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Abstract

Current learning-based methods for the diagnosis of Alzheimer’s Disease (AD) rely on training a 

general classifier aiming to recognize abnormal structural alternations from homogenously 

distributed dataset deriving from a large population. However, due to diverse disease pathology, 

the real imaging data in routine clinic practices is highly complex and heterogeneous. Hence, 

prototype methods commonly performing well in the laboratory cannot achieve expected outcome 

when applied under the real clinic setting. To address this issue, herein we propose a novel 

personalized model for AD diagnosis. We customize a subject-specific AD classifier for the new 

testing data by iteratively reweighting the training data to reveal the latent testing data distribution 

and refining the classifier based on the weighted training data. Furthermore, to improve estimation 

of diagnosis result and clinical scores at the individual level, we extend our personalized AD 

diagnosis model to a joint classification and regression scenario. Our model shows improved 

performance on classification and regression accuracy when applied on Magnetic Resonance 

Imaging (MRI) selected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our 

work pin-points the clinical potential of personalized diagnosis framework in AD.

1 Introduction

Alzheimer’s Disease is one of the most common neurodegenerative disorders, which leads to 

gradual progressive memory loss, cognition declines, loss of functional abilities, and 

ultimate death [1–4]. Modern imaging technique MRI offers a non-invasive way to observe 

the abnormal structure changes of AD progression in vivo. In order to facilitate the MRI 

diagnosis of AD, a number of machine learning approaches have been developed to 

recognize AD-related altered brain structure [5, 6].

Most current learning-based methods train a general classifier (such as kernel Support 

Vector Machine) to find a hyper-plane to separate two groups in a high dimensional non-

linear space, which is suitable for data of homogeneous distribution (as shown in (a)). 

However, it is evident that AD pathology is of heterogeneous characteristic. Therefore, real 
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data distribution could be too complex to be represented by only one general model. As 

shown in (b), the real data distribution might have multiple sub-groups of distinct disease 

patterns due to inter-personal variance (different colors indicate different sub-groups). The 

incapability of a general classifier to fit heterogeneous data for precise classification prompts 

us to construct a specific classifier for each sub-group/person to achieve accurate 

classification. As shown in (b), the green, orange, and pink curves in are ideal classifiers for 

the green dataset, orange dataset, and pink dataset, respectively. Based on this strategy, we 

developed a personalized classification model specifically for each testing person desirable 

for real clinical applications.

The key to the personalized model is to reweight the training data to fit testing data 

distribution and train a person-specific classifier using the weighted training data. Figure 

1(b) and (c) show a toy example on how to construct a personalized classifier. There are 

three sub-groups of different distributions in the training dataset (green, orange, and pink) 

and one testing dataset (purple). Although it seems that the center of the testing dataset is 

closer to the green dataset than the orange dataset, only the distribution of the orange dataset 

resembles the testing dataset. Therefore, the orange dataset is associated with high-value 

weights and others are assigned with small value weights (see Fig. 1(c), size is proportional 

to weights). This weighted dataset reveals the latent testing data distribution and a 

personalized classifier (purple curve in Fig. 1(c)) can be learned from the weighted training 

dataset. Furthermore, to optimize weights for building the classifier, we developed an 

integrated solution which makes learning the training data weights and training the 

personalized classifier simultaneous.

This personalized training strategy can sort out the data heterogeneity issue and produce 

more accurate diagnosis results at the individual level. Moreover, we extend the personalized 

diagnosis model to a joint classification (on the binary clinical labels) and regression (on the 

continuous clinical scores) such that we can further improve the accuracy of diagnosis by 

utilizing both imaging and phenotype data. We evaluated the proposed personalized AD 

diagnosis model on ADNI dataset and achieved more than 8% improvement on average in 

identifying AD and MCI (Mild Cognition Impairment) subjects, compared to using general 

classification models.

2 Methods

2.1 Generalized Classification Model

Suppose the training set X consist of N subjects, denoted by X = {xi|i = 1, ···, N}, where each 

xi is the feature vector extracted from MRI. Each training subject also has a clinical label li 
to identify whether the underlying subject is at MCI stage (‘−1’) or has converted to AD 

(‘+1’). These clinical labels form a set L = {li|i = 1, …, N}. Hereafter, we take the kernel 

SVM as the example of the generalized classification model to illustrate the idea of our 

personalized AD diagnosis. Kernel SVM seeks to learn a non-linear mapping φ to determine 

the label for the new testing data y, where φ is essentially the weighted kernel distances with 

respect to each known instance xi in the training dataset X, i.e., φ(y) = ∑ j = 1
N αikC(xi, y), 

where kC(xi, y) denotes the kernel distance from xi to y in the high dimensional non-linear 
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space. The classification coefficient α = {αi|i = 1, …, N} can be optimized from the training 

dataset X via the following classic energy function:

arg minα
1
2αTKCα + μEC(φ) . (1)

