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Abstract

The most common reason for spinal surgery in elderly patients is lumbar spinal stenosis
(LSS). For LSS, treatment decisions based on clinical and radiological information as well
as personal experience of the surgeon shows large variance. Thus a standardized support
system is of high value for a more objective and reproducible decision. In this work,
we develop an automated algorithm to localize the stenosis causing the symptoms of the
patient in magnetic resonance imaging (MRI). With 22 MRI features of each of five spinal
levels of 321 patients, we show it is possible to predict the location of lesion triggering
the symptoms. To support this hypothesis, we conduct an automated analysis of labeled
and unlabeled MRI scans extracted from 788 patients. We confirm quantitatively the
importance of radiological information and provide an algorithmic pipeline for working
with raw MRI scans.
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Figure 1: Examples of T2-weighted MRI. 1(a) The five segments are highlighted yellow
in a sagittal scan. 1(b) Axial scan of a patient without symptoms and without
narrowing of the spinal channel (white spot in the center). 1(c) Example with
extreme narrowing.

1. Introduction

The lumbar spine consists of the five vertebrae (levels or segments) L1–L5. The verte-
bral discs connect adjacent levels and are denoted as L1/L2, L2/L3, L3/L4, L4/L5, L5/S1,
where S1 is the first vertebra of the underlying sacral region (see figure 1(a)). Lumbar
Spinal Stenosis (LSS) is the most common indicator for spine surgery in patients older than
65 years (Deyo (2010)). The North American Spine Society defines LSS as “[...] dimin-
ished space available for the neural and vascular elements in the lumbar spine secondary to
degenerative changes in the spinal canal [...]” (Kreiner et al. (2014)). Symptoms such as
gluteal and/or lower extremity pain and/or fatigue might occur, possibly associated with
back pain. Magnetic resonance imaging (MRI, illustrated in figs. 1(b) and 1(c)) and the
patient’s clinical course contribute to diagnosis and treatment formulation. When conser-
vative treatments such as physiotherapy or steroid injections fail, decompression surgery is
frequently indicated (Deyo (2010)). Depending on the clinical presentation of the patient
and corresponding imaging findings, surgeons decide which segments to operate. This de-
cision process exhibits wide variability (Weinstein et al. (2006); Irwin et al. (2005)), while
associations between imaging and symptoms are still not entirely clear (Jensen et al. (1994);
Burgstaller et al. (2016)). These issues motivate the search for objective methods to help
in surgery planning. Since the definition of LSS implies anatomic abnormalities, MRI plays
a fundamental role in diagnosis (Steurer et al. (2011)). Andreisek et al. (2014) identified 27
radiological criteria and parameters for LSS. However, correlations between imaging proce-
dures, clinical findings and symptoms is still unclear, and research efforts show contradictory
results (Haig et al. (2006); Ishimoto et al. (2013)).
This paper comprehensively determines the important role of radiological parameters in
LSS surgery planning, in particular by modeling surgical decision-making: to the best of
our knowledge, no machine learning approach has been applied in this direction before. In
section 2, we automatically predict surgery locations with 22 manual radiological features
comparing five different classifiers. We obtain accuracies of 85.4% using random forests and
show features associated with stenosis are commonly chosen by all classifiers. In section 3,
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the highly heterogeneous MRI dataset is preprocessed and a convolutional neural network
and convolutional autoencoder are trained to accomplish the same task as before, without
any knowledge of the underlying structure of LSS. The automatic preprocessing of raw MRI
scans is a key contribution of this work and code with examples will be released in the final
version. Both algorithms achieve accuracies of 69.8% and 70.6%, respectively, in mimicking
surgeons’ decisions, showing the high relevance of radiological features in LSS treatment.
Finally, we conclude with a discussion in section 4.

