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Abstract. Large-scale collaborative analysis of brain imaging data, in psychiatry 
and neurology, offers a new source of statistical power to discover features that 
boostaccuracy in disease classification, differential diagnosis, and outcome pre-
diction. However, due to data privacy regulations or limited accessibilitytolarge 
datasetsacrossthe world, it is challengingtoefficiently integrate distributed infor-
mation. Here we propose a novel classification framework through multi-site 
weighted LASSO. The basic idea is that each site performs an iterative weighted 
LASSO for feature selection separately. Within each iteration, the classification 
result and the selected features fromeach site arecollected to update the weighting 
parameters for each feature. This new weight is used to guide the LASSO process 
atthe next iteration. Only the features that help to improve the classification ac-
curacy are preserved. In tests ondata from five sites (299 major depressive disor-
der patients (MDD) and 258 normal controls), our method boosted classification 
accuracy forMDD by 4.9% on average. This result shows the potential of the 
proposed new strategy as an effective and practical collaborative platform for 
machine learning on large scale distributed imaging and biobankdata.  
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1 Introduction 

Major depressive disorder (MDD) affects over 350 million people worldwide [1] and 
takes an immense personal toll on patients and their families, placing a vast economic 
burden on society. MDD involves a wide spectrum of symptoms, varying risk factors, 
and varying response to treatment [2]. Unfortunately, early diagnosis of MDD is chal-
lenging and is based on behavioral criteria; consistent structural and functional brain 
abnormalities in MDD are just beginning to be understood. Neuroimaging of large co-
horts can identify characteristic correlates of depression, and may also help to detect 
modulatory effects of interventions, and environmental and genetic risk factors. Recent 
advances in brain imaging, such as magnetic resonance imaging (MRI) and its variants, 
allow researchers to investigate brain abnormalities and identify statistical factors that 
influence them, and how they relate to diagnosis and outcomes [12]. Researchers have 
reported brain structural and functional alterations in MDD using different modalities 
of MRI. Recently, the ENIGMA-MDD Working Group found that adults with MDD 
have thinner cortical gray matter in the orbitofrontal cortices, insula, anterior/posterior 
cingulate and temporal lobes compared to healthy adults without a diagnosis of MDD 
[3]. A subcortical study – the largest to date – showed that MDD patients tend to have 
smaller hippocampal volumes than controls [4]. Diffusion tensor imaging (DTI) [5] 
reveals, on average, lower fractional anisotropy in the frontal lobe and right occipital 
lobe of MDD patients. MDD patients may also show aberrant functional connectivity 
in the default mode network (DMN) and other task-related functional brain networks 
[6].  
       Even so, classification of MDD is still challenging. There arethreemajor barriers: 
first, though significant differences have been found, these previously identified brain 
regions or brain measures are not always consistent markers for MDD classification 
[7]; second, besides T1 imaging, other modalities including DTI and functional mag-
netic resonance imaging (fMRI) are not commonly acquired in a clinical setting; last, 
it is not always easy for collaborating medical centers to perform an integrated data 
analysis due to data privacy regulations that limit the exchange of individual rawdata 
and due to large transfer times and storage requirements for thousands of images.As 
biobanks grow, we need an efficient platform to integrate predictive information from 
multiple centers;as the available datasets increase, this effort should increase the statis-
tical power to identify predictors of disease diagnosis and future outcomes, beyond 
what each site could identify on its own.  

 

Fig. 1.Overview of our proposed framework. 



In this study, we introduce a multi-site weighted LASSO (MSW-LASSO) model to 
boost classification performance for each individual participating site, by integrating 
their knowledge for feature selection and results from classification. As shown in Fig. 
1, our proposed framework features the following characteristics: (1) each site retains 
their own data and performs weighted LASSO regression, for feature selection, locally; 
(2) only the selected brain measures and the classification results are shared to other 
sites; (3) information on the selected brain measures and the corresponding classifica-
tion results are integrated to generate a unified weight vector across features; this is 
then sent to each site. This weight vector will be applied to the weighted LASSO in the 
next iteration; (4) if the new weight vector leads to a new set of brain measures and 
better classification performance, the new set of brain measures will be sent to other 
sites. Otherwise, it is discarded and the old one is recovered. 