The first term is the regularization term where Kc is a N × N kernel matrix with each element 

kC(xi, xj) measuring the distance between any two training data xi to xj (i, j = 1, …, N) in the 

high dimensional non-linear space. The second term is the misclassification error term 

EC(φ) = ∑i = 1
N ‖φ(xi) − li‖h

, where ||v||h= max(0, v) is the hinge loss function. μ is a scalar 

balancing the regularization term and misclassification error term. The classification 

coefficient α is optimized to fit the whole population in Eq. (1). If the data distribution is as 

homogeneous as the example shown in (a), a generalized classifier can achieve good 

performance on classification. However, real clinical data usually has complex distribution 

due to heterogeneous characteristics of AD pathology. Hence, one general classifier alone is 

not sufficient to cover all individuals.

2.2 Personalized Classification Model

To address the issue of heterogeneity, we propose to learn a person-specific classifier by 

leveraging the most relevant data in the training dataset. The training data are reweighted to 

reveal the testing subject distribution. Compared to the general model, we measure the 

relevance degree of each training data xi w.r.t. the new testing data y denoted by r = 

{ri}i=1,…,N. In contrast to the general model which treats all training data uniformly, here, 

we penalize the misclassification error for different training data w.r.t the relevance degree to 

testing data. To achieve personalized AD diagnosis, we adjust the energy function of general 

classification model to personalized classification model in three ways:

1. The misclassification errors are weighted based on the relevance degree r, it 

turns to the weighted average across all training data: 

Ec(φ, r) = ∑i = 1
N ri‖φ(xi) − li‖h

2.

2. The insight of personalized classifier is to re-weight each training data such that 

the difference between the distribution of testing data and weighted training data 

distribution is minimized. Therefore, we introduce the additional distribution 

mismatch term which is related to the relevance values r. First, we need to 

estimate the distribution for testing data y. Recall that the challenge in medical 

imaging area is the limited number of data with label information. Actually, it is 

not difficult to find a sufficient number of unlabeled data. Therefore, we propose 

to construct the distribution for the testing data y from another unlabeled dataset, 

denoted by U (U ∩ X = ∅). Specifically, we select the top similar M data to y 
from U to form the testing dataset Y = {yj|yj ∈ U, j = 1, …,M} (we set M = 4 in 

our experiment). Since the size of testing dataset is very small (M ≪ N), it is 

hard to calculate the data density in characterizing the distribution of Y. To avoid 

the unreliable estimation of data density, we resort to the Kernel Mean Matching 

Zhu et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(KMM) method [7], which is able to measure the distribution dissimilarity in the 

high dimensional or even infinite dimensional Reproducing Kernel Hilbert Space 

(RKHS) H. Specifically, we define the distribution mismatch term (X,Y, r) as 

the function of r by:

𝒟(X, Y, r) = 1
N ∑i = 1

N riϕ(xi) − 1
M ∑ j = 1

M ϕ(y j) 2

2
, (2)

where ϕ is a non-linear mapping from image feature space to the RKHS. The 

intuition behind Eq. (2) is to adjust the distribution of training dataset X based on 

the relevance degrees such that the weighted distribution of training dataset (first 

term in Eq. (2)) can fit the distribution of testing dataset Y, i.e., X and Y are 

comparable in the RKHS. To make Eq. (2) solvable, “kernel trick” is used to 

compute the pairwise kernel distance in H, rather than the exact value ϕ(xi). 

Thus, we use Π = [πij]N×N (i, j = 1, ···, N) to denote the N × N kernel matrix 

where each element πij = kD(xi, xj) measures the kernel distance between 

training data xi and xj in RKHS H. Similarly, we use θ = [θi]i=1,…,N to denote a 

N-length column vector where the i-th element θi = N
M ∑ j = 1

M kD xi, y j  measures 

the average distance of the training data xi to all testing data. It is worth noting 

that the kernel function kD used here might be different with the kernel function 

kc in kernel SVM (Eq. (1)). After that, we turn Eq. (2) into a quadratic term as:

ED(X, Y, r) = 1
2(r)TΠr − θTr, (3)

3. Since the training error term Ec(φ, r) and the distribution mismatching term 

ED(X, Y, r) are both influenced by the relevance degrees r, we can leverage the r 
to jointly minimize the classification error and distribution difference. By doing 

so, we can guarantee that the relevance degrees are optimized towards the 

eventual goal of improving the classification accuracy for the new testing data.

