 1109 31784 15AD 126 S 0709 19754 15MCI 098 S 0896 25255 15NC
024 S 1171 35190 15AD 128 S 0770 19907 15MCI 033 S 0923 25427 15NC
133 S 1170 35211 15AD 014 S 0658 20003 15MCI 130 S 0886 25455 15NC
031 S 1209 36178 15AD 137 S 0668 20202 15MCI 006 S 0498 25790 15NC
130 S 1201 36269 15AD 137 S 0800 20500 15MCI 052 S 0951 26642 15NC
027 S 1081 37145 15AD 002 S 0782 20519 15MCI 130 S 0969 26688 15NC
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126 S 1221 37339 15AD 130 S 0783 20794 15MCI 021 S 0984 27056 15NC
029 S 1184 37350 15AD 116 S 0752 23097 15MCI 024 S 0985 27607 15NC
027 S 1254 37859 15AD 068 S 0802 23389 15MCI 024 S 1063 28111 15NC
130 S 1290 38395 15AD 133 S 0792 23444 15MCI 033 S 1098 30304 15NC
033 S 1285 38593 15AD 006 S 0675 23644 15MCI 010 S 0472 30481 15NC
033 S 1283 38617 15AD 031 S 0821 23658 15MCI 137 S 0972 31702 15NC
033 S 1308 40114 15AD 133 S 0771 23876 15MCI 033 S 1086 32054 15NC
024 S 1307 41527 15AD 133 S 0727 23939 15MCI 130 S 1200 36281 15NC
007 S 1339 42344 15AD 027 S 0835 24138 15MCI 116 S 1232 37848 15NC
130 S 1337 42930 15AD 031 S 0830 24281 15MCI 027 S 0120 10933 15NC
127 S 1382 45060 15AD 029 S 0878 24533 15MCI 068 S 0127 11133 15NC
094 S 1397 51790 15AD 136 S 0695 24585 15MCI 068 S 0210 11235 15NC
094 S 1402 54220 15AD 031 S 0867 24962 15MCI 136 S 0186 11335 15NC
136 S 0299 15181 30AD 033 S 0906 25053 15MCI 009 S 0842 24339 15NC
136 S 0426 16172 30AD 033 S 0922 25092 15MCI 029 S 0843 24406 15NC
018 S 0335 16560 30AD 012 S 0932 25150 15MCI 032 S 1169 34067 15NC
136 S 0300 16719 30AD 137 S 0825 25272 15MCI 018 S 0055 9136 15NC
018 S 0633 19093 30AD 116 S 0834 25467 15MCI 100 S 0015 8390 30NC
012 S 0689 19210 30AD 094 S 0921 25498 15MCI 136 S 0196 14236 30NC
126 S 0606 20487 30AD 136 S 0873 25559 15MCI 136 S 0086 14712 30NC
131 S 0691 20681 30AD 100 S 0930 25618 15MCI 018 S 0369 15110 30NC
005 S 0814 24734 30AD 133 S 0912 26000 15MCI 131 S 0441 15959 30NC
002 S 0816 25405 30AD 032 S 0978 26407 15MCI 032 S 0479 16652 30NC
127 S 0844 29230 30AD 100 S 0892 26443 15MCI 018 S 0425 17168 30NC
002 S 1018 33832 30AD 052 S 0952 26661 15MCI 126 S 0405 17177 30NC
031 S 4024 228879 30AD 053 S 0919 26739 15MCI 005 S 0553 17619 30NC
016 S 4009 240946 30AD 068 S 0872 27450 15MCI 126 S 0605 17639 30NC
094 S 4089 242719 30AD 094 S 1015 28005 15MCI 005 S 0602 19615 30NC
006 S 4153 248517 30AD 133 S 1031 28152 15MCI 012 S 1009 28962 30NC
003 S 4136 250173 30AD 127 S 0925 28165 15MCI 012 S 1212 37403 30NC
003 S 4152 253760 30AD 137 S 0994 28269 15MCI 007 S 1206 37761 30NC
098 S 4215 255843 30AD 009 S 1030 28514 15MCI 068 S 1191 38370 30NC
098 S 4201 256178 30AD 100 S 0995 28877 15MCI 007 S 1222 38482 30NC
006 S 4192 258594 30AD 027 S 1045 28947 15MCI 094 S 1241 41449 30NC
019 S 4252 258947 30AD 136 S 0874 29140 15MCI 002 S 1261 41799 30NC
024 S 4280 261332 30AD 127 S 1032 29177 15MCI 002 S 1280 41806 30NC
094 S 4282 261855 30AD 126 S 0865 29243 15MCI 052 S 1251 43812 30NC
029 S 4307 267595 30AD 031 S 1066 29388 15MCI 100 S 1286 45761 30NC
016 S 4353 267937 30AD 052 S 0989 29525 15MCI 094 S 1267 46457 30NC
109 S 4378 270669 30AD 137 S 0973 29650 15MCI 131 S 1301 49328 30NC