2. Surgical Prediction from Numerical Dataset

2.1 The Numerical Dataset

Radiological T1-weighted and T2-weighted scans from 788 LSS patients have been collected
in a multi-center study by Horten Zentrum (Zürich, CH). For every segment and patient,
radiologists manually scored 6 quantitative features (e.g. area of spinal canal in mm2) and
16 qualitative features (e.g. severity grade of compromise of a given vertebral region) known
to be most relevant for assessing stenosis (Andreisek et al. (2014)), forming the “numerical”
dataset. A description of the features can be found in the Supplement (A.1).
431 of 788 patients underwent surgery. The Numeric Rating Scale (NRS, Downie et al.
(1978)) for pain assessment was employed to understand whether the intervention improved
a certain patient’s condition or not. NRS differences larger than 2 points before and six
months after surgery were considered as improvement, as failure otherwise. In total, 321
of 431 patients exhibited improvement of NRS after surgery. As there is no information
gain from unsuccessful operations, the following analysis addresses the subset of the 321
improved patients, yielding a total of 1385 segments as data points.

2.2 Methods

We consider every segment independently as a data vector x consisting of its 22 feature
values. The target is represented by a binary variable y (to operate / not to operate). This
binary classification framework is tackled with the following algorithms: K-nearest neigh-
bors (KNN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
support vector machine (SVM), and random forest (RF). Implementations from the scikit-
learn (Pedregosa et al. (2011)) library are employed. The area under the receiver operating
characteristic (ROC) curve is a natural choice for evaluating binary classifiers’ performances,
and it is combined with 20-fold cross validation.
To evaluate the influence of individual features, forward selection and backward selection
are employed to choose the best 3, 5, 8, 10, 12, 15 and 18 features: with 5 different classifiers,
a single feature can be chosen for a total of 70 times (7 sets × 5 classifiers × 2 algorithms).
Thus we can evaluate how often a feature is considered to be among the most relevant ones
for surgery prediction. This procedure is again validated through 20-fold cross validation.

2.3 Results

For parameter-optimized binary classifiers, box plots describing the area under the ROC
curve (AUC) obtained with 20-fold cross validation are shown in figure 2(a). The best
results are achieved with an optimized random forest classifier: the mean over the AUC
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Figure 2: Summary of the classifiers for segmental surgery prediction. 2(a) The box plots
of the 20-fold cross validation. All classifiers show a strong signal between radi-
ological data and surgical treatments. 2(b) Feature ranking as described in the
text. The three most important features are SegCentralZone, SegCSarea and
SegFluidSign.

returned by the cross validation is 85.4%, with a standard deviation of 3.26%. The precision
obtained here is particularly significant if we consider the relatively low agreement rates
between doctors in determining treatments for LSS (Lurie et al. (2008); Fu et al. (2014)).
Feature selection indicates that SegCentralZone (assesses the compromise of the central
zone of the vertebra), SegCSarea (area of the section of the spinal cord in mm2) and
SegFluidSign (relation from fluid to cauda equina) as the most important features for
assessing stenosis: these are chosen in 88.57%, 87.14% and 70.00%, respectively, of the total
trials with feature selection algorithms (total ranking in figure 2(b)). All three features are
known to be strongly related to spinal stenosis (Andreisek et al. (2014)). The results show
that radiological data actually helps in assessing LSS and planning surgical treatments.

3. Surgical Prediction from Radiological Images

Fully automated MRI-based surgery planning would be a helpful tool, as it can substantially
speed up the process by skipping manual scoring while reducing the variability of human
assessment. Therefore, we aim to directly learn features from raw MRI scans.

3.1 The Image Dataset

The above described dataset of 788 LSS patients contains a great variety of T1-weighted and
T2-weighted sagittal, coronal and axial series scans (see figure 3 for four typical examples).
Since the images come from seven different institutions, the dataset is heterogeneous: not
all types of MRI scans listed above are always available, and often only a small subset of
the segments is accessible. Further, different machines vary in resolution (from 320x320 to
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(a) (b) (c) (d)

Figure 3: Typical examples of the different MRI scans: figs. 3(a) to 3(c) T2-weighted (3(a),
sagittal; 3(b), coronal; 3(c), axial); 3(d) T1-weighted axial.