Overall energy function—By integrating the above three modifications, the overall 

energy function for personalized AD diagnosis can be defined as:

arg minα, r
1
2αTKCα + μEC(φ, r) + λED(X, Y, r) (4)

where λ is the scalar used to control the strength of distribution matching. Since the clinic 

label of the testing data is unknown yet, the estimation of the weights for training data is 

driven by the distribution mismatch term ED(X, Y, r) in an unsupervised manner. In addition, 

the estimation of relevance degrees r are jointly driven by minimizing the classification error 

and distribution mismatch.
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Optimization—Equation (4) is a bi-convex quadratic problem [8], i.e., E(α) is convex if r 
is fixed and E(r) is convex if α is fixed. Under these conditions, an alternate gradient search 

approach is guaranteed to monotonically decrease the objective function. Hence, we 

alternatively optimize Eq. (4) w. r. t. r and α until converge [9].

Discussion—Conventional subject selection approaches, however, are usually separately 

performed prior to train the classifier, and thus resulting in a sequential two-step strategy. 

Therefore, the selected training data in the two-step strategy might not be optimal for 

classification, since there is no chance to refine the subject selection procedure. Since the 

personalized classifier is free of the less relevant training samples, the customized mapping 

function in our personalized classifier is more robust to the new testing subject than the 

general classifier learned from entire training data, as demonstrated in (c).

2.3 Advance Personalized AD Diagnosis Model

In many medical applications, clinical scores such as Mini-Mental State Examination 

(MMSE) and Clinical Dementia Rating (CDR) scores are widely used to quantify memory 

loss and behavior abnormality and facilitate the clinical AD diagnosis. Since the clinical 

scores have higher correlations than the imaging features, there is an increasing trend to 

integrate classification (for the binary diagnosis labels) and regression (for the continuous 

clinical scores). Hence, we go one step further to present the advanced personalized AD 

diagnosis model. Suppose each training data xi has the clinical scores ci which forms the set 

of clinical scores C = {ci|i = 1, …, N}. For consistency, we use the kernel Support Vector 

Regression (SVR) model to learn another non-linear mapping function 

ψ(y) = ∑i = 1
N βikR(xi, y) to determine the scores for the new testing data y based on the 

weighted average of kernel distance kR(xi, y) to all training data. The regression coefficients 

β = {βi|i = 1, …, N} can be optimized by:

arg minβ
1
2 βTKRβ + ηER(ψ), (5)

where η is the scalar balancing the regularization term and regression error term 

ER(ψ) = ∑i = 1
N ‖ψ(xi) − ci‖2

2. KR is the N × N kernel matrix with each element kR(xi, xj) 

measuring the kernel distance between xi and xj in the regression problem. To personalize 

the regression, we turn the regression error term ER(ψ) into the weighted average across all 

training data as ER(ψ , r) = ∑i = 1
N ri‖ψ(xi) − ci‖2

2. Thus, the energy function of personalized 

regression can be derived as:

arg minβ, r
1
2 βTKRβ + μEC(ψ , r) + λED(X, Y, r), (6)

Furthermore, we integrate personalized classification and regression and derive the overall 

energy function of advanced personalized AD diagnosis model as:
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arg minα, β, r
1
2αTKCα + 1

2 βTKRβ + μEC(φ, r) + ηER(ψ , r) + λED(X, Y, r) . (7)

Equation (7) can be similarity solved by alternatively updating α, β, and r until converge.

3 Experiments

We evaluate our proposed personalized AD diagnosis model on 150 MCI and 150 AD 

subjects selected from ADNI database, each has the clinical scores such as ADAS-COG 

(Alzheimer’s Disease Assessment Scale-Cognitive Subscale) and MMSE. For each subject, 

we first segment each image into white matter (WM), gray matter (GM), cerebral spinal 

fluid (CSF). Then, we register the AAL template with 90 manually labeled ROIs (regions of 

interest) to the underlying subject image. We concatenate the tissue percentiles across 90 

ROIs as the morphological feature for each subject.

The accuracy of classification and regression is evaluated by leave-one-out strategy. For each 

leave-one-out case, we divide the remaining subjects into five folds. One-fold data is used as 

the validation dataset for parameter turning, one-fold is used as the candidature dataset for 

augmenting testing data and the left three-fold data are use as the training dataset. The 

optimal parameters are learned by an exhaustive strategy on the validation dataset. The 

search range for parameters is set to [10−4, 104]. Three statistical measures are used to 

evaluate classification, including accuracy (ACC), sensitivity (SEN) and specificity (SPEC). 

Root Mean Square Error (RMSE) and Correlation Coefficients (CC) are used to evaluate the 

regression performance for two popular clinical measurements, i.e., ADAS-Cog and MMSE.