2 Methods 

2.1 Data and demographics 

For this study, we used data from five sites across the world. The total number of par-
ticipants is 557; all of them were older than 21 years old. Demographic information for 
each site’s participants is summarized in Table 1. 

 Sites Total 
N 

Total N of 
MDD 

patients (%)

Total N of 
Controls (%)

Age of Controls 
(Mean ± SD; y)

Age of MDD
(Mean ± SD; 

y) 

% 
Female 
MDD 

% 
Female 
Total 

1 Groningen 45 22 (48.89%) 23 (51.11%) 42.78 ± 14.36 43.14 ± 13.8 72.73 73.33 

2 Stanford 110 54 (49.09%) 56 (50.91) 38.17 ± 9.97 37.75 ± 9.78 57.41 60.00 

3 BRCDECC 130 69 (53.08%) 61 (46.92%) 51.72 ± 7.94 47.85 ±  8.91 68.12 60.77 

4 Berlin 172 101 (58.72%) 71 (41.28%) 41.09± 12.85 41.21± 11.82 64.36 60.47 

5 Dublin 100 53 (53%) 47 (47%) 38.49± 12.37 41.81± 10.76 62.26 57.00 

 Combined 557 299 (53.68%) 258 (46.32$)     

Table 1.Demographicsforthe five sites participating in the current study. 

2.2 Data preprocessing 

As in most common clinical settings, only T1-weighted MRI brain scans were acquired 
at each site; qualitycontrol and analyses were performed locally.Sixty-eight (34 left/34 
right) cortical gray matter regions, 7 subcortical gray matter regions and the lateral ven-
tricles were segmented with FreeSurfer [8]. Detailed image acquisition, pre-processing, 
brain segmentation and quality control methods may be found in [3, 9]. Brain measures 
include cortical thickness and surface area for cortical regions and volume for subcor-
tical regions and lateral ventricles. In total, 152 brain measureswere considered in this 
study. 

2.3 Algorithm overview 

To better illustrate the algorithms, we define the following notations: 



 ;௜: The selected brain measures (features) of Site-iܨ .1
 ;௜: The classification performance of Site-iܣ .2
3. W: The weight vector; 
4. w-LASSO(W, ܦ௜): Performing weighted LASSO on ܦ௜ with weight vector – W; 
5. SVM (ܨ௜, ܦ௜): Performing SVM classifier on ܦ௜ using the feature set - ܨ௜; 

The algorithms have two parts that are run at each site, and an integration server. At 
first, the integration server initializes a weight vector with all ones and sends it to all 
sites. Each site use this weight vector to conduct weighted LASSO (Section 2.6) with 
their own data locally. If the selected features have better classification performance, it 
will send the new features and the corresponding classification result to the integration 
server. If there is no improvement in classification accuracy, it will send the old ones. 
After the integration server receives the updates from all sites, it generates a new weight 
vector (Section 2.5) according to different feature sets and their classification perfor-
mance. The detailed strategy is discussed in Section 2.5. 

Algorithm1(Integration Server) 
                      1.             Initialize W (with all features weighted as one) 
2.             Send W to allsites 
                      2.             while at least one site has improvement on A 
                      3.                   update W(Section 2.5) 
                      4.                   Send W to all sites 
                      5.             end while 
                      6.             Send W with null to all sites 

Table 2.Main step of Alghrithm 1. 

Algorithm2 (Site-i) 
௜ܨ             .1                       ௜ܣ	,∅← ← 0 
                      2.             while received W is not null 
௜ܨ                   .3                      

ᇱ ←w-LASSO (W, ܦ௜) (Section 2.6) 
                      4.                   if ܨ௜

ᇱ ≠ ܨ௜ 
௜ܣ                         .5                      

ᇱ ←SVM (ܨ௜ᇱ, ܦ௜) 
                      6.                         if ܣ௜

ᇱ>ܣ௜ 
                      7.                               send ܨ௜

ᇱ and ܣ௜
ᇱ to Integration Server 

௜ܨ                               .8                       ← ௜ܨ
ᇱ,	ܣ௜ ← ௜ܣ

ᇱ 
                      9.                         else send ܨ௜ and ܣ௜ to Integration Server 
                      10.                       end if 
                      11.                 end if 
                      12.            end while 

Table 3.Main steps of Algorithm 2. 