126 S 4494 281605 30AD 012 S 1033 29964 15MCI 098 S 4003 224603 30NC
127 S 4500 283515 30AD 033 S 1116 30317 15MCI 098 S 4018 228788 30NC
007 S 4568 287472 30AD 029 S 1073 30359 15MCI 031 S 4021 229148 30NC
006 S 4546 287994 30AD 029 S 1038 30395 15MCI 012 S 4026 238532 30NC
130 S 4589 291219 30AD 052 S 1054 30580 15MCI 098 S 4050 238615 30NC
016 S 4591 292433 30AD 037 S 1078 30960 15MCI 016 S 4097 243556 30NC
016 S 4583 294209 30AD 010 S 0422 31015 15MCI 016 S 4952 337793 30NC
014 S 4615 294334 30AD 012 S 0917 31725 15MCI 016 S 4121 246002 30NC
130 S 4641 295961 30AD 006 S 1130 31799 15MCI 006 S 4150 249403 30NC
130 S 4660 300034 30AD 126 S 1077 31850 15MCI 127 S 4148 250137 30NC
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019 S 4549 300335 30AD 037 S 0588 32151 15MCI 003 S 4119 250894 30NC
126 S 4686 300818 30AD 052 S 1168 32349 15MCI 127 S 4198 254320 30NC
005 S 4707 304663 30AD 010 S 0904 32497 15MCI 002 S 4213 254582 30NC
021 S 4718 304749 30AD 002 S 1155 33393 15MCI 031 S 4218 255978 30NC
018 S 4733 306069 30AD 029 S 0871 33717 15MCI 002 S 4225 257270 30NC
130 S 4730 306384 30AD 127 S 1140 33761 15MCI 002 S 4262 259653 30NC
137 S 4756 307118 30AD 029 S 0914 33775 15MCI 941 S 4100 259781 30NC
027 S 4801 314034 30AD 100 S 1154 34258 15MCI 002 S 4264 259796 30NC
027 S 4802 317195 30AD 094 S 1188 34619 15MCI 021 S 4276 260047 30NC
006 S 4867 322012 30AD 012 S 1165 35052 15MCI 029 S 4290 260425 30NC
016 S 4887 325649 30AD 133 S 0913 35171 15MCI 098 S 4275 261459 30NC
007 S 4911 328196 30AD 012 S 1175 35342 15MCI 094 S 4234 261531 30NC
021 S 4924 331257 30AD 126 S 1187 36364 15MCI 018 S 4257 262076 30NC
137 S 4756 332930 30AD 009 S 1199 36373 15MCI 136 S 4269 264215 30NC
127 S 4940 335512 30AD 029 S 1215 37129 15MCI 029 S 4279 265980 30NC
027 S 4938 336926 30AD 116 S 0890 37182 15MCI 021 S 4335 266174 30NC
027 S 4962 338558 30AD 100 S 1226 37251 15MCI 130 S 4343 266217 30NC
130 S 4982 341787 30AD 005 S 1224 37284 15MCI 018 S 4349 266625 30NC
130 S 4984 342274 30AD 037 S 1225 37364 15MCI 129 S 4369 267405 30NC
130 S 4971 342338 30AD 029 S 1218 37373 15MCI 130 S 4352 267711 30NC
127 S 4992 342697 30AD 027 S 1213 37393 15MCI 129 S 4371 268462 30NC
019 S 5012 343916 30AD 127 S 1210 38319 15MCI 018 S 4313 268930 30NC
019 S 5019 345663 30AD 116 S 1243 38462 15MCI 019 S 4367 269273 30NC
002 S 5018 346242 30AD 033 S 1309 38837 15MCI 007 S 4387 269929 30NC
127 S 5028 346696 30AD 027 S 1277 39715 15MCI 036 S 4389 270462 30NC
130 S 4997 347410 30AD 129 S 1246 40237 15MCI 003 S 4350 270999 30NC
005 S 5038 351432 30AD 129 S 1204 40398 15MCI 129 S 4422 272184 30NC
127 S 5056 353203 30AD 033 S 1284 40881 15MCI 018 S 4399 272231 30NC
127 S 5058 354636 30AD 033 S 1279 40902 15MCI 018 S 4400 273504 30NC
007 S 0128 10007 15MCI 029 S 1318 41062 15MCI 021 S 4421 273564 30NC
010 S 0161 10077 15MCI 116 S 1271 41321 15MCI 029 S 4383 273993 30NC
021 S 0141 10173 15MCI 094 S 1330 41491 15MCI 003 S 4441 277108 30NC
127 S 0112 10419 15MCI 121 S 1322 42188 15MCI 136 S 4433 278511 30NC
128 S 0135 10431 15MCI 094 S 1314 42694 15MCI 006 S 4449 279470 30NC