Kernel SVM/SVR(generalized model) are the baseline methods in comparison. In the 

following experiments, we evaluate the classification and regression separately. We use the 

RBF kernel and the regularization parameters are tuned using five-fold inner cross-

validation. In classification, we compare our personalized classifier (Eq. 4) with kernel SVM 

and convention subject selection (estimate the weight based on feature similarity) followed 

by kernel SVM called SS+SVM. Similarly, we evaluate the regression performance for the 

baseline kernel SVR, SS+SVR, and our personalized regressor. Our advance personalized 

AD diagnosis model (called Personalized SVM+SVR) is both evaluated in classification and 

regression tasks, in order to show the benefit from joint classification and regression.

Evaluation of classification performance—The ACC, SEN, and SPEC results in 

identifying MCI/AD and NC/MCI/AD subjects by kernel SVM, SS+SVM, personalized 

SVM, and personalized SVM+SVR are shown in Fig. 2(a). In general, all personalized 

approaches achieve higher accuracy than the baseline kernel SVM method which does not 

have any adjustment to the testing subject. Since our personalized SVM method can jointly 

select the most relevant subjects and train the classifier, it achieves overall 1.3% 

improvement in terms of ACC value over the naïve SS+SVM approach that selects training 

data and trains the classifier separately. Furthermore, our personalized SVM+SVR can 

obtain additional 3.1% improvement of ACC value over the personalized SVM method, 
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which shows the substantial benefit of joint classification and regression. It is worth noting 

that our advanced personalized model (personalized SVM+SVR) achieves 8.3% 

improvement in terms of ACC value, compared to generalized model (kernel SVM).

Evaluation of regression performance—Since the clinical scores of each testing 

subject are known, we calculate the RMSE and CC values between the ground truth and the 

estimated score by four competing methods. We show the MMSE and CC results of 

estimating MMSE and ADAS-Cog measurements by kernel SVR, SS+SVR, personalized 

SVR, and personalized SVM+SVR in Fig. 2(b) and (c), respectively. It is apparent that (1) 

all personalized method beat the generalized regression method (kernel SVR); (2) our 

personalized SVR outperforms the naïve SS+SVR method due to the advantage of joint 

weighting training data and regression; (3) personalized SVM+SVR has the minimal MMSE 

value and large CC value between the ground truth and estimated scores, indicate the 

advantage of allowing clinical labels to guide the regression of clinical scores.

Evaluation of personalized diagnosis model with respect to data 
heterogeneity—Since the main objective of our study is to address the heterogeneous 

issue of imaging data by using personalized model, we specifically evaluate the performance 

of the personalized model with respect to the heterogeneity in the observed imaging data. 

Here we assume that the data heterogeneity proportionally increases as the size of imaging 

data becomes larger and larger. Therefore, we examine the performance of classification and 

regression w.r.t. the different number of the training data, as shown in Fig. 3. We run the 

two-sample t-test for results in Fig. 3 and find the improvement is significant with p < 0.05. 

One can observe that (1) both general and personalized models perform at similar accuracy 

when the size of training data is small; (2) as the number of training subjects increases, the 

personalized model achieved much higher performance accuracy compared to general model 

in terms of both classification and regression tasks, although the performance accuracy of all 

methods increase consistently; (3) the improvement of personalized model over the 

generalized model becomes more prominent as the subject number increases. These results 

prove that the personalized model we propose is superior to the general model when applied 

on a large heterogeneous dataset and thus is of potential for clinical practice.

4 Conclusion

To address the heterogeneous issue of image-based diagnosis of AD, we construct a 

personalized diagnosis model in this work. In this model, we establish a subject-specific AD 

classifier by reweighting training data to reveal the latent distribution for each testing data 

and simultaneously refining classifier. We further improve the diagnosis performance at the 

individual level by establishing a joint classification and regression scenario. Finally, we 

evaluate our method on ADNI dataset for both clinical label and clinical score estimation 

compared to the state-of-art counterpart methods and demonstrate the potential of our 

personalized model in translating computer assisted diagnosis method into routine clinical 

practice.
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Fig. 1. 
(a) Conventional methods with a general classifier applied on homogeneously distributed 

data; (b) Heterogeneously distributed realistic data requiring person-specific classification 

solution; (c) Proposed personalized classification model by re-weighting training data to fit 

testing data distribution. (Best viewed in color)
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Fig. 2. 
Classification performance in identifying MCI/AD, NC/MCI/AD subjects and regression 

performance in estimating MMSE and ADAS-Cog scores. (CC represent correlation 

coefficients and RMSE represents root mean square error. Best viewed in color)
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Fig. 3. 
The performance of personalized model vs. general model with respect to different number 

of training data. (Best viewed in color)
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