2.4 Ordinary LASSO and weighted LASSO 

LASSO [11]is a shrinkage method for linear regression. The ordinary LASSO is de-
fined as: 



 β෠(LASSO) = arg min ‖y െ ∑ x୧β୧
୬
୧ୀଵ ‖ଶ + λ∑ |β୧|

୬
୧ୀଵ  (1) 

Y and x are the observations and predictors. λ is known as the sparsity parameter. It 
minimizes the sum of squared errors whilepenalizing the sum of the absolute values of 
the coefficients - β. AsLASSOregression will force many coefficients to be zero, it is 
widely used for variable selection [11].  
However, the classical LASSO shrinkage procedure might be biased when estimating 
large coefficients [12]. To alleviate this risk, adaptive LASSO [12] was developed and 
it tends to assign each predictor with different penalty parameters. Thus it can avoid 
having larger coefficients penalized more heavily than small coefficients.Similarly, the 
motivation of multi-site weighted LASSO (MSW-LASSO) is to penalize different pre-
dictors (brain measures), by assigning different weights, according to its classification 
performance across all sites. Generating the weights for each brain measure (feature) 
and the MSW-LASSO model are discussed in Section 2.5 and Section 2.6, respec-
tively. 

2.5 Generation of a Multi-Site Weight  

In Algorithm 1, after the integration server receives the information on selected fea-
tures (brain measures) and the corresponding classification performance of each site, it 
generates a new weight for each feature. The new weight for the ݂௧௛feature is generated 
as: 

 ௙ܹ =  ∑ ௦ܣ௦,௙ߖ ௦ܲ
௠
௦ୀଵ ݉⁄  (2) 

,௦,௙ = ൜1ߖ  ݂݅		the	݂
௧௛	feature	was	selected		in	site െ s

0, ݁ݏ݅ݓݎ݄݁ݐ݋
 (3) 

Here m is the number of sites. ܣ௦is the classification accuracy of site-s. ௦ܲis the propor-
tion of participants in site-srelative to the total number of participants at all sites. Eq. 
(3) penalizes the features that only “survived” in a small number of sites. On the con-
trary, if a specific feature was selected by all sites, meaning all sites agree that this 
feature is important, it tends to have a larger weight. In Eq. (2) we consider both the 
classification performance and the proportion of samples. If a site has achieved very 
high classification accuracy and it has a relatively small sample size compared to other 
sites, the features selected will be conservatively “recommended” to other sites.In gen-
eral, if the feature was selected by more sites and resulted in higher classification accu-
racy, it has larger weights. 

2.6 Multi-Site weight LASSO 

In this section, we formally define the multi-site weighted LASSO (MSW-LASSO) 
model: 

 β෠୑ୗ୛ି୐ୟୱୱ୭=arg min ‖y െ ∑ x୧β୧
୬
୧ୀଵ ‖ଶ + λ∑ ሺ1 െ ∑ ௦ܣ௦,௜ߖ ௦ܲ

௠
௦ୀଵ ݉⁄ ሻ|β୧|

୬
୧ୀଵ  (4) 

Here x୧ represents the MRI measures after controlling the effects of age, sex and intra-
cranial volume(ICV), which are managed within different sites. y is the label indicating 



MDD patient or control. n is the 152 brain measures (features) in this study. In our 
MSW-LASSO model, a feature with larger weights implies higher classification per-
formance and/or recognition by multiple sites. Hence it will be penalized less and has 
a greater chance of being selected by the sites that did not consider this feature in the 
previous iteration. 

3 Results 

3.1 Classification improvements through MSW-LASSO model 

In this study, we applied Algorithm 1 and Algorithm 2 on data from five sites across 
the world. In the first iteration, the integration server initialized a weight vector with all 
ones and sent it to all sites. Therefore, these five sites conducted regular LASSO re-
gression in the first round. After a small set of features was selected using similar strat-
egy in [9] within each site, they performed classification locally using a support vector 
machine (SVM) and shared the best classification accuracy to the integration server, as 
well as the set of selected features. Then the integration server generated the new weight 
according to Eq. (2) and sent it back to all sites. From the second iteration, each site 
performed MSW-LASSO until none of them has improvement on the classification re-
sult. In total, these five sites run MSW-LASSO for six iterations; the classification per-
formance for each round is summarized in Fig. 2 (a-e). 