128 S 0138 10438 15MCI 052 S 1352 42876 15MCI 031 S 4474 280369 30NC
098 S 0160 10466 15MCI 123 S 1300 43214 15MCI 007 S 4488 281560 30NC
123 S 0108 10738 15MCI 121 S 1350 44122 15MCI 006 S 4485 281882 30NC
037 S 0150 10773 15MCI 072 S 1211 44137 15MCI 010 S 4345 282005 30NC
027 S 0116 10783 15MCI 116 S 1315 44143 15MCI 031 S 4496 282638 30NC
128 S 0188 10897 15MCI 052 S 1346 44515 15MCI 098 S 4506 282934 30NC
014 S 0169 10987 15MCI 027 S 1387 44748 15MCI 094 S 4459 283445 30NC
021 S 0178 10993 15MCI 024 S 1393 44887 15MCI 094 S 4460 283573 30NC
128 S 0205 11011 15MCI 132 S 0987 45815 15MCI 010 S 4442 283915 30NC
128 S 0200 11012 15MCI 029 S 1384 47455 15MCI 007 S 4516 284424 30NC
037 S 0182 11121 15MCI 072 S 1380 49799 15MCI 029 S 4385 285589 30NC
137 S 0158 11127 15MCI 094 S 1398 53551 15MCI 094 S 4503 286222 30NC
128 S 0225 11179 15MCI 024 S 1400 53739 15MCI 073 S 4559 286553 30NC
136 S 0107 11227 15MCI 094 S 1417 60175 15MCI 021 S 4558 287527 30NC
032 S 0214 11280 15MCI 127 S 1419 61670 15MCI 109 S 4499 288999 30NC
005 S 0222 11299 15MCI 137 S 1414 64472 15MCI 100 S 4469 289564 30NC
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027 S 0179 11348 15MCI 127 S 1427 69355 15MCI 100 S 4511 289653 30NC
021 S 0231 11430 15MCI 037 S 1421 70885 15MCI 012 S 4545 290413 30NC
007 S 0249 11544 15MCI 137 S 1426 72082 15MCI 053 S 4578 290814 30NC
098 S 0269 11615 15MCI 007 S 0041 8177 15MCI 127 S 4604 291523 30NC
130 S 0289 11850 15MCI 123 S 0050 8648 15MCI 007 S 4620 293938 30NC
021 S 0273 11942 15MCI 100 S 0006 8793 15MCI 127 S 4645 295590 30NC
007 S 0293 11982 15MCI 007 S 0101 9602 15MCI 002 S 4270 260581 30NC
031 S 0294 12065 15MCI 123 S 0106 10126 15NC 013 S 4579 296776 30NC
021 S 0276 12092 15MCI 100 S 0035 8120 15NC 013 S 4580 296859 30NC
128 S 0227 12119 15MCI 100 S 0047 8899 15NC 012 S 4642 296878 30NC
027 S 0256 12250 15MCI 010 S 0067 9093 15NC 012 S 4643 297693 30NC
130 S 0285 12424 15MCI 018 S 0043 9324 15NC 029 S 4585 298523 30NC
098 S 0288 12654 15MCI 100 S 0069 9417 15NC 013 S 4616 300089 30NC
007 S 0344 12697 15MCI 032 S 0095 9680 15NC 029 S 4652 300886 30NC
021 S 0332 12862 15MCI 123 S 0072 9752 15NC 137 S 4632 301677 30NC
128 S 0258 13085 15MCI 007 S 0070 10027 15NC 094 S 4649 302926 30NC
027 S 0307 13281 15MCI 131 S 0123 10043 15NC 016 S 4638 305882 30NC
123 S 0390 13315 15MCI 027 S 0118 11370 15NC 013 S 4731 308178 30NC
031 S 0351 13783 15MCI 098 S 0172 11398 15NC 136 S 4726 308396 30NC
021 S 0424 13909 15MCI 130 S 0232 11567 15NC 016 S 4688 310327 30NC
053 S 0389 13938 15MCI 005 S 0223 11645 15NC 019 S 4835 315857 30NC
094 S 0434 13964 15MCI 123 S 0113 11714 15NC 127 S 4843 316771 30NC
068 S 0401 14161 15MCI 128 S 0230 11806 15NC 003 S 4839 319414 30NC
131 S 0409 14240 15MCI 137 S 0283 12028 15NC 003 S 4840 319427 30NC
116 S 0361 14296 15MCI 128 S 0245 12242 15NC 003 S 4872 321376 30NC
132 S 0339 14367 15MCI 128 S 0272 12313 15NC 003 S 4900 325729 30NC
037 S 0377 14405 15MCI 128 S 0229 12459 15NC 016 S 4951 337692 30NC
027 S 0485 14928 15MCI 021 S 0337 12466 15NC
130 S 0102 9709 15MCI 098 S 0171 10818 15NC
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