1024x1024 pixels) and scanning frequency (0.2 to 1 scan/mm).
To keep the same segment-wise approach as before, we decide to employ only the T2-
weighted axial scans (e.g. figure 3(c)), as they picture the whole lumbar spine and can
be easily chopped into single segment sub-series. T2-weighted imaging pictures the spinal
canal white in contrast to T1-weighted images, in which the canal is dark and hardly visible
(3(d)). Further, T2-weighted axial scans are the most common series in the dataset. The
image dataset includes the same 321 operated patients with improved NRS.

3.2 Image Preprocessing & Data Augmentation

All images are cropped and resized to 128x128 pixels, in order to keep the central section.
Because of the various scanning frequencies, we then linearly interpolate to a desired num-
ber of equally spaced slices: to sufficiently describe the vertebral disc, yet keep the data
structure simple, we use four subimages for each segment. We employed following data
augmentation: rotation by a random angle α ∈ [−10◦; 10◦]; sagittal mirroring; inversion
of the order of the slides (since the MRI machine can scan upwards or downwards); applica-
tion of random Gaussian noise (zero-mean and 5% standard deviation); random brightness
alteration (maximum alteration at 5%). Each image is augmented 20 times by this pipeline,
each time every augmentation technique is randomly applied or not applied.

3.3 Methods

Deep learning algorithms have already shown great success in a variety of image recog-
nition problems (Krizhevsky et al. (2012); Farabet et al. (2013)). Convolutional Neural
Networks (CNN, implementation details can be found in LeCun et al. (1998)) are image
processing algorithms that are able to extract image features regardless of their position,
which is especially useful in our case since scans are not always optimally centered on the
spine. Due to the small sample size, a simple architecture is needed to prevent overfitting.
Our CNN has the following structure: first convolutional layer (filters size 5x5, 128
masks), followed by a max-pooling layer; second convolutional layer (filters size 5x5, 64
masks), followed by a max-pooling layer; a fully connected layer, 2048 nodes; a further fully
connected layer, 1024 nodes. Rectifier Linear Units (ReLU) are a common choice for this
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kind of network. The network structure is illustrated in fig 4, step 3. The cost function
minimized during training is the mean of the softmax cross-entropy function between the
output x and the actual label vector z, L = −z log σ(x)− (1− z) log [1− σ(x)], where σ(x)
is the softmax function. The optimizer used for the minimization is AdaGrad (Duchi et al.
(2011)). Implementation is done in Python using TensorFlow (Abadi et al. (2016)).
The major inherent vice in this approach is the need of labeled examples. We learn from
1576 labeled scanned segments from 321 successfully operated patients. On the other hand,
if we were able to include unlabeled segments in the analysis, we could take advantage of
all 4031 segments from the 788 patients.
Unsupervised learning methods do not need labeled examples. The autoencoder algorithm
(Zemel (1994)) is used to reduce the dimensionality of the problem: it consists of an encoder
function h = f(x) and a decoder function r = g(h). The autoencoder is trained to copy the
input to the output, but it is not given the resources to do so exactly (undercompleteness
property). In this way an approximation of the input is returned and the model is forced to
prioritize the most relevant aspects of the input. As the autoencoder does not need labels
for the surgery, all 4031 segments can be used. An autoencoder sufficient for our needs
can be built by mirroring the CNN and learning how to “invert” the convolutional and the
max pooling layers (Zeiler et al. (2010)) into deconvolutional layers: first convolutional layer
(filters size 5x5, 128 masks), followed by a max-pooling layer; second convolutional layer
(filters size 5x5, 64 masks), followed by a max-pooling layer; a fully connected layer, 1024
nodes; a fully connected layer, 128 nodes (bottleneck); a fully connected layer, 1024 nodes;
first unpooling and deconvolutional layer (filters size 5x5, 64 masks); second deconvolutional
layer (filters size 5x5, 128 masks). This autoencoder reconstructs the original 3D image,
and in the middle layer (the bottleneck), we find a 128-number code that identifies each
image sufficiently for its reconstruction. We train the autoencoder on all unlabeled images
to minimize the difference tensor J = (Xorig − Xreconstr)

2, where Xorig is the original image
and Xreconstr is its reconstruction. After training, the autoencoder is used to encode all
labeled images and their 128-number codes are used as features in the same classification
experiments as in section 2.