 

Fig. 2.Applying MSW-LASSO to the data coming from five sites (a-e). Each subfigure shows 
the classification accuracy (ACC), specificity (SPE) and sensitivity (SEN) at each iteration. (f) 
shows the overall improvement in classification accuracy at each site after performing MSW-
LASSO. 

Though the Stanford and Berlin sites did not show any improvements after the second 
iteration, the classification performance at the BRCDECC site and Dublin continued 
improving until the sixth iteration. Hence our MSW-LASSO terminated at the sixth 
round.Fig. 2f shows the improvements of classification accuracy for all five sites - the 
average improvement is 4.9%. The sparsity level of the LASSO is set as 16% - which 
means that 16% of 152 features tend to be selected in the LASSO process. Section 3.3 
shows the reproducibility of results with different sparsity levels. When conducing 
SVM classification, the same kernel (RBF) was used, and we performed a grid search 
for possible parameters. Therefore only the best classification results are adopted. 



3.2 Analysis of MSW-LASSO features 

In the process of MSW-LASSO, only the new set of features resulting in improvemen-
tsin classification are accepted. Otherwise, the prior set of features is preserved. The 
new features are also “recommended” to other sites by increasing the corresponding 
weights of the new features.Fig.3 displays the changes of the involved features through 
six iterations and the top 5 features selected by the majority of sites. 

 

Fig. 3.(a) Number of involved features through six iterations. (b-f) The top five consistently se-
lected features across sites. Within each subfigure, the top showed the locations of the corre-
sponding features and the bottom indicated how many sites selected this feature through the 
MSW-LASSO process. (b-c) are cortical thickness measures and (d-f) are surface areas measures. 

At the first iteration, there are 88 features selected by five sites. This number de-
creasesover MSW-LASSO iterations. Only 73 features are preserved after six iterations 
but the average classification accuracy increased by 4.9%. Moreover, if a feature is 
originally selected by the majority of sites, it tends to be continually selected after mul-
tiple iterations (Fig.3d-e). For those “promising” features that are accepted by fewer 
sites at first, they might be incorporated by more sites as the iteration increased (Fig.2b-
c, f). 

3.3 Reproducibility of the MSW-LASSO 

Selected 
Features 

Improvement, in % Selected 
features 

Improvement, in % 
ACC SPE SEN ACC SPE SEN 

13% 3.1 1.8 4.4 33% 2.6 3.1 2.5 
20% 3.9 1.4 6.0 36% 1.7 2.1 1.5 
23% 3.8 2.9 4.4 40% 2.5 4.1 1.4 
26% 4.3 3.4 5.2 43% 3.1 1.1 5.0 
30% 2.9 3.0 2.9 46% 2.8 3.9 1.9 

Table 4.Reproducibility results with different sparsity levels. The column of selected 
features represents the percentage of features preserved during the LASSO procedure, 

and the average improvement in accuracy, sensitivity, and specificity by sparsity. 
For LASSO-related problems, there is no closed-form solution for the selection of spar-
sity level; this is highly data dependent. To validate our MSW-LASSO model, we re-



peated Algorithm 1 and Algorithm 2at different sparsity levels, which leads to preser-
vation of different proportions of the features. The reproducibility performance of our 
proposed MSW-LASSO is summarized in Table 4. 

4 Conclusion and Discussion  

Here we proposed a novel multi-site weighted LASSO model to heuristically improve 
classification performance for multiple sites. By sharing the knowledge of features that 
might help to improve classification accuracy with othersites, each site has multiple 
opportunities to reconsider its own set of selected features and strive to increase the 
accuracy at each iteration. In this study, the average improvement in classification ac-
curacy is 4.9% for five sites. The results also offer a proof of concept for distributed 
machine learning that may be scaled up to other disorders, modalities, and feature sets. 
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