3.4 Results

The complete pipeline from the MRI preprocessing to the surgery classification is depicted
in fig. 4. For both CNN and autoencoder, the available image datasets are split into training
and test set with a 80/20 ratio. The training sets are augmented as previously described and
the networks are trained for 100 epochs. Learning curves are available in the Supplement
(A.2). On the test set, the CNN reaches an AUC of 69.8%. This is significantly lower than
the AUC obtained with the numerical dataset, but it is still confirming the existence of a
signal in the MRI images, and enforces the idea that radiological data are linked to stenosis
diagnosis and treatment. Considering the small size of the training data, we are confident
that higher precisions can be obtained if the present dataset is improved and expanded.
The autoencoder learns successfully to reconstruct the images (fig. 5). While some details
are missed, it is noticeable that the dimension of a picture is now extremely reduced from
128×128×4 = 65536 numbers to 128. When training and testing the binary classifiers from
section 3 with the codes from the labeled segments, the highest mean AUC for a 20-fold
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Figure 4: Proposed computing pipeline from preprocessing of raw MRI pictures to learning
of surgical planning

(a) (b) (c) (d)

Figure 5: Image reconstruction examples by the autoencoder. Figures 5(a) and 5(c): 2 out
of 4 slices of the original 3D image. Figures 5(b) and 5(d): Reconstructed image
slices.

cross validation test is given by a optimized LDA classifier, at 70.6%, with a corresponding
standard deviation of 6.69%. The mild improvement can be explained by the extension of
the dataset to the non-labeled segments.

4. Discussion

While the influence of MRI scans on surgical decisions for LSS was previously unclear,
our results quantitatively confirm the importance of medical imaging in LSS diagnosis and
treatment planning. We started by effectively modeling surgical decision-making for lumbar
spine stenosis through binary classifiers, on the sole basis of manually-assessed radiological
features. To reduce human bias and errors in the selection and calculation of features,
we developed an automatic pipeline (fig. 4) to work on raw MRI scans. To the best of
our knowledge these are the first and initial steps towards benchmarking LSS. Supervised
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(CNN) and semi-supervised (convolutional autoencoders) deep learning algorithms were
trained on the transformed images and accuracies around 70% on surgical planning were
achieved. Compared to the results with the numerical dataset, the differences in accuracy
(of about 15%) can be justified by the modest number of MRI scans. We are confident that
further systematic efforts aimed at enlarging the image catalog could significantly improve
the classification results and thus patient outcome.
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Appendix A. Supplementary Material

A.1 Dataset Features

The numerical dataset employed for the experiments includes 6 quantitative and 16 quali-
tative variables. In the following a detailed description of the features used in the classifier
experiments in section 2 is given.

1. SegDisc: discrete integer variable taking values in {1, 2, 3, 4, 5}. It describes the
structure of the discus, where 1 indicates a homogeneous, white on MRI T2 images,
and 5 indicates a black, collapsed, inhomogeneous discus.

2. SegModic: discrete integer variable taking values in {1, 2, 3}, it identifies changes in
the lumbar vertebral marrow. 1 represents bone marrow edema and inflammation, 2
represents normal red hematopoietic bone marrow conversion into yellow fatty marrow
as a result of marrow ischemia, 3 represents subchondral bony sclerosis.

3. SegListhesis: binary variable, indicates the presence of listhesis (displacement of
the vertebra).

4. SegOsteoArthRight: discrete integer variable taking values in {0, 1, 2, 3}. It describes
the degeneration of the right facet joint: 0 indicates a normal joint, 1 indicated nar-
rowing, 2 indicates narrowing with sclerosis and hypertrophy, 3 indicates narrowing,
sclerosis and the presence of osteophytes.

5. SegOsteoArthLeft: same as the previous one, but this time the left facet joint is
described.

6. SegFlavumRight: binary variable, indicates hypertrophy of the right ligamentum
flavum.

7. SegFlavumLeft: binary variable, indicates hypertrophy of the left ligamentum flavum.

8. SegFlavumThickRight: quantitative integer variable measuring the thickness in mm
of the right ligamentum flavum.

9. SegFlavumThickLeft: quantitative integer variable measuring the thickness in mm
of the left ligamentum flavum.

10. SegLipomathosis: discrete integer variable taking values in {0, 1, 2, 3}, where 0 indi-
cates a normal amount of epidural fat and 3 indicates severe epidural fat overgrowth.

11. SegCentralZone: discrete integer variable taking values in {0, 1, 2, 3}, it describes the
compromise of the central zone of the vertebra. 0 corresponds to no compromise of
the central zone while 3 to a severe compromise (affecting the 2/3 of its normal size).

12. SegFluidSign: discrete integer variable taking values in {0, 1, 2, 3, 4, 5, 6, 7}, it in-
dicates stenosis by assessing the relation from the fluid to the cauda equina. The
grading goes from a minor stenosis (value 0) to a extreme stenosis (value 7), with all
the intermediate values in the middle.
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13. SegRecessRight: discrete integer variable taking values in {0, 1, 2, 3}, it assesses the
nerve root compression in the right lateral recess. Grade 0 identifies absence of com-
pression while grade 3 corresponds to severe nerve root compression within the lateral
recess with obliteration of cerebrospinal fluid from the recess.

14. SegRecessLeft: same as the previous one, but this time the left lateral recess is
described.

15. SegRootRight: discrete integer variable taking values in {0, 1, 2, 3}, it describes the
right foraminal nerve root impingement. Grade 0 corresponds to the absence of im-
pingement, grade 3 indicates compression between disk material and the wall of the
spinal canal, such that it may appear flattened or indistinguishable from disk material.

16. SegRootLeft: same as the previous one, but the impingement considered here is the
one on the left nerve root impingement.

17. SegForamenRight: discrete integer variable taking values in {0, 1, 2, 3}, grading the
compromise of the right foraminal zone from absence of compromise (grade 0) to a
compromise affecting more than the 2/3 of its normal size.

18. SegForamenLeft: same as the previous one, but the left foraminal zone is considered
here.

19. SegAPDIam: quantitative variable, equal to length in mm of the anterior-posterior
diameter of the dural sac.

20. SegCSArea: quantitative variable, equal to the cross-sectional area in mm2 of the
dural sac.

21. SegLRRight: quantitative variable, equal to the depth in mm of the right lateral
recess.

22. SegLRLeft: quantitative variable, equal to the depth in mm of the left lateral recess.

A.2 Learning Curves

We report here the learning curves that describe the training of the deep learning algorithms.
In figure 6 the evolution of accuracy (6(a)) and cost function (6(b)) during 100 epochs of
training of the convolutional neural networks are shown (a moving average is plotted for
clarity). In figure 7 we exhibit the trend of the mean cost function during the training of
the autoencoder. Recall the autoencoder is trained to minimize the tensor:

J = (Xorig − Xreconstr)
2, (1)

an example of successful image reconstruction is given in figure 8. The plot in figure 7
depicts the scalar function E[J] during the 100 epochs of training.
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Figure 6: Learning curves describing the training of the convolutional neural network
(CNN). Figure 6(a) shows the accuracy on the training set, while figure 6(b)
shows the cost function during training. Moving averages are plotted for clarity.
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Figure 7: Mean cost function (E[J(θ)], see eq. 1) during the training of the convolutional
autoencoder. A moving average is plotted for clarity.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Image reconstruction examples by the autoencoder. Figures 8(a) to 8(d): Original
3D image slices 1 to 4. Figures 8(e) to 8(h): Reconstructed images from slices 1
to 4